|                 | His                        | story               |                        |
|-----------------|----------------------------|---------------------|------------------------|
| Туре            | Author                     | Citation            | Literature Cutoff Date |
| Full Evaluation | S. Lalkovski, F. G. Kondev | NDS 124, 157 (2015) | 1-Aug-2014             |

Parent: <sup>112</sup>Rh: E=y;  $J^{\pi}=(6^+)$ ;  $T_{1/2}=6.76$  s 12;  $Q(\beta^-)=6589$  44;  $\%\beta^-$  decay=100.0

1999Lh01: Facility: IGISOL at Jyvaskyla; Source: mass-separated fission products from <sup>238</sup>U(p,F); Beam: E(p)=25 MeV; Detectors: four Ge from EUROGAM I, plastic scintillators; Measured:  $\gamma$ - $\gamma$  and  $\beta$ -ce coinc., E $\gamma$ , I $\gamma$ ,  $\beta$ - $\gamma$ (t); Deduced: <sup>112</sup>Pd level scheme, I $\beta$ (g.s.), log *ft*.

Others: 1998Lh04, 1988Ay02, 1985Bu05, 1976MaYL, 1970WiZN.

| <sup>112</sup> Pd | Levels |
|-------------------|--------|
|                   |        |

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$ | E(level) <sup>†</sup> | $J^{\pi \ddagger}$ | E(level) <sup>†</sup> | J <sup>π‡</sup>   | E(level) <sup>†</sup> | J <sup>π</sup> ‡ |
|-----------------------|--------------------|-----------------------|--------------------|-----------------------|-------------------|-----------------------|------------------|
| 0.0                   | 0+                 | 1759.00 21            | (5 <sup>+</sup> )  | 2334.1 4              | $(5,6^+)$         | 2966.64 24            | $(5,6^+)$        |
| 348.70 16             | 2+                 | 1887.4 <i>4</i>       | $(4^{+})$          | 2354.51 20            | $(4,5^{+})$       | 3043.4 4              | (5,6)            |
| 736.70 16             | 2+                 | 1951.7 <i>4</i>       | $(3,4^{+})$        | 2395.20 24            | $(5^{+})$         | 3759.6 5              | $(5,6^+)$        |
| 882.99 18             | 4+                 | 2002.76 25            | (6 <sup>+</sup> )  | 2430.8 5              | $(5,6^+)$         | 3772.0 8              | $(5,6^+)$        |
| 1096.31 18            | 3+                 | 2036.5 3              | $(2^{-},3,4^{+})$  | 2441.4 3              | $(5,6^+)$         | 3794.3 9              | $(5,6^+)$        |
| 1362.39 19            | $(4^{+})$          | 2158.0 4              | $(3,4,5^+)$        | 2543.2 3              | $(5^{+})$         | 3940.3 9              | $(5,6^+)$        |
| 1422.7 6              | 2+                 | 2194.61 19            | $(4)^{-}$          | 2578.8 5              | (6 <sup>-</sup> ) |                       |                  |
| 1550.50 20            | 6+                 | 2200.62 20            | $(5,6^{+})$        | 2629.7 11             | (5, 6, 7)         |                       |                  |
| 1714.91 18            | $(3,4^{+})$        | 2269.40 23            | (5 <sup>-</sup> )  | 2754.81 19            | 5+                |                       |                  |

 $^{\dagger}$  From a least squares fit to Ey.

<sup>‡</sup> From the Adopted Levels.

## $\beta^{-}$ radiations

The level scheme is incomplete (pandemonium), and hence,  $I\beta^-$  and log ft values should be considered as approximate.

