Adopted Levels, Gammas

		_		History
		Туре		Author Citation Literature Cutoff Date
		Full Evaluation	S. Lall	kovski, F. G. Kondev NDS 124, 157 (2015) 1-Aug-2014
$Q(\beta^{-})=4.10\times 10^{3}$	5; S(n)=6917 <i>13</i> ; S(p)	=13895 <i>1</i>	$^{14}; Q(\alpha) = -7291 \ 14 \qquad 2012 \text{Wa38}$
				¹¹² Ru Levels
				Cross Reference (XREF) Flags
			A 112	² Tc β^- decay D ²³⁸ U(α Fy)
			B 19	7 Au(19 F,F γ), 232 Th(18 O,F γ), E 248 Cm SF decay
			C 252	² Cf SF decay
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
0.0 [@]	0^{+}	1.75 s 7	ABCDE	$\%\beta^{-}=100$
	Ū			T _{1/2} : from 327.0γ(t), following ¹¹² Ru β ⁻ -decay using a mass separated source (1991Jo11,1988Pe13,1988AyZZ). Others: 2.6 s <i>1</i> , deduced from the growth and decay of 348γ in ¹¹² Pd (1987GiZW), 4.65 s <i>14</i> (1970WiZN), 4.1 s <i>3</i> (1976MaYL), and 3.6 s <i>5</i> (1978Fr16), but some of these activities probably belong to ¹¹² Rh.
236.69 [@] 16	2+	0.32 ns <i>3</i>	ABCDE	J^{π} : 236.8 γ E2 to the g.s. $T_{1/2}$: from recoil-distance Doppler-shift method (1974JaZN,1974JaYY). Other: 0.16 ns 4 (1970Ch11). μ : +0.88 18, deduced from g=+0.44 9 (2004Sm04, 2005Sm08) using the time integral correlation technique
523 51 & 16	2+		A CDF	I^{π} : 523 4y to 0 ⁺ : 287y M1+F2 to 2 ⁺ : hand member
$644.97^{@}20$	$\frac{2}{4^+}$		ARCDE	I^{π} : 408 2 γ F2 to 2 ⁺ ; hand assignment
$747.48^{\&}$ 18	3+		A CDE	I^{π} : 224 0v to 2 ⁺ : 510 8v to 2 ⁺ : absence of 747v to 0 ⁺ : hand assignment
980.68 ^{&} 18	4 ⁺		CDE	I^{π} : 233.2v to 3 ⁺ : 457.2v to 2 ⁺ : band assignment
1026.7 5	•		A	
1179.4 5			Α	
1189.79 [@] 24	6+		BCDE	J^{π} : 544.7 γ (E2) to 4 ⁺ ; band assignment.
1235.34 ^{&} 21	5+		CDE	J^{π} : 487.9 γ to 3 ⁺ ; 590.5 γ to 4 ⁺ ; band assignment.
1413.6 ^{<i>a</i>} 3	(4+)		C	J^{π} : 666.3 γ to 4 ⁺ ; 890.0 γ to 2 ⁺ ; band assignment.
1570.2° 3	6^+		CDE	J^{A} : 334.8 γ to 5 ⁺ ; 589.3 γ to 3 ⁺ ; band assignment.
1049.5^{-4}	(3 ⁺)	1.94 m = 29	DCDE	$J^{*}: 255.97$ to (4°), 902.17 to 5°; band assignment.
1839.7 3	0	1.84 ps 28	BCDE	J : 050.07 (E2) to 0 ; band assignment. The Other: 1.7 ps $\pm 13-5$ in 252 Cf SE decay (2013Sp01) using DSAM
1841.1 ^{&} 3	7+	2.50 ps 35	CDE	$J_{1/2}^{\pi}$: 270.8 γ to 6 ⁺ ; 605.7 γ (E2) to 5 ⁺ ; band assignment.
1055 7 a 1	(6^{+})		C	$I_{1/2}$: Other: 2.2 ps +/-14 in ^{2.2} Cf SF decay (2013Sn01) using DSAM. I^{π} : 5/2 (by to (I^{\pm}), 720 5% to (5^{\pm}); hand assignment
1995.1 3	(0^{-})		c	J^{π} : 1014.4 γ to 4 ⁺ , 1247.5 γ to 3 ⁺ .
2003.3^{b} 3	(5^{-})	<1 ns	C	J^{π} : 1022.5 γ to 4 ⁺ : 768.0 γ to 5 ⁺ : band assignment.
2147.9 4	(5 ⁻)		С	T _{1/2} : From ²⁵² Cf SF decay (2009Lu01). J ^{π} : 1502.9 γ to 4 ⁺ .
2230.3 ^b 3	(6 ⁻)		С	J^{π} : 235.1 γ to (4 ⁻), 1040.6 γ to 6 ⁺ ; band assignment.
2231.3 ^{<i>a</i>} 5	(7^{+})		С	J^{π} : 581.9 γ to (5 ⁺); band assignment.
2263.5 ^{&} 5	8+		CDE	J^{π} : 693.3 γ to 6 ⁺ ; band assignment.
2334.3 ^c 4	(6 ⁻)	<1 ns	C	J^{π} : 1098.8 γ to 5 ⁺ , 331.0 γ to (5 ⁻); band assignment.
2392.0 5			С	$1_{1/2}$. From CI SF accay (2009Eu01).

