58 Ni(58 Ni,4p γ),(60 Ni, α 2p γ) 1994Pa22,2007Pa07

	His	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Lalkovski, F. G. Kondev	NDS 124, 157 (2015)	1-Aug-2014

1994Pa22: Facility: Daresbury Nuclear Structure Facility; Beam: $E({}^{58}Ni)= 240$ MeV; Target: 440 $\mu g/cm^2$ self-supporting ${}^{58}Ni$; Detectors: EUROGAM array, comprising 45 Compton-suppressed HPGe detectors, Daresbury recoil separator; Measured: γ - γ - γ , $E\gamma$, $I\gamma$; Facility: TASCC Facility at Chalk River; Beam: $E({}^{58}Ni)=250$ MeV; Targets: stack of two $450-\mu g/cm^2$ thick self-supporting ${}^{60}Ni$ foils. One 1 mg/cm² ${}^{58}Ni$ with 10 mg/cm² Au backing; Detectors: 8π spectrometer, comprising 20 HPGe detectors, and 71-element inner-ball calorimeter; Measured: γ - γ , γ - $\gamma(\theta)$, $E\gamma$, $I\gamma$; Deduced: level scheme. Also, from the same collaboration: 1993PaZX.

2007Pa07: Facility: 88-inch cyclotron at LBNL; Beam: $E(^{58}Ni)=240$ and 250 MeV; Targets: one thin target and one 1 mg/cm² on 15 mg/cm² ²⁰⁸Pb backing; Detectors: GAMMASPHERE, Microball charged-particle detector, and array of 15 neutron detectors; Measured: γ - γ - γ - charged particle coinc., $E\gamma$, $I\gamma$; Deduced: level scheme, band structure, Doppler corrections, $T_{1/2}$; Also, from the same collaboration: 2006Ev01.

Other: 1998StZZ.

¹¹²Te Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0@	0^{+}	
689.00 [@] 20	2+	
1476.1 [@] 3	4+	
2261.7 4	(5)	J^{π} : From Adopted Levels.
2297.6 [@] 4	6+	
2619.7 4	6+	
2839.0 4		
3362.3 [@] 4	8+	
3454.3 ^{&} 4	8-	
3512.1 4		
3629.8 ^{x} 4	9-	
3785.6 4	0-	
3939.14	9	
$4109.5^{-2} 4$	10	
4225.9 4	10.	
4239.4 5 4320.1 <mark>&</mark> 5	11-	
442535	11	
4460.3 ^{<i>a</i>} 4	10^{+}	
4827.1 [@] 5	12+	
4864.9 ^{&} 5	12^{-}	
5040.9 5		
5124.0 <mark>&</mark> 5	13-	
5212.1 ^a 5	12^{+}	
5432.7 & 5	14-	
5540.1 [@] 5	14^{+}	
5753.1 6		
5874.4 ^{&} 5	15-	
5970.8 ^{<i>a</i>} 5	14+	
6294.5 ^{^w 5}	16^{+}	
6439.1 ^{&} 5	16-	
6709.4 9	(17^{+})	

¹¹²Te Levels (continued)

E(level) [†]	Jπ‡	$T_{1/2}^{\#}$
6772.4 ^{<i>a</i>} 6	16+	
6904.7? 6	17^{-}	
6951.1 ^{&} 5	17^{-}	
7029.0? 5	17^{-}	
7251.9 [@] 6	18^{+}	
7565.1 ^{&} 11	18-	
7634.4 ^a 6	18^{+}	0.21 ps +7-4
7857.9? 6		
7911.8 <mark>0</mark> 6	19-	
8117.1 ^{&} <i>12</i>	19-	
8168.2 [@] 6	20^{+}	
8211.6 6	20^{+}	
8491.0 6	21	
8563.1 ^{<i>a</i>} 7	20^{+}	0.14 ps +4-3
8904.4 <mark>6</mark> 6	21^{-}	
9087.2 [°] 9	20^{+}	
9191.2 [@] 6	22^{+}	
9492.9 [°] 9	21+	
9561.3 ^{<i>a</i>} 7	22^{+}	101 fs + 31 - 21
9710.8 ⁰ 6	23-	
9754.2 ^d 10	23^{-}	
9958.1 [°] 9	22^{+}	
10054.2? 6		
10393.2 ^{<i>@</i>} 10	24+	
10434.3 ^c 9	23^{+}	
10618.2 ^b 7	25^{-}	
10633.1 ^{<i>a</i>} 8	24+	70 fs +21-15
10930.4 ^c 9	24+	
11023.2 ^{<i>a</i>} 11	25-	
11438.4°9	25^{+}	
11657.2 ^{⁽⁰⁾} 12	26+	
11779.5 ^{<i>a</i>} 8	26+	50 fs $+15-10$
11968.70 9	26+	
11990.2 ⁰ 11	27^{-}	
12276.2 ^{<i>a</i>} 12	27-	
12517.6° 9	27+	
12997.2 ⁴ 9	28+	37 fs +11-8
13080.6° 9	281	
13455.2° 12	29 ⁻	
13666./ 9	291	
13060 2 15		
14264 7 [°] 9	30^{+}	
14288.5 ^{<i>a</i>} 10	30^{+}	27 fs +8-6
14908.8 [°] 9	31+	
14996.2 ^b 16	31-	
15333.2 18	01	
15408.2 18	31-	
15563.8 [°] 9	32^{+}	