| E(decay)               | E(level) | Ιβ <sup>-†‡</sup> | Log ft |                       | Comments |
|------------------------|----------|-------------------|--------|-----------------------|----------|
| $(2.65 \times 10^3 5)$ | 3940.3   | 0.53 18           | 6.16   | av Eβ=1089 21         |          |
| $(2.79 \times 10^3 5)$ | 3794.3   | 0.45 18           | 6.33   | av E $\beta$ =1157 21 |          |
| $(2.82 \times 10^3 5)$ | 3772.0   | 0.45 9            | 6.34   | av Eβ=1167 21         |          |
| $(2.83 \times 10^3 5)$ | 3759.6   | 0.80 20           | 6.10   | av Eβ=1173 21         |          |
| $(3.54 \times 10^3 5)$ | 3043.4   | 0.53 13           | 6.70   | av Eβ=1511 21         |          |
| $(3.62 \times 10^3 5)$ | 2966.64  | 1.42 16           | 6.31   | av Eβ=1547 21         |          |
| $(3.83 \times 10^3 5)$ | 2754.81  | 72 6              | 4.71   | av Eβ=1647 21         |          |
| $(3.96 \times 10^3 5)$ | 2629.7   | 0.24 7            | 7.25   | av Eβ=1707 21         |          |
| $(4.01 \times 10^3 5)$ | 2578.8   | 0.11 4            | 7.61   | av Eβ=1731 21         |          |
| $(4.04 \times 10^3 5)$ | 2543.2   | 1.60 20           | 6.47   | av Eβ=1748 21         |          |
| $(4.15 \times 10^3 5)$ | 2441.4   | 0.56 10           | 6.97   | av Eβ=1796 21         |          |
| $(4.16 \times 10^3 5)$ | 2430.8   | 0.62 18           | 6.93   | av Eβ=1801 21         |          |
| $(4.19 \times 10^3 5)$ | 2395.20  | 0.71 16           | 6.89   | av Eβ=1818 21         |          |
| $(4.23 \times 10^3 5)$ | 2354.51  | <1.2              | >7.1   | av Eβ=1838 21         |          |
| $(4.32 \times 10^3 5)$ | 2269.40  | 0.7 4             | 6.95   | av Eβ=1878 21         |          |
| $(4.39 \times 10^3 5)$ | 2200.62  | 1.1 3             | 6.78   | av Eβ=1911 21         |          |
| $(4.59 \times 10^3 5)$ | 2002.76  | 1.07 20           | 6.88   | av Eβ=2005 21         |          |
| $(4.83 \times 10^3 5)$ | 1759.00  | 2.9 7             | 6.54   | av Eβ=2121 21         |          |
| $(5.04 \times 10^3 5)$ | 1550.50  | 3.7 10            | 6.52   | av Eβ=2221 21         |          |

<sup>†</sup> From intensity imbalances.

<sup>‡</sup> Absolute intensity per 100 decays.

I $\gamma$  normalization: from  $\Sigma$  Ti(g.s.)=100%.

Ν

| ${\rm E_{\gamma}}^{\dagger}$        | $I_{\gamma}^{\dagger @}$       | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                       | $E_f$             | $\mathbf{J}_f^{\pi}$                  | Mult.   | $\delta^{\dagger \#}$ | $\alpha^{\ddagger}$ | Comments                                                                                                                                                                                                                               |
|-------------------------------------|--------------------------------|------------------------|------------------------------------------|-------------------|---------------------------------------|---------|-----------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 158.1 2<br>159.9 <i>3</i>           | 0.09 <i>3</i><br>0.25 <i>6</i> | 2194.61<br>2354.51     | $(4)^{-}$<br>$(4,5^{+})$                 | 2036.5<br>2194.61 | $(2^{-},3,4^{+})$<br>$(4)^{-}$        | [E1]    |                       | 0.0398              | $\alpha(K)=0.0348\ 6;\ \alpha(L)=0.00413\ 7;\ \alpha(M)=0.000771\ 12$                                                                                                                                                                  |
| 213.3 2                             | 1.3 2                          | 1096.31                | 3+                                       | 882.99            | 4 <sup>+</sup>                        | [M1+E2] |                       | 0.0479              | $\alpha(N)=0.0001261/20$<br>$\alpha(K)=0.0418/6; \alpha(L)=0.00505/8; \alpha(M)=0.000949/14$<br>$\alpha(N)=0.0001508/23$                                                                                                               |
| 348.7 2                             | 100                            | 348.70                 | 2+                                       | 0.0               | 0+                                    | (E2)    |                       | 0.0181              | $\alpha(\mathbf{N}) = 0.0051572 \ 22; \ \alpha(\mathbf{L}) = 0.00210 \ 3; \ \alpha(\mathbf{M}) = 0.000396 \ 6 \ \alpha(\mathbf{N}) = 6.53 \times 10^{-5} \ 10$                                                                         |
| 359.6 2                             | 36.5 28                        | 1096.31                | 3+                                       | 736.70            | 2+                                    | M1+E2   |                       | 0.01252             | $\alpha(K)=0.01093 \ 16; \ \alpha(L)=0.001298 \ 19; \ \alpha(M)=0.000244 \ 4 \ \alpha(N)=4.11\times10^{-5} \ 6 \ Mult.: A_{22}=0.041 \ 35 \ gated on \ 348.7\gamma \ and \ 359.6\gamma \ in$                                           |
| 359.6 2                             | 0.3 1                          | 2754.81                | 5+                                       | 2395.20           | (5 <sup>+</sup> )                     | [E2+M1] |                       | 0.01252             | 1999Lh01.<br>$\alpha(K)=0.01093 \ I6; \ \alpha(L)=0.001298 \ I9; \ \alpha(M)=0.000244 \ 4$<br>$\alpha(N)=4.11\times10^{-5} \ 6$                                                                                                        |
| 388.0 2                             | 33.7 23                        | 736.70                 | 2+                                       | 348.70            | 2+                                    | E2(+M1) | -4.7 +17-35           | 0.01276 23          | $\alpha(K)=0.01099\ 20;\ \alpha(L)=0.00145\ 3;\ \alpha(M)=0.000274\ 6$<br>$\alpha(N)=4.52\times10^{-5}\ 10$