²⁴⁸Cm SF decay 1994Sh26,2012Sm02

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	S. Lalkovski, F. G. Kondev	NDS 124, 157 (2015)	1-Aug-2014		

Parent: ²⁴⁸Cm: E=0.0; J^π=0⁺; T_{1/2}=3.48×10⁵ y 6; %SF decay=8.39 16

²⁴⁸Cm-T_{1/2}: From ²⁴⁸Cm Adopted Levels in ENSDF database.

1994Sh26: Source: 2 μ Ci ²⁴⁸Cm in a KCl pellet; Detectors: EUROGAM array; Measured: γ - γ - γ , $\gamma\gamma(\theta)$, E γ , I γ ; 2x10⁹ triple- γ coincidence events; Deduced: level scheme; Other from the same group: 2003Du25.

2012Sm02: Source: 5 mg ²⁴⁸Cm oxide in a KCl pellet; Detectors: EUROGAM-2 array; Measured: triple- γ and higher coincidences, E γ , I γ , Doppler-broadened lineshapes; 2.5x10⁹ triple- γ and higher coincidence events; Deduced: level lifetimes.

¹¹²Ru Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments		
0.0 [@]	0+				
236.80 [@] 16	2^{+}				
523.60 ^{&} 16	(2^{+})				
645.20 [@] 20	4+				
747.60 ^a 19	(3 ⁺)				
980.80 ^{&} 18	(4 ⁺)				
1190.1 [@] 3	6+				
1235.50 ^{<i>a</i>} 23	(5 ⁺)				
1570.5 ^{&} 3	(6^{+})				
1840.1 [@] 4	8+	1.84 ps 28	$T_{1/2}$: statistical uncertainty=0.20 ps and systematic uncertainty=0.19 ps taken in quadrature.		
1841.4 ^{<i>a</i>} 3	(7^{+})	2.50 ps 35	$T_{1/2}$: statistical uncertainty=0.25 ps and systematic uncertainty=0.25 ps taken in quadrature.		
2263.8 ^{&} 4	(8 ⁺)				
2534.5 ^{<i>a</i>} 4	(9+)	1.23 ps 17	$T_{1/2}$: statistical uncertainty=0.12 ps and systematic uncertainty=0.12 ps taken in quadrature.		
2563.4 ^w 4	10+	1.05 ps 16	$T_{1/2}$: statistical uncertainty=0.12 ps and systematic uncertainty=0.10 ps taken in quadrature.		
3290.5 ^{<i>a</i>} 7	(11^{+})	0.78 ps 11	$T_{1/2}$: statistical uncertainty=0.08 ps and systematic uncertainty=0.08 ps taken in quadrature.		
3326.5 ^{w} 7	12^{+}	0.80 ps 12	$T_{1/2}$: statistical uncertainty=0.09 ps and systematic uncertainty=0.08 ps taken in quadrature.		

[†] From least-squares fit to $E\gamma's$.

[‡] From the deduced γ -ray transition multipolarities and the apparent band structures.

[#] From 2012Sm02 using Doppler-broadened lineshape technique.

[@] Band(A): $K^{\pi} = 0^+$, g.s. band.

& Band(B): $K^{\pi}=2^+, \gamma$ -vibrational band, $\alpha=0$.

^{*a*} Band(C): $K^{\pi}=2^+, \gamma$ -vibrational band, $\alpha=1$.

 $\gamma(^{112}$ Ru)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]
224.0 2	9.1 18	747.60	(3^{+})	523.60	(2^{+})	
233.2 2	0.70 14	980.80	(4^{+})	747.60	(3^{+})	
236.8 2	100 <i>3</i>	236.80	2^{+}	0.0	0^{+}	E2
286.8 2	11.2 3	523.60	(2^{+})	236.80	2^{+}	
335.6 2	2.0 4	980.80	(4^{+})	645.20	4+	
408.4 2	55.5 17	645.20	4+	236.80	2+	E2
457.2 2	9.8 20	980.80	(4^{+})	523.60	(2^{+})	
487.9 <i>2</i>	21.1 6	1235.50	(5^+)	747.60	(3^{+})	
510.8 2	24.0 7	747.60	(3 ⁺)	236.80	2+	

				²⁴⁸ Cm SF	decay	19948	Sh26,2012Sm02 (continued)
γ ⁽¹¹² Ru) (continued)							
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	Comments
523.6 2	9.2 18	523.60	(2^{+})	0.0	0^{+}		
544.9 2	40.8 12	1190.1	6+	645.20	4+	(E2)	
589.7 2	6.4 13	1570.5	(6^{+})	980.80	(4^{+})		
590.3 2	1.7 3	1235.50	(5^{+})	645.20	4+		
605.9 2	10.9 <i>3</i>	1841.4	(7^{+})	1235.50	(5^{+})	(E2)	E_{γ} : 605.3 in 2012Sm02.
650.0 2	15.2 5	1840.1	8+	1190.1	6+	(E2)	E_{γ} : 649.7 in 2012Sm02.
693.3 2	2.0 4	2263.8	(8^{+})	1570.5	(6^{+})	(E2)	, ,
694.4 2	3.1 6	2534.5	(9^+)	1840.1	8+	(E2)	E_{γ} : 693.8 in 2012Sm02.
723.3 2	4.1 8	2563.4	10+	1840.1	8+	(E2)	E_{γ} : 722.6 in 2012Sm02.
744.0 2	0.70 14	980.80	(4^{+})	236.80	2+		
756.0 [‡] 5		3290.5	(11^{+})	2534.5	(9+)	(E2)	
763.1 [‡] 5		3326.5	12^{+}	2563.4	10^{+}	(E2)	

[†] From 1994Sh26, unless otherwise stated. $E\gamma$ are from the reported level energy differences with $\Delta E\gamma$ =0.2 keV. $\Delta I\gamma$ =20% for $I\gamma < 10$ and $\Delta I\gamma$ =3% for $I\gamma > 10$. [‡] From 2012Sm02; $\Delta E\gamma$ =0.5 keV were estimated by the evaluators. [#] From angular correlation measurements in 1994Sh26 and the apparent band structures.

 $^{112}_{44}{
m Ru}_{68}$

3290.5

12⁺