¹¹²Te Levels (continued)

E(level) [†]	J π ‡	T _{1/2} #	Comments
15652.3 ^a 10	32^{+}	21 fs $+6-4$	
16273.9 [°] 9	33+	21 10 10 1	
16998.1 [°] 9	34+		
17153.1 ^{<i>a</i>} 10	34+		
17786.2° 10	35+		
18586.9 ^C 10	36+		
18777.9 ^{<i>a</i>} 11	36+		
19515.6 ^c 10	37+		
20441.9 ^c 14	38+		
20498.9 ^{<i>a</i>} 11	38+		
21523.6 ^C 14	39+		
22305.6 ^{<i>a</i>} 12	40^{+}		
22556.0 ^C 17	40^{+}		
24248.1 ^{<i>a</i>} 12	42+		
26353.2 ^a 16	44+		
28646.2 ^a 19	46+		
x ^g	(21^{+})		Additional information 1.
966.0+x ^g 10	(23^{+})		
1985.0+x ^g 15	(25^{+})		
$3099.0 + x^{g}$ 18	(27^{+})		
4317.9+x ⁸ 18	(29^{+})		
5649.0+x ⁸ 18	(31^{+})		
7119.4+x ⁸ 18	(33^+)		
8/32.1+x ⁸ 19	(35 ⁺)		
10509.7+x ⁸ 19	(37^{+})		
12430.5+x ⁸ 19	(39 ⁺)		
$14501.5 + x^8 19$	(41')		
y)	(21 ⁻)		Additional information 2.
860.0+y ^J 10	(23 ⁻)		
1451.2+y <i>15</i>			
1793.5+y ^J 11	(25 ⁻)		
2802.2+y ^f 11	(27 ⁻)		
3926.2+y ^f 12	(29 ⁻)		
5096.0+y 16			
5138.3+y ^f 12	(31-)		
6449.0+y ^f 12	(33^{-})		
$7843.0+v^{f}$ 13	(35-)		
$9361.6 \pm v f 13$	(37^{-})		
$11027.7 \pm v f 14$	(37)		
$11037.7 + y^{5} 14$	(39)		
$12913.5 + y^{J} 14$	(41)		
15019.0+y ^J 14	(43 ⁻)		
17346.0+y ^J 17	(45 ⁻)		
z ^e	(18^{-})		Additional information 3.
867.0+z ^e 10	(20 ⁻)		
1807.0+z ^e 15	(22-)		
2828.0+z ^c 18	(24^{-})		
$3930.0+z^{\circ} 20$	(26^{-})		
$5136.3 + z^{\circ} 21$	(28)		
0427.3+Z° 21	(30)		

¹¹²Te Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	Jπ‡
7785.8+z ^e 21 9187.7+z ^e 21	(32 ⁻) (34 ⁻)	10688.5+z ^e 21 12328.7+z ^e 22	(36 ⁻) (38 ⁻)	$\begin{array}{r} 14138.4 + z^{e} \ 22\\ 16133.2 + z^{e} \ 22\\ 18318.2 + z^{e} \ 24 \end{array}$	(40^{-}) (42^{-}) (44^{-})

[†] From a least-squares fit to $E\gamma$.

[‡] From 1994Pa22 and 2007Pa07, based on deduced transition multipolarities and the apparent band structures.

[#] From DSAM (centoid shift) in 2007Pa07.

[@] Band(A): g.s. band.

[&] Band(B): π =- band based on the 8⁻ state.

^{*a*} Band(C): $\Delta J=2$, $\pi=+$ intruder band based on the 10⁺ state.

^b Band(D): $\Delta J=2$, $\pi=-$ band based on the 18⁻ state.

^c Band(E): $\Delta J=1$, $\pi=+$ band based on the 20⁺ state.

^d Band(F): $\Delta J=2$, $\pi=-$ band based on the 23⁻ state.

^{*e*} Band(G): $\Delta J=2$, $\pi=-$ band based on the (18⁻) state.

^{*f*} Band(g): $\Delta J=2$, $\pi=-$ band based on the (21⁻) state.

^g Band(H): $\Delta J=2$, $\pi=+$ band based on the (21⁺) state.