¹¹²Ru Levels (continued)

E(level) [†]	Jπ‡	$T_{1/2}^{\#}$	XREF	Comments
2489.3 ^b 3	(7-)		С	J^{π} : 259.0 γ to (6 ⁻), 341.4 γ to (5 ⁻),1299.6 γ D to 6 ⁺ ; band assignment.
2534.2 ^{&} 4	9+	1.23 ps 18	CDE	J^{π} : 694.4 γ (E2) to 7 ⁺ ; band assignment. T _{1/2} : Other: 1.3 ps +7-6 in ²⁵² Cf SF decay (2013Sn01) using DSAM.
2563.0 [@] 4	10+	1.05 ps 16	BCDE	J^{π} : 723.3 γ (E2) to 8 ⁺ ; band assignment. T _{1/2} : Other: 1.4 ps 3 in ²⁵² Cf SF decay (2013Sn01) using DSAM.
2574.3 [°] 4	(7^{-})		С	J^{π} : 426.3 γ to (5 ⁻), 733.1 γ to 7 ⁺ ,1384.6 γ D to 6 ⁺ ; band assignment.
2574.6 ^a 6	(8 ⁺)		С	J^{π} : 618.9 γ to (6 ⁺); band assignment.
2771.8 ^b 4	(8 ⁻)		С	J^{π} : 282.5 γ to (7 ⁻), 541.5 γ to (6 ⁻); band assignment.
2829.4 [°] 5	(8 ⁻)		С	J^{π} : 255.1 γ to (7 ⁻), 495.1 γ to (6 ⁻); band assignment.
2899.9 5			C	
2909.2 ^{<i>a</i>} 7	(9+)		C	J^{π} : 677.9 γ to (7 ⁺); band assignment.
3033.6 7	10^{+}		CD	J^{π} : 770.1 γ to 8 ⁺ ; band assignment.
3076.6 ⁰ 4	(9 ⁻)		С	J^{π} : 304.8 γ to (8 ⁻), 587.3 γ to (7 ⁻); band assignment.
3094.2° 4	(9 ⁻)		C	J^{π} : 264.8 γ to (8 ⁻), 519.8 γ to (7 ⁻); band assignment.
3290.5 ^{X} 7	11^{+}	0.78 ps 11	CDE	J^{π} : 756.3 γ (E2) to 9 ⁺ ; band assignment.
e				$T_{1/2}$: Other: 0.9 ps 5 in ²³² Cf SF decay (2013Sn01) using DSAM.
3326.2 ⁶ 6	12^{+}	0.93 ps 9	CDE	J^{π} : 763.2 γ (E2) to 10 ⁺ ; band assignment.
				$T_{1/2}$: weighted average of 0.80 ps 12 in ²⁴⁸ Cm SF decay (2012Sm02)
				(Doppler-broadened lineshape technique) and 1.12 ps $+15-14$ in ^{2.52} Cf SF decay
2270 0 ^C 5	(10^{-})		C	(20135 not) (DSAM).
3379.9 J	(10^{-})		C	J : 265.07 to (9'), 550.07 to (8'), band assignment.
