Coulomb excitation 2011Ju01,2011Wa15,1981Jo03

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	S. Lalkovski, F. G. Kondev	NDS 124, 157 (2015)	1-Aug-2014		

2011Ju01,2011Wa15: Facility: GSI Unilac accelerator; Beam: $E(^{112}Sn)=448$ MeV; Target: cooled and polarized multilayer target consisting of 0.67 mg/cm² natural carbon, 10.8 mg/cm² natural Gd, 1.0 mg/cm² natural Ta, and a 4.86 mg/cm² natural Cu; Detectors: array of four Si diodes and four EUROBALL Cluster detectors; Measured: C ions, γ , γ -C ions, E γ , I γ , $\gamma(\theta)$; Deduced: τ , B(E2), g-factor from the recoil distance transient field (RDTF) technique.

1981Jo03: Facility: Uppsala EN tandem; Beam: $E(^{16}O)=48$ MeV; Detectors: one NaI(Tl), one Ge(Li); Measured: γ , γ - γ . $E\gamma$, $I\gamma$; Deduced: ¹¹²Sn level scheme, B(E2).

1975Gr30: Facility: three-stage Van de Graaff accelerator at University of Pittsburgh; Beams: $E(\alpha)$ = 10.6 MeV and $E(^{16}O)$ =42 MeV; Targets: 5 to 40 μ g/cm² of SnO₂, enriched to 87.51% in ¹¹²Sn, 15 μ g/cm² carbon backing; Detectors: surface-barrier Si detector; Measured: $E(\alpha)$,

Other: 2011Ku05, 2010Ku07, 2007Va22, 1981Ba05, 1970St20, 1965Ro09.

¹¹²Sn Levels

E(level) [†]	J ^π ‡	T _{1/2}	Comments
0.0	0^{+}		
1256.69 4	2+	0.376 ps 5	$T_{1/2}$: from B(E2) \uparrow .
			B(E2) [†] : 0.240 3, weighted average of 0.242 8 (2011Ku05,2010Ku07), 0.240 20 (2007Va22),
			0.229 5 (1975Gr30), and 0.256 6 (1970St20). Other: 0.240 14 (1987Ra01), weighted
			average of the data in 1975Gr30 and 1970St20.
			μ : +0.21 7 from g-factor=+0.104 35 in 2011Wa15.
			Q: -0.06 9, weighted average of 0.03 11 (1975Gr30) and -0.15 18 (1970St20).
2150.86 6	2^{+}	1.4 ps 4	$T_{1/2}$: from B(E2) \uparrow =0.00065 20 (1981Jo03).
2190.81 6	0^{+}	≥2.7 ps	$T_{1/2}$: From B(E2) $\uparrow \le 0.029$ (1981Ba05).
2247.38 6	4+	3.3 ps 5	$T_{1/2}$: From B(E2)↑.
			B(E2)↑=0.032 5 (1981Jo03).
			μ : +1.5 7 from g-factor=+0.38 <i>l</i> 8 in 2011Wa15.
2354.07 8	3-	0.215 ps 14	B(E3) ⁺ 0.087 <i>12</i> (1981Jo03)
			T _{1/2} : from DSAM in 2011Ju01.
			μ : -1.4 28 from g-factor=-0.48 92 in 2011Wa15.
2476.2 5	2+		
2521.4 5	4^{+}		

[†] From a least-squares fit to $E\gamma$.

[‡] From the Adopted Levels.

2011Ju01,2011Wa15,1981Jo03 (continued) Coulomb excitation

γ(112	Sn
1		

${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_i (level)	J_i^{π}	$E_f J_f^{\pi}$	Mult. [†]	δ^{\dagger}	α^{\ddagger}	$I_{(\gamma+ce)}^{\dagger}$	Comments
203.2 2		2354.07	3-	2150.86 2+					
286		2476.2	2^{+}	2190.81 0+					
894.17 <i>4</i>	100 1	2150.86	2^{+}	1256.69 2+	M1+E2	-0.28 6			
934.12 <i>4</i>		2190.81	0^{+}	1256.69 2+	E2				
990.69 4	100	2247.38	4^{+}	1256.69 2+					
1097.38 7	100	2354.07	3-	1256.69 2+	E1				
1219.34 <i>13</i>	20.5 24	2476.2	2+	1256.69 2+	M1+E2	-0.54 7	9.77×10 ⁻⁴ 16		
1256.68 4	100	1256.69	2+	0.0 0+	E2				Mult.: $A_2=0.64 \ 8 \ (2011Wa15)$ and $A_4=-0.82 \ 8 \ (2011Wa15)$; Also: $A_2=0.90 \ 6 \ (2011Wa15)$ and $A_4=-0.71 \ 6 \ (2011Wa15)$.
1264.07 7	100	2521.4	4+	1256.69 2+	E2		7.96×10^{-4}		
2150.9 4	16.7 11	2150.86	2^{+}	$0.0 0^+$	E2				
2190.9 5		2190.81	0^{+}	$0.0 0^+$	E0			0.1455 21	
2475.8 <i>3</i>	100.0 24	2476.2	2^{+}	$0.0 0^+$	E2		7.48×10^{-4}		

[†] From the adopted gammas. [‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 ${}^{112}_{50}{\rm Sn}_{62}{\rm -3}$

 $^{112}_{50}{\rm Sn}_{62}$