$\gamma(^{112}\text{Te})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f J	J_f^{π} N	Mult.‡	Comments
91.9 2	10.1 5	3454.3	8-	3362.3 8	+		
173.7 2	0.7 1	3959.1	9-	3785.6			
175.7 2	4.2 1	3629.8	9-	3454.3 8	6- ((M1)	Mult.: DCO=0.85 7 from (⁵⁸ Ni,4py) in 1994Pa22.
219.5 2	1.2 6	2839.0		2619.7 6	5 +		Mult.: DCO 1.31 21 from (⁵⁸ Ni,4py) in 1994Pa22.
266.6 2	2.1 1	4225.9	10+	3959.1 9)- ((E1)	Mult.: DCO=0.61 2 from (58 Ni,4p γ) in 1994Pa22 for the 266-keV doublet.
267.5 2	12.0 6	3629.8	9-	3362.3 8	S ⁺ ((E1)	Mult.: DCO=0.61 2 from (58 Ni,4p γ) in 1994Pa22 for the 266-keV doublet.
279.4 2	1.00 5	8491.0	21	8211.6 2	20+ I	D	Mult.: DCO= 0.62 7 from $({}^{58}Ni,4p\gamma)$ in 1994Pa22.
308.6 2	0.9 1	5432.7	14-	5124.0 1	3-		
357.2 2	0.7 1	2619.7	6+	2261.7 (5	5)		
406 [#] 1		9492.9	21^{+}	9087.2 2	20^{+}		
415 [#] 1		6709.4	(17^{+})	6294.5 1	6+		
423.4 2	2.1 1	3785.6		3362.3 8	+		
440.2 2	1.3 1	4225.9	10^{+}	3785.6			
441.6 2	1.7 <i>1</i>	5874.4	15-	5432.7 1	4-		
465.1 [#] 3		9958.1	22^{+}	9492.9 2	21^{+}		
465.6 [@] 2	5.1 3	6904.7?	17-	6439.1 1	6- N	M1	E_{γ} : observed only in 1994Pa22; not confirmed in 2007Pa07. Mult.: DCO =0.52 <i>3</i> from (⁵⁸ Ni,4p γ) in 1994Pa22.
476.4 [#] 3		10434.3	23^{+}	9958.1 2	2^{+}		
479.8 2	1.1 <i>1</i>	4109.5	10-	3629.8 9)-		
495.9 [#] 3		10930.4	24+	10434.3 2	23+		
507.9 [#] 3		11438.4	25^{+}	10930.4 2	4+		
519.6 2	2.5 1	9710.8	23-	9191.2 2	22^{+}		
530.4 [#] 3		11968.7	26+	11438.4 2	25+		
548.8 [#] 3		12517.6	27+	11968.7 2	26+		
563.1 [#] 3		13080.6	28^{+}	12517.6 2	27+		

58 Ni(58 Ni 4ny) (60 Ni α 2ny)	1994Pa22 2007Pa07 (continued)
$11(11, \mathbf{p}), (11, \mathbf{p})$	1))41 a22,200/1 a0/ (continucu)