3420.9° 5	(10)		C	$J^{*}: 344.3\gamma$ to (9), 649.0 γ to (8); band assignment.
3711 7 [°] 5	(11^{-})		c	I^{π} : 331.7 γ to (10 ⁻) 617.4 γ to (9 ⁻): hand assignment
3768 7 ^b 5	(11^{-})		c	I^{π} : 347 8v to (10 ⁻), 692 0v to (9 ⁻); band assignment
3870 9 8 9	12+		СЪ	I^{π} : 837 3y to (10 ⁺); band assignment
4032.6 [°] 7	(12^{-})		c	J^{π} : 321.0v to (11 ⁻), 652.7v to (10 ⁻); band assignment.
4095 4 ^{&} 8	13+		CD	I^{π} : 804 9 γ to 11 ⁺ : hand assignment
4118 4 @ 8	14+	16 ns 3	CD	I^{π} : 792 2v to 12 ⁺ ; band assignment
+110.+ 0 L	14	1.0 ps 5	C	$T_{1/2}$: from ²⁵² Cf SF decay (2013Sn01) using DSAM.
4198.8 ⁰ 6	(12^{-})		C	J^{π} : 430.1 γ to (11 ⁻), 778.0 γ to (10 ⁻); band assignment.
4213.4 9	(12-)		C	I_{π} , 716 Sec to (11-), hand assignment
4428.3° /	(13)		C	J^{T} , 710.87 to (11); band assignment.
4561.8 /	(13)		C	J^* : 793.1 γ to (11); band assignment.
4764.2° 10	14'		C	$J^{\prime\prime}$: 893.3 γ to 12 ⁺ ; band assignment.
4709.72 0	(14) (14^+)		л	I^{π} , 918v to (12 ⁺); hand assignment
4950 7 2 10	(14)		CD	I^{π} : 855 3 α to 13 ⁺ : band assignment
4950.7 10	15		CD	I^{π} : 826 2a to 14^{+} ; hand assignment
4934.0 10	(1.4-)		CD C	J : 850.27 to 14 , band assignment.
5072.9° 8	(14) (15^{-})		C	J^{-1} : $\delta/4.1\gamma$ to (12^{-}) ; band assignment
5700.82% 7	(15^{+})		C	
$5820.0^{(0)}$ 11	(10)		CD	π , 875 Au to 16 ⁺ , hand assignment
5050.0 = 11	10			$J = 0.02$ Set to 15^+ ; band assignment
3837.4^{-11}	1/		CD CD	J : 902.6γ to 15°; band assignment.
6/25.4° 12	(20^{+})		CD	J ^{**} : 895.4γ to 18 ⁺ ; band assignment.
6800.4° 15	(19+)		D	J^* : 943 γ to 1/ τ ; band assignment.
7749.3 ^{••} 13	(22^{+})		D	J ^{<i>n</i>} : 1023.8 γ to (20 ⁺); band assignment.