$\gamma(^{112}\text{Te})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	Comments
563.3 [#] 2	3.2.2	9754.2	23-	9191.2	22+	(E1)	Mult.: DCO=0.63 6 from (⁵⁸ Ni.4py) in 1994Pa22.
567.8 2	13.5 7	5432.7	14-	4864.9	12^{-}	E2	Mult.: 1.11 5 from $({}^{58}Ni,4p\gamma)$ in 1994Pa22.
586.0 [#] 3		13666.7	29+	13080.6	28^{+}		
596.5 2	2.0 4	3959.1	9-	3362.3	8+		
597.8 [#] 3		14264.7	30^{+}	13666.7	29+		
601.2 2	48 2	4827.1	12^{+}	4225.9	10^{+}	E2	Mult.: DCO=1.02 <i>3</i> from (⁵⁸ Ni,4pγ) in 1994Pa22.
615.5 2	0.9	3454.3	8-	2839.0			
615.6 2	0.6 1	5040.9		4425.3			
619 [#] 1		12276.2	27-	11657.2	26+		
619 [#] 1		14908.8	31+	14288.5	30^{+}		
630 [#] 1		11023.2	25-	10393.2	24+		
639.7 2	1.0	4425.3		3785.6			
644.3 ^{m} 3		14908.8	31+	14264.7	30+	-	58
655.1 2	14.3 7	4109.5	10-	3454.3	8-	E2	Mult.: DCO= 1.05 5 from $({}^{30}Ni,4p\gamma)$ in 1994Pa22.
655.2 # 3		15563.8	32+	14908.8	31+		59
659.8 2	8.3 17	7911.8	19-	7251.9	18+	(E1)	Mult.: DCO=0.58 4 from $({}^{36}Ni,4p\gamma)$ in 1994Pa22.
6/3.12	1.0 1	3512.1	2^+	2839.0	0+	E2	Math. DCO 100.2 from (58Ni 4au) in 1004D-22
089.0 <i>2</i>	12 2 7	089.00 4220 1	2 · 11-	2620.8	0-	E2 E2	Mult.: DCO=1.00 2 from $(^{58}Ni,4p\gamma)$ in 1994Pa22.
099.52	13.27	4329.1	22+	3029.0 15562.0	9 20+	EZ	Mult.: $DCO=1.110$ from ($-1013,4py$) in 1994Fa22.
710.1 3	117	5753 1	33	15505.8 5040.9	32		
713.0.2	45.2	5540.1	14+	4827.1	12+	E2	Mult: DCO=1.05 4 from $({}^{58}Ni 4py)$ in 1994Pa22.
$724.2^{\#}3$		16998 1	34+	16273.9	33+		
727.3 2	0.4 1	4239.4	51	3512.1	55		
736.2 2	2.4 1	8904.4	21^{-}	8168.2	20^{+}	(E1)	Mult.: DCO=0.69 9 from (⁵⁸ Ni,4py) in 1994Pa22.
750.5 2	7.8 4	5874.4	15-	5124.0	13-	E2	Mult.: DCO=1.02 6 from $({}^{58}Ni,4p\gamma)$ in 1994Pa22.
751.8 2	7.2 4	5212.1	12^{+}	4460.3	10^{+}	E2	
754.4 2	41 2	6294.5	16^{+}	5540.1	14^{+}	E2	Mult.: DCO=0.99 3 from (⁵⁸ Ni,4pγ) in 1994Pa22.
755.4 2	15.4 8	4864.9	12^{-}	4109.5	10-	E2	Mult.: DCO=1.03 6 from $({}^{58}Ni,4p\gamma)$ in 1994Pa22.
758.7 2	5.7 3	5970.8	14+	5212.1	12+	E2	Mult.: DCO=0.95 <i>14</i> from $({}^{58}Ni,4p\gamma)$ in 1994Pa22.
784.8 2	4.5 2	2261.7	(5)	1476.1	4 ⁺	50	M IN DECO 1.01.0.6 (58) I' () 100 (D 00)
/8/.1 2	98.5	14/6.1	4'	689.00	2'	E2	Mult.: DCO=1.01 2 from $(^{56}N_{1},4p\gamma)$ in 1994Pa22.
788" 1	10 6 5	17/86.2	35	16998.1	34-	50	M IN DECO 1.02.7.6 (58) I' () 100 (D 00)
/94.9 2	10.6 5	5124.0	13	4329.1	11	E2	Mult.: DCO=1.02 / from $(^{36}N_{1},4p\gamma)$ in 1994Pa22.
801" 1	262	18586.9	36+	17/86.2	35	50	M I. DOO 1 00 14 0 (58) 100 10 00
801.6 2	3.6 2	6772.4	16'	5970.8	14'	E2 E2	Mult.: DCO 1.06 14 from $({}^{50}N1,4p\gamma)$ in 1994Pa22.
800.5 2	0.2 3	9/10.8	23 6 ⁺	8904.4 1476.1	21 4+	E2 E2	Mult.: DCO=0.88 8 from $(^{58}Ni,4p\gamma)$ in 1994Pa22. Mult.: DCO=0.08 2 from $(^{58}Ni,4p\gamma)$ in 1004Pa22.
021.32	91 J	2297.0	(22^{-})	14/0.1	4	EZ	Mult.: $DCO=0.98$ 2 from (* $NI,4p\gamma$) in 1994Fa22.
862.0.2	202	800.0+y	(23)	y 6772 A	(21)	E2	Mult: $DCO=0.08.16$ from $(58Ni(4ma))$ in 1004De22
862.02	5.0 2	10054.22	10	0101.2	10 22+	EZ	Mult. $DCO=0.98$ 10 Holl ($(101,4py)$) in 1994Fa22.
802.7 2	1.0 1	10054.2?		9191.2	22		E_{γ} : transition observed only in 1994Pa22 and not confirmed in 2007Pa07.
863.8 2	47 2	4225.9	10^{+}	3362.3	8+	E2	Mult.: 0.95 4 from (⁵⁸ Ni,4pγ) in 1994Pa22.
867 [#] 1		867.0+z	(20^{-})	Z	(18 ⁻)		
870.8 [#] 3		9958.1	22^{+}	9087.2	20^{+}		
907.4 2	3.2 2	10618.2	25^{-}	9710.8	23-		-
916.4 2	11.9 6	8168.2	20^{+}	7251.9	18^{+}	E2	Mult.: DCO=0.96 5 from $({}^{58}Ni,4p\gamma)$ in 1994Pa22.
925 [#] 1		7634.4	18^{+}	6709.4	(17^{+})		
928 [#] 1		19515.6	37+	18586.9	36+		
928.7 [#] 3		8563.1	20^{+}	7634.4	18+		
933.5 [#] 3		1793.5+y	(25 ⁻)	860.0+y	(23 ⁻)		
		,		Continued	on next	nage (for	structes at end of table)

			⁵⁸ Ni(⁵⁸ Ni,4p γ),(⁶⁰ Ni, α 2p γ)		1994Pa	a22,2007Pa07 (continued)	
					$\gamma(^{112}\text{Te})$	e) (continu	ued)
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [‡]	Comments
940 [#] 1		1807.0+z	(22 ⁻)	867.0+z	(20 ⁻)		
941.5 [#] 3		10434.3	23+	9492.9	21^{+}		
953.2 [@] 2	2.1 1	7857.9?		6904.7?	17-		E_{γ} : observed only in 1994Pa22; not confirmed in 2007Pa07.
957.4 2	31.4 16	7251.9	18+	6294.5	16+	E2	Mult.: DCO=0.92 7 from (⁵⁸ Ni,4pγ) in 1994Pa22.
959.8 2	8.5 4	8211.6	20^{+}	7251.9	18^{+}	E2	Mult.: DCO=1.18 21 from $({}^{58}Ni,4p\gamma)$ in 1994Pa22.
966 [#] 1		966.0+x	(23 ⁺)	Х	(21^{+})		
972.1 [#] 3		10930.4	24+	9958.1	22+		50
979.7 2	2.4 1	9191.2	22+	8211.6	20+	E2	Mult.: DCO=0.97 12 from $({}^{38}Ni,4p\gamma)$ in 1994Pa22.
986# 1		5212.1	12+	4225.9	10+		59
992.5 2	4.7 2	8904.4	21-	7911.8	19-	E2	Mult.: DCO=1.12 8 from $({}^{36}Ni,4p\gamma)$ in 1994Pa22.
998.2 " 3		9561.3	22+	8563.1	20+		
1004.4" 3	7 0 (11438.4	25+	10434.3	23+	5.0	N. 1. D. C. 111 11 C. (58) 7. () 100 10 00
1006.4 2	7.8 4	6439.1	16	5432.7	14-	E2	Mult.: DCO=1.11 <i>11</i> from $({}^{36}N_{1},4p\gamma)$ in 1994Pa22.
1008.7" 3		2802.2+y	(27 ⁻)	1793.5+y	(25 ⁻)		
1019" 1		1985.0+x	(25+)	966.0+x	(23+)		
1021" 1	4 4 2	2828.0+z	(24^{-})	1807.0+z	(22^{-})	50	M & DCO 0.07 14 5 (58N) 4) 1004D 22
1023.02	4.4 2	9191.2	221	8168.2	201	E2	Mult.: DCO= 0.97 14 from $(^{50}N_{1,4}p\gamma)$ in 1994Pa22.
1038.1" 3	70 /	11968.7	26	10930.4	24 ' 6+	E2	Mult , $DCO = 0.06.4$ from (58Ni 4mu) in 1004Do22
1004.52 $1071.9 \frac{4}{5}2$	/04	10622.1	0 24+	2297.0	0	EZ	Mult.: $DCO=0.90$ 4 from ($^{-1}Ni,4p\gamma$) in 1994Pa22.
1071.0 5	241	6951 1	24 17 ⁻	9301.3 5874 4	15-	F2	Mult : DCO=0.97 <i>14</i> from $({}^{58}$ Ni 4pg) in 1004Pa22
1070.72 $1070.2^{\#}3$	2.4 1	12517.6	27+	11/38 /	15 25+	62	Mutt.: DCO=0.97 14 Holli (10,4py) in 19941 d22.
1098.0.2	442	4460.3	10^{+}	3362.3	23 8 ⁺	E2	Mult : DCO=0.99.13 from (⁵⁸ Ni 4py) in 1994Pa22
$1102^{\#}$ 1	1.1 2	3930.0+z	(26^{-})	2828 0+z	(24^{-})	112	
$1112.0^{\#}3$		13080.6	28+	11968 7	26+		
1112.0 0 1114 [#] 1		3099.0+x	(27^{+})	1985.0+x	(25^+)		
1124.0 [#] 3		3926.2+v	(29^{-})	2802.2 + v	(23^{-})		
1126 [#] 1		7565.1	18-	6439 1	16-		
1144.5 2	1.9 <i>1</i>	2619.7	6 ⁺	1476.1	4 ⁺	E2	Mult.: DCO=1.05 20 from (⁵⁸ Ni.4py) in 1994Pa22.
1146.4 [#] 3		11779.5	26+	10633.1	24+		
1149.1 [#] 3		13666.7	29+	12517.6	27+		
1154.6 [@] 2	1.3 7	7029.0?	17^{-}	5874.4	15-	(E2)	E_{γ} : observed only in 1994Pa22; not confirmed in 2007Pa07.
							Mult.: DCO=1.07 21 from (⁵⁸ Ni,4pγ) in 1994Pa22.
1166 [#] 1		8117.1	19-	6951.1	17^{-}		
1179 [#] 1		13455.2	29-	12276.2	27-		
1184.3 [#] 3		14264.7	30^{+}	13080.6	28^{+}		
1202 [#] 1		10393.2	24+	9191.2	22^{+}		
1206.3 [#] 3		5136.3+z	(28 ⁻)	3930.0+z	(26 ⁻)		
1207 [#] 1		14288.5	30+	13080.6	28^{+}		
1212.1 [#] 3		5138.3+y	(31-)	3926.2+y	(29 ⁻)		
1217.7 [#] 1		12997.2	28+	11779.5	26+		
1218.9 [#] 3		4317.9+x	(29 ⁺)	3099.0+x	(27 ⁺)		
1242.1 ^{#} 3		14908.8	31+	13666.7	29+		
1253 [#] 1		12276.2	27-	11023.2	25-		
1264 [#] 1		11657.2	26+	10393.2	24+		