¹¹²Ru Levels (continued)

[†] From a least-squares fit to $E\gamma$.

[‡] From the deduced γ -ray transition multipolarities and the apparent band structures.

[#] From ²⁴⁸Cm SF decay (2012Sm02) using Doppler-broadened lineshape technique, unless otherwise stated.

^(a) Band(A): $K^{\pi}=0^+$, g.s. band. ^(a) Band(B): $K^{\pi}=2^+, \gamma$ -vibrational band.

^a Band(C): Rotational band built on the 1413.6 keV level.

^b Band(D): $K^{\pi} = 4^{-}, v1/2[411] \otimes v7/2[523]$ band. The experimental ABS($g_{K}-g_{R}$) = 0.185 17 deduced from the cascade-to-crossover branching ratios agrees well with theoretical value of 0.186 for this configuration, using $Q_0=3.4$ 3 eb.

^{*c*} Band(E): Likely $K^{\pi}=6^{-}$ band. The assignment is tentative.

$\gamma(^{112}Ru)$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	α^{a}	Comments
236.69	2+	236.8 [#] 2	100#	0.0	0+	E2	0.0602	B(E2)(W.u.)=70 7 α (K)=0.0513 8; α (L)=0.00728 11; α (M)=0.001346 20 α (N)=0.000211 3; α (O)=8.41×10 ⁻⁶ 12 Mult.: From the ce measurement in ¹¹² Tc β ⁻ decay (1990Ay02) and γ (ω) in ²⁴⁸ Cm SF decay (1994Sh26).
523.51	2+	287.0 [#] 2	100 [#] 12	236.69	2+	M1+E2	0.0183	$\alpha(K)=0.01604\ 23;\ \alpha(L)=0.00188\ 3;\ \alpha(M)=0.000346\ 5\ \alpha(N)=5.59\times10^{-5}\ 8;\ \alpha(O)=2.95\times10^{-6}\ 5\ Mult.$: From ce measurements in ¹¹² Tc β^- decay.
		523.4 [#] 2	73 [#] 15	0.0	0+	[E2]	0.00467	$\alpha(K)=0.00407\ 6;\ \alpha(L)=0.000499\ 7;$ $\alpha(M)=9.16\times10^{-5}\ 13$ $\alpha(N)=1.465\times10^{-5}\ 21;\ \alpha(O)=7.10\times10^{-7}\ 10$ I _{γ} : Other: 91.8 14 in ²⁵² Cf SF decay and 82 16 in ²⁴⁸ Cm SF decay.
644.97	4+	408.2 [#] 2	100#	236.69	2+	E2	0.00988	$\alpha(K)=0.00856 \ 12; \ \alpha(L)=0.001086 \ 16; \\ \alpha(M)=0.000200 \ 3 \\ \alpha(N)=3.18\times10^{-5} \ 5; \ \alpha(O)=1.472\times10^{-6} \ 21 \\ \text{Mult.: From } \gamma(\omega) \text{ in } ^{248}\text{Cm SF decay} \\ (1994\text{Sh}26)$
747.48	3+	224.0 2	38 8	523.51	2+			I _γ : Other: 35.1 6 in ²⁵² Cf SF decay and≈100 in 1990Ay02 (¹¹² Tc $β^-$ decay).
980.68	4+	510.8 2 233.2 2 335.6 2 457.2 2 744.0 2 381.7# 5	100 3 7.1 14 20 4 100 20 7.1 14 100 [#]	236.69 747.48 644.97 523.51 236.69 644.97	2^+ 3^+ 4^+ 2^+ 2^+ 4^+			I _γ : Other: ≈87 in 1990Ay02 (¹¹² Tc β ⁻ decay). I _γ : Other: 5.6 6 in ²⁵² Cf SF decay. I _γ : Other: 22.0 10 in ²⁵² Cf SF decay. I _γ : Other: 3.6 3 in ²⁵² Cf SF decay.
1179.4		$152.7^{\#} 2$	100 [#]	1026.7	4			E : From ¹¹² Te β^- decay
1189.79	6+	544.9 2	100	644.97	4 ⁺	(E2)	0.00416	$\alpha(K)=0.00363 5; \alpha(L)=0.000443 7;$ $\alpha(M)=8.13\times10^{-5} 12$ $\alpha(N)=1.301\times10^{-5} 19; \alpha(O)=6.34\times10^{-7} 9$ Mult.: From $\gamma(\omega)$ in ²⁴⁸ Cm SF decay (1994Sh26).
1235.34	5+	254.7 [‡] 5 487.9 2	5.70 [‡] 20 100 3	980.68 747.48	4+ 3+			

γ ⁽¹¹²Ru) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.&	α^{a}	Comments
1235.34	5+	590.3 2	8.1 14	644.97	4+			
1413.6	(4^{+})	666.3 [‡] 5	15.4 [‡] 7	747.48	3+			
		890.0 [‡] 5	100 [‡]	523.51	2^{+}			
1570.2	6+	334.8 [‡] 5	2.6 [‡] 3	1235.34	5+			
		380.3 [‡] 5	1.20 [‡] 20	1189.79	6+			
		589.3 [‡] 5	100^{\ddagger}	980.68	4+			
1649.5	(5^{+})	235.9 [‡] 5	100 [‡]	1413.6	(4^{+})			
		668.9 [‡] 5	5.6 [‡] 4	980.68	4+			
		902.1 [‡] 5	22.2 [‡] 11	747.48	3+			
1839.7	8+	650.0 2	100	1189.79	6+	(E2)	0.00256	$\alpha(K)=0.00223 \ 4; \ \alpha(L)=0.000267 \ 4; \alpha(M)=4.90\times10^{-5} \ 7 \alpha(N)=7.88\times10^{-6} \ 11; \ \alpha(O)=3.93\times10^{-7} 6$
								B(E2)(W.u.)=82 13 Mult.: From $\gamma(\omega)$ in ²⁴⁸ Cm SF decay (1994Sh26).
1841.1	7+	270.8 [‡] 5	4.1 [‡] 5	1570.2	6+	[M1]	0.0213	B(M1)(W.u.)=0.017 4 α (K)=0.0186 3; α (L)=0.00219 4; α (M)=0.000402 6 α (N)=6.50×10 ⁻⁵ 10; α (O)=3.42×10 ⁻⁶
		605.7 [‡] .5	100^{\ddagger}	1235.34	5+	(E2)	0.00310	$B(E_2)(W_{11})=83$ 12
			100	120010		(==)	0.00010	$\alpha(\text{K})=0.00270 \ 4; \ \alpha(\text{L})=0.000326 \ 5; \\ \alpha(\text{M})=5.98\times10^{-5} \ 9 \\ \alpha(\text{N})=9.59\times10^{-6} \ 14; \ \alpha(\text{O})=4.74\times10^{-7} \\ 7 \\ N \ \text{K} \ \text{E} \ (\text{A}) = 248 \ \text{C} \ \text{A} \ \text{C} \ \text{A} \ \text{C} \ \text{A} $
		651.2 5		1189.79	6+	[M1]	0.00250	Mult.: From $\gamma(\omega)$ in ²⁴ Cm SF decay (1994Sh26). $\alpha(K)=0.00219 \ 3; \ \alpha(L)=0.000251 \ 4; \ \alpha(M)=4.61\times10^{-5} \ 7 \ \alpha(N)=7.47\times10^{-6} \ 11; \ \alpha(O)=3.99\times10^{-7} \ 6$
								E_{ν} : From ²⁵² Cf SF decay.
1955.7	(6+)	542.0 [‡] 5	100‡	1413.6	(4^{+})			, <u>-</u>
		720.5 [‡] 5	12.5 [‡] 7	1235.34	5+			
		975.0 [‡] 5	63 [‡] 3	980.68	4+			
1995.1	(4^{-})	1014.4 [‡] 5	33.3 [‡] 24	980.68	4+			
		1247.5 [‡] 5	100 [‡]	747.48	3+			
		$1350.2^{\ddagger}.5$	$16.7^{\ddagger}.21$	644 97	4 ⁺			
2003.3	(5 ⁻)	589.7 [‡] 5	<38.7 [‡]	1413.6	(4 ⁺)	[E1]	1.14×10^{-3}	B(E1)(W.u.)> 1.8×10^{-7} α (K)=0.001004 <i>15</i> ; α (L)=0.0001139 <i>16</i> : α (M)=2.08×10^{-5} 3
								$\alpha(N)=3.36\times10^{-6} 5; \alpha(O)=1.762\times10^{-7}$ 25
		768.0 <i>5</i>		1235.34	5+	[E1]	6.41×10 ⁻⁴	$\alpha(K)=0.000564 \ 8; \ \alpha(L)=6.36\times10^{-5} \ 9; \alpha(M)=1.162\times10^{-5} \ 17 \alpha(N)=1.88\times10^{-6} \ 3; \ \alpha(O)=9.94\times10^{-8} 14$
								E_{γ} : From ²⁵² Cf SF decay.
		1022.5 [‡] 5	100 [‡]	980.68	4+	[E1]	3.63×10^{-4}	B(E1)(W.u.)>1.8×10 ⁻⁷

γ ⁽¹¹²Ru) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.&	α ^a	Comments
								$\alpha(K)=0.000319 \ 5; \ \alpha(L)=3.58\times10^{-5} \ 5; \\ \alpha(M)=6.53\times10^{-6} \ 10 \\ \alpha(N)=1.058\times10^{-6} \ 15; \ \alpha(O)=5.64\times10^{-8} \\ 8 $
2003.3	(5 ⁻)	1358.3 [‡] 5	33 [‡] 7	644.97	4+	[E1]	3.55×10 ⁻⁴	B(E1)(W.u.)>2.5×10 ⁻⁸ α (K)=0.000191 3; α (L)=2.13×10 ⁻⁵ 3; α (M)=3.89×10 ⁻⁶ 6 α (N)=6.30×10 ⁻⁷ 9; α (O)=3.38×10 ⁻⁸ 5; α (IPE)=0.0001376 20
2147.9	(5^{-})	1167.2 [‡] 5	$20^{\ddagger}.5$	980.68	4+			u(III) 0.0001570 20
	(-)	1502.9 [‡] 5	100 [‡]	644.97	4+			
2230.3	(6 ⁻)	226.9 [‡] 5	6.7 [‡] 17	2003.3	(5^{-})			
		235.1 [‡] 5	9.2 [‡] 17	1995.1	(4^{-})			
		660.1 [‡] 5	13.5 [‡] 23	1570.2	6+			
		994.9 [‡] 5	42 [‡] 6	1235.34	5+			
		1040.6 [‡] 5	100 [‡]	1189.79	6+			
2231.3	(7^{+})	581.9 [‡] 5	100 [‡]	1649.5	(5^{+})			
		995.8 [‡] 5	68 [‡] 4	1235.34	5+			
2263.5	8+	693.3 [‡] 5	100‡	1570.2	6+			
2334.3	(6 ⁻)	331.0 [‡] 5	12.1 [‡]	2003.3	(5 ⁻)	[M1]	0.01278	α (K)=0.01119 <i>17</i> ; α (L)=0.001308 <i>19</i> ; α (M)=0.000240 <i>4</i>
								$\alpha(N)=3.89\times10^{-5}$ 6; $\alpha(O)=2.05\times10^{-6}$ 3
		76417 5	24 5	1570.0	<+	(17.1.)	6 40 10-4	$B(M1)(W.u.) > 3.9 \times 10^{-7}$
		764.1* 3	34* 5	1570.2	6'	[E1]	6.48×10 +	B(E1)(W.u.)>1.2×10 ⁻⁷ α (K)=0.000570 8; α (L)=6.43×10 ⁻⁵ 9; α (M)=1.174×10 ⁻⁵ 17
								$\alpha(N)=1.90\times10^{\circ} 3; \ \alpha(O)=1.004\times10^{\circ}$
		1098.8 [‡] 5	100 [‡]	1235.34	5+	[E1]	3.17×10^{-4}	$B(E1)(W.u.) > 1.2 \times 10^{-7}$
								$\alpha(K)=0.000279 \; 4; \; \alpha(L)=3.12\times10^{-5} \; 5; \\ \alpha(M)=5.70\times10^{-6} \; 8$
			10 ⁺ 10		<.+		2 00 10-1	$\alpha(N) = 9.23 \times 10^{-7} \ 13; \ \alpha(O) = 4.93 \times 10^{-6} \ 7$
		1144.6+ 5	40+ 10	1189.79	6+	[E1]	3.09×10 ⁻⁴	B(E1)(W.u.)>4.2×10 ⁻⁶ α (K)=0.000259 4; α (L)=2.89×10 ⁻⁵ 4; α (M)=5.28×10 ⁻⁶ 8 α (N)=8.56×10 ⁻⁷ 12; α (O)=4.57×10 ⁻⁸
								7; α (IPF)=1.46×10 ⁻⁵ 3
2392.0		1156.6 [‡] 5	100 [‡]	1235.34	5+			
2489.3	(7 ⁻)	259.0 [‡] 5	12.3 [‡] 12	2230.3	(6 ⁻)			
		341.4 [‡] 5	12.7 [‡] 20	2147.9	(5 ⁻)			
		486.0 [‡] 5	4.8 [‡] 12	2003.3	(5 ⁻)			
		919.1 [‡] 5	17 [‡] 3	1570.2	6+			
		1299.6 [‡] 5	100 [‡]	1189.79	6+	D		Mult.: from $(1299.6\gamma)(544.7\gamma)(\theta)$: $A_2=-0.090 \ 35$, $A_4=-0.02 \ 6$ in ²⁵² Cf SF decay. The predicted values are $A_2=-0.071$, $A_4=0$ (for a dipole-quadrupole cascade and $A_2=-0.102$ and $A_4=-0.051$ for a quadrupole-quadrupole cascade.
								$A_2 = -0.102$ and $A_4 = -0.051$ for quadrupole-quadrupole cascade.

γ ⁽¹¹²Ru) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.&	α^{a}	Comments
2534.2	9+	694.4 2	100	1839.7	8+	(E2)	0.00215	B(E2)(W.u.)=89 <i>I3</i> α (K)=0.00188 <i>3</i> ; α (L)=0.000223 <i>4</i> ; α (M)=4.10×10 ⁻⁵ <i>6</i> α (N)=6.58×10 ⁻⁶ <i>10</i> ; α (O)=3.31×10 ⁻⁷ 5
2563.0	10+	723.3 2	100	1839.7	8+	(E2)	0.00193	Mult.: From $\gamma(\omega)$ in ²⁴⁸ Cm SF decay (1994Sh26). B(E2)(W.u.)=85 13 α (K)=0.001690 24; α (L)=0.000200 3; α (M)=3.67×10 ⁻⁵ 6 α (N)=5.91×10 ⁻⁶ 9; α (O)=2.99×10 ⁻⁷ 5
		,						Mult.: From $\gamma(\omega)$ in ²⁴⁸ Cm SF decay (1994Sh26).
2574.3	(7^{-})	240.0 ⁶ 5		2334.3	(6 ⁻)			E_{γ} : From ²⁵² Cf SF decay.
		426.3 [‡] 5	10 [‡] 4	2147.9	(5 ⁻)			
		733.1 [‡] 5	4.2 [‡] 2	1841.1	7+			
		1004.1 [‡] 5	11.8 [‡] <i>15</i>	1570.2	6+			
		1384.6 [‡] 5	100‡	1189.79	6+	D		Mult.: from $(1384.6\gamma)(544.7\gamma)(\theta)$: A ₂ =-0.07 6, A ₄ =-0.05 9 in 252CF SF DECAY. The predicted values are A ₂ =-0.071, A ₄ =0 for a for dipole-quadrupole cascade and A ₂ =-0.102 and A ₄ =-0.051 for a quadrupole-quadrupole cascade.
2574.6	(8^{+})	618.9 [‡] 5	100‡	1955.7	(6^{+})			
2771.8	(8-)	282.5 [‡] 5	24 [‡] 5	2489.3	(7^{-})			
	(-)	541.5 [‡] 5	100 [‡]	2230.3	(6 ⁻)			
		930.7 [‡] 5	7.0^{\ddagger} 18	1841.1	7+			
		932.0 [‡] 5	3.5 * 8	1839.7	8+			
2829.4	(8 ⁻)	255.1 [‡] 5	$100.0^{\ddagger} 24$	2574.3	(7 ⁻)			I_{γ} : 100.22.4 in table 3 of 2009Lu18 seems a misprint.
		340.0 ^{‡b} 5	4.5 [‡]	2489.3	(7 ⁻)			
		495.1 ^b 5		2334.3	(6 ⁻)			E_{γ} : From ²⁵² Cf SF decay.
2899.9		507.9 5		2392.0				E_{γ} : From ²⁵² Cf SF decay.
		1058.8 [‡] 5	100^{\ddagger}	1841.1	7+			
2909.2	(9 ⁺)	677.9 [‡] 5	100 [‡]	2231.3	(7^{+})			
3033.6	10^{+}	770.1 [‡] 5	100 [‡]	2263.5	8+			
3076.6	(9 ⁻)	304.8 [‡] 5	11.0 [‡] 23	2771.8	(8 ⁻)			
		587.3 [‡] 5	100 [‡]	2489.3	(7^{-})			
		1237.0 [‡] 5	40 [‡] 4	1839.7	8+			
3094.2	(9 ⁻)	264.8 [‡] 5	9.3 [‡] 7	2829.4	(8 ⁻)			
		519.8 [‡] 5	100‡	2574.3	(7^{-})			
		830.7 [‡] 5	23 [‡] 8	2263.5	8+			
		1254.5 [‡] 5	35 [‡] 6	1839.7	8+			
3290.5	11+	756.3 [‡] 5	100‡	2534.2	9+	(E2)	1.73×10 ⁻³	B(E2)(W.u.)=91 <i>13</i> α (K)=0.001509 <i>22</i> ; α (L)=0.000178 <i>3</i> ; α (M)=3.27×10 ⁻⁵ <i>5</i> α (N)=5.26×10 ⁻⁶ <i>8</i> ; α (O)=2.67×10 ⁻⁷ <i>4</i> Mult.: From $\gamma(\omega)$ in ²⁴⁸ Cm SF decay (1994Sh26).

$\gamma(^{112}\text{Ru})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.&	α ^a	Comments
3326.2	12+	763.2 [‡] 5	100 [‡]	2563.0	10+	(E2)	1.69×10 ⁻³	$\alpha(K)=0.001475 \ 21; \ \alpha(L)=0.0001740 \ 25; \alpha(M)=3.19\times10^{-5} \ 5 \alpha(N)=5.13\times10^{-6} \ 8; \ \alpha(O)=2.61\times10^{-7} \ 4 B(E2)(W.u.)=73 \ 7 Mult.: From \gamma(\omega) in 248Cm SF decay(1994Sh26).$
3379.9	(10 ⁻)	285.6 [‡] 5	17.4 [‡] 22	3094.2	(9 ⁻)			
		550.6 [‡] 5	100	2829.4	(8 ⁻)			
3420.9	(10^{-})	344.3 [‡] 5	14 [‡] 3	3076.6	(9 ⁻)			
		649.0 [‡] 5	100	2771.8	(8 ⁻)			
3519.8		619.9 [‡] 5	100 [‡]	2899.9				
3711.7	(11^{-})	331.7 [‡] 5	14.8 [‡] <i>13</i>	3379.9	(10 ⁻)			
		617.4 [‡] 5	100 [#]	3094.2	(9 ⁻)			
		1148.8 [‡] 5	26 [‡] 3	2563.0	10^{+}			
3768.7	(11-)	347.8 [‡] 5	17 [‡] 5	3420.9	(10^{-})			
2070.0	10+	692.05	100	3076.6	(9) 10 [±]			
3870.9	12^{-1}	$83/.3^{+} 3$	100*	3033.6	10^{-1}			E . Errer ²⁵² Cf CE deser
4052.0	(12)	521.0^{2} 5	100	2270.0	(11)			E_{γ} : From \sim -CI SF decay.
4005 4	12+	052.775	100*	33/9.9	(10)			
4095.4	13	804.9 ⁺ 5	100*	3290.5	11	[[20]	$1.54.10^{-3}$	
4118.4	14	<i>192.2</i> ⁺ 5	100*	3326.2	12	[E2]	1.54×10 ⁹	$\alpha(K)=0.001344 \ 19; \ \alpha(L)=0.0001581 \ 23; \alpha(M)=2.90\times10^{-5} \ 4 \alpha(N)=4.67\times10^{-6} \ 7; \ \alpha(O)=2.38\times10^{-7} \ 4 B(E2)(W.u.)=35 \ 7$
4198.8	(12^{-})	430.1 [‡] 5	20 [‡] 6	3768.7	(11 ⁻)			
	. ,	778.0 [‡] 5	100	3420.9	(10 ⁻)			
4213.4		693.6 [‡] 5	100 [‡]	3519.8				
4428.5	(13 ⁻)	716.8 [‡] 5	100 [‡]	3711.7	(11^{-})			
4561.8	(13 ⁻)	793.1 [‡] 5	100 [‡]	3768.7	(11 ⁻)			
4764.2	14+	893.3 [‡] 5	100 [‡]	3870.9	12+			
4769.7?	(14 ⁻)	737.1 ^{‡b} 5	100 [‡]	4032.6	(12 ⁻)			
4788.9	(14^{+})	918 [@] 1	100	3870.9	12^{+}			
4950.7	15+	855.3 [‡] 5	100 [‡]	4095.4	13+			
4954.6	16+	836.2 [‡] 5	100 [‡]	4118.4	14+			
5072.9	(14 ⁻)	874.1 [‡] 5	100 [‡]	4198.8	(12 ⁻)			
5228.0	(15 ⁻)	799.5 [‡] 5	100 [‡]	4428.5	(13 ⁻)			
5700.8?	(16 ⁺)	936.6 ^{‡b} 5	100 [‡]	4764.2	14^{+}			
5830.0	18^{+}	875.4 [‡] 5	100 [‡]	4954.6	16+			
5857.4	17^{+}	902.8 [‡] 5	100 [‡]	4954.6	16+			
6725.4	(20^{+})	895.4 [‡] 5	100 [‡]	5830.0	18^{+}			
6800.4	(19 ⁺)	943 [@] 1	100	5857.4	17^{+}			
7749.3	(22^{+})	1023.8 [@] 5	100	6725.4	(20^{+})			

[†] From ²⁴⁸Cm SF decay, unless otherwise stated.
[‡] From ²⁵²Cf SF decay.

$\gamma(^{112}$ Ru) (continued)

From ¹¹²Tc β⁻ decay.
[@] From ²³⁸U(α,Fγ).
& From angular correlation measurements in ²⁵²Cf SF decay and ²⁴⁸Cm SF decay, and the apparent band structures, unless a Additional information 1.
 b Placement of transition in the level scheme is uncertain.

 $^{112}_{44}$ Ru₆₈

¹¹²₄₄Ru₆₈

11

From ENSDF

 $^{112}_{44}\mathrm{Ru}_{68}\text{--}11$

Adopted Levels, Gammas

 $^{112}_{44}{
m Ru}_{68}$

Adopted Levels, Gammas

 $^{112}_{44}$ Ru₆₈