Continued on next page (footnotes at end of table)

			⁵⁸ Ni(⁵⁸ N	i,4p γ),(⁶	⁰ Ni,α2pγ)	1994Pa22,20	07Pa07 (continued)	
					γ ⁽¹¹² Te)	(continued)			
E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
1268 [#] 1	14264.7	30+	12997.2	28+	1588.7 [#] 3	18586.9	36+	16998.1	34+
1269 [#] 1	11023.2	25-	9754.2	23-	1612.6 [#] 3	8732.1+x	(35^{+})	7119.4+x	(33^{+})
1291.2 [#] 3	6427.5+z	(30 ⁻)	5136.3+z	(28 ⁻)	1624.8 [#] 3	18777.9	36+	17153.1	34+
1291.2 [#] 3	14288.5	30+	12997.2	28+	1640.2 [#] 3	12328.7+z	(38-)	10688.5+z	(36 ⁻)
1298.9 [#] 3	15563.8	32+	14264.7	30+	1676.1 [#] 3	11037.7+y	(39 ⁻)	9361.6+y	(37 ⁻)
1310.7 [#] 3	6449.0+y	(33 ⁻)	5138.3+y	(31 ⁻)	1721.0 [#] 3	20498.9	38+	18777.9	36+
1325 [#] 1	9492.9	21+	8168.2	20^{+}	1729.4 [#] 3	19515.6	37+	17786.2	35+
1331.1 [#] 3	5649.0+x	(31 ⁺)	4317.9+x	(29 ⁺)	1777.6 [#] 3	10509.7+x	(37 ⁺)	8732.1+x	(35 ⁺)
1351 [#] 1	2802.2+y	(27 ⁻)	1451.2+y		1806.7 [#] 3	22305.6	40^{+}	20498.9	38+
1353 [#] 1	6449.0+y	(33-)	5096.0+y		1809.7 [#] 3	14138.4+z	(40^{-})	12328.7+z	(38-)
1358.3 [#] 3	7785.8+z	(32 ⁻)	6427.5+z	(30 ⁻)	1835 [#] 1	9087.2	20^{+}	7251.9	18^{+}
1363.8 [#] 3	15652.3	32+	14288.5	30+	1855 [#] 1	20441.9	38+	18586.9	36+
1365.2 [#] 3	16273.9	33+	14908.8	31+	1875.8 [#] 3	12913.5+y	(41 ⁻)	11037.7+y	(39 ⁻)
1372 [#] 1	11990.2	27^{-}	10618.2	25-	1888 [#] 1	13878.2		11990.2	27^{-}
1394.0 [#] 3	7843.0+y	(35 ⁻)	6449.0+y	(33-)	1920.8 [#] 3	12430.5+x	(39+)	10509.7+x	(37 ⁺)
1401.8 [#] 3	9187.7+z	(34 ⁻)	7785.8+z	(32 ⁻)	1942.5 [#] 3	24248.1	42+	22305.6	40^{+}
1434.2 [#] 3	16998.1	34+	15563.8	32+	1979 [#] 1	13969.2		11990.2	27-
1439 [#] 1	15408.2	31-	13969.2		1994.8 [#] 3	16133.2+z	(42 ⁻)	14138.4+z	(40^{-})
1455 [#] 1	15333.2		13878.2		2008 [#] 1	21523.6	39+	19515.6	37+
1465 [#] 1	13455.2	29-	11990.2	27-	2071.0 [#] 3	14501.5+x	(41^+)	12430.5+x	(39 ⁺)
1470.4 [#] 3	7119.4+x	(33+)	5649.0+x	(31+)	2105 [#] 1	26353.2	44+	24248.1	42+
1500.8 [#] 3	10688.5+z	(36 ⁻)	9187.7+z	(34 ⁻)	2105.5 [#] 3	15019.0+y	(43 ⁻)	12913.5+y	(41 ⁻)
1500.8 [#] 3	17153.1	34+	15652.3	32+	2114 [#] 1	22556.0	40^{+}	20441.9	38+
1512.4 [#] 3	17786.2	35+	16273.9	33+	2185 [#] 1	18318.2+z	(44-)	16133.2+z	(42 ⁻)
1518.5 [#] 3	9361.6+y	(37 ⁻)	7843.0+y	(35 ⁻)	2293 [#] 1	28646.2	46+	26353.2	44+
1541 [#] 1	14996.2	31-	13455.2	29-	2327 [#] 1	17346.0+y	(45 ⁻)	15019.0+y	(43 ⁻)

[†] From 1994Pa22, unless otherwise noted.
[‡] From DCO ratios in 1994Pa22 and the apparent band structures in 1994Pa22 and 2007Pa07.
[#] From 2007Pa07.
[@] Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Type not specified

<u>(44⁻)</u>	<u>18318.2+z</u>
(42 ⁻)	16133 2+7
	10155.2+2
(40^{-})	14138.4+z
e e e e e e e e e e e e e e e e e e e	
	12328.7+z
	10/00 5
	10688.5+z
(34 ⁻)	9187.7 + z
(32)	7785.8+z
(30 ⁻)	6427.5+z
(38-)	5104.0
	5136.3+z
	3930.0+z
(24 ⁻)	2828.0+z
	1807 0+z
(20-)	867.0+z
(<u>18</u> ⁻)	<u>z</u>
(45 ⁻)	17346.0+y
S.	
-(43 ⁻)	15019.0+y
le la	
(41 ⁻)	12913.5+y
, or	
(39 ⁻)	11037.7+y
(37 ⁻)	9361.6+y
(05-)	79.42.0
	\
(33-)	6449.0+y
(31 ⁻)	<i>S</i> 5138.3+y
*	<u>5096.0+y</u>
(29-)	3926.2+y
(27 ⁻)	ູ ຕິ ຊຶ່ງ? 2802.2+y
(25 ⁻)	1793.5+y
(22-)	
$\frac{(23)}{(21^{-})}$	₩ <u>\$</u>
$\frac{(21)}{(41^+)}$	∞ <u>145015+x</u>
(20+)	
(39)	★ 12430.5+x
	×**
(37 ⁺)	↓ <u>10509.7+x</u>
(35 ⁺)	★ 8732.1+x
A+	
U	0.0

¹¹²₅₂Te₆₀

$\frac{{}^{58}\text{Ni}({}^{58}\text{Ni},4p\gamma),({}^{60}\text{Ni},\alpha 2p\gamma)}{1994\text{Pa22},2007\text{Pa07}}$

Level Scheme (continued)

Intensities: Type not specified

.

 $^{112}_{52}$ Te₆₀-10

Level Scheme (continued) Intensities: Type not specified Legend

 $I_{\gamma} < 2\% \times I_{\gamma}^{max}$
 $I_{\gamma} < 10\% \times I_{\gamma}^{max}$
 $I_{\gamma} > 10\% \times I_{\gamma}^{max}$
 $\dot{\gamma}$ Decay (Uncertain)

¹¹²₅₂Te₆₀

58 Ni(58 Ni,4p γ),(60 Ni, α 2p γ) 1994Pa22,2007Pa07

Level Scheme (continued) Intensities: Type not specified Legend

 $I_{\gamma} < 2\% \times I_{\gamma}^{max}$
 $I_{\gamma} < 10\% \times I_{\gamma}^{max}$
 $I_{\gamma} > 10\% \times I_{\gamma}^{max}$
 γ Decay (Uncertain)

¹¹²₅₂Te₆₀

¹¹²₅₂Te₆₀

58 Ni(58 Ni,4p γ),(60 Ni, α 2p γ) 1994Pa22,2007Pa07

 $^{112}_{52}{\rm Te}_{60}$

Band intrude th	(C): $\Delta J=2$, $\pi=+$ er band based on ne 10 ⁺ state			
46 ⁺	28646.2			
44 ⁺	2293			
	2105			
42+	24248.1		Band(E): $\Delta J=1$, $\pi=$ on the 20 ⁺	+ band based state
40 ⁺	1942 22305.6		<u>40</u> +	22556.0
	1807		<u></u> 21	<u>21523.6</u>
<u>38</u> +	20498.9		<u></u>	20441.9
36 +	1721			<u>19515.6</u>
	1625		$\frac{36^{+}}{35^{+}} \\ \frac{35^{+}}{1729} \\ \frac{801}{15} \\ \frac{11}{15} \\ \frac$	18586.9 89 17786.2
34+	17153.1		<u>34+</u> 1512	16998.1
20 +	1501	Band(D): $\Delta J=2$, $\pi=-$ band based on the 18 ⁻ state	33^+ 724 710	34 <u>16273.9</u>
32	1364	<u>31</u> - <u>14996.2</u>	$\frac{32^+}{31^+}$ 1365 $\frac{110}{655}$	15563.8
<u>30</u> +	14288.5	1541	30^+ 1242 508	14264.7
28 ⁺	1291 12997.2	<u>29-</u> <u>13455.2</u>	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	84 13080.6
26 ⁺	1218 11779.5	<u>1465</u> <u>27</u> <u>11990.2</u>	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	12 <u>12517.6</u> 12 <u>11968.7</u> 11428.4
24 ⁺	1146 10633.1	1372 25- 10618.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \frac{11438.4}{10930.4} $ 10434.3
<u>22</u> +	1072 9561.3	<u>23-</u> 907 9710.8	$\frac{22^+}{21^+} \begin{array}{c} 942 \\ 476 \\ 465 \\ 8 \end{array}$	9958.1 9492.9
<u>20</u> +	998 8563.1	$\frac{21^{-}}{992}^{806} \frac{8904.4}{992}$	<u>20</u> ⁺ 406	9087.2
18 ⁺	929 7634.4	<u>19-</u> 7911.8		
16+	6772.4			
14+	5970.8			
<u>12+</u>	752 4460 2			
10+	<u>4460.3</u>			

908.8		
264.7		
666.7	Band(band b	F): ΔJ=2, π=– ased on the 23 [–]
080.6		state
517.6	27-	12276.2
968.7		12270.2
438.4		1253
930.4	25-	11023.2
434.3		10(0
		1269

23-

9754.2

⁵⁸ Ni(⁵⁸ Ni,4p γ),(⁶⁰ Ni, α 2p γ)	1994Pa22,2007Pa07	(continued)
---	-------------------	-------------

Band(G)	: Δ J=2 , π=-		
band base	d on the (18 ⁻)	1	
s	tate		
(44-)	18318.2+z		
(42^{-}) 21	85		
(42)	16133.2+Z		
19	95		
(40 ⁻)	14138.4+z		
19	10		
(38 ⁻) ¹⁰	12328.7+z		
	40		
(36 ⁻) ¹⁰	10688.5+z		
(34-) 15	01 0107 7		
(34)	910/./+2		
(32 ⁻) ¹⁴	⁰² 7785.8+z		
(20-) 13	58		
(30)	6427.5+Z		
(28 ⁻) 12	⁹¹ 5136.3+z		
(26-) 12	06 3030 0+7		
(24-) 11	02 00000	Band	(g): Δ J=2 , <i>π</i> =-
(24) 11	⁰² 2828.0+z	band ba	ased on the (21^-)
(22^{-}) 10	²¹ 1807.0+z		state
(20 ⁻) 9	40 867.0+z		
(18-) 8	67 Z	(45-)	17346.0+y
			2225
		(12-)	2527

(43-)	²³²⁷ 15019.0+y	
(41-)	²¹⁰⁶ 12913.5+y	
(39-)	¹⁸⁷⁶ 11037.7+y	
(37-)	¹⁶⁷⁶ 9361.6+y	
(35-)	¹⁵¹⁸ 7843.0+y	
(33-)	¹³⁹⁴ 6449.0+y	
(31-)	1311 5138.3+y	
(29-)	1212 3926.2+y	
(27 ⁻)	1124 2802.2+y	
(25 ⁻)	1009 1793.5+y	
(23 ⁻)	934 860.0+y	
(21-)	860 Y	

Band(H): $\Delta J=2$, $\pi=+$ band based on the (21 ⁺) state			
(41+)	14501.5+x	<u> </u>	
(39+)	2071 12430.5+x	¢.	
(37+)	1921 10509.7+x	<u> </u>	
(35+)	¹⁷⁷⁸ 8732.1+x	<u> </u>	
(33+)	¹⁶¹³ 7119.4+x	<u> </u>	
(31+)	¹⁴⁷⁰ 5649.0+x	ĸ	
(29+)	¹³³¹ 4317.9+x	ĸ	
(27+)	1219 3099.0+x	K_	
(25+)	1114 1985.0+x	<u> </u>	
(23+)	1019 966.0+x	<u>c</u>	
(21+)	966 x	ĸ	

¹¹²₅₂Te₆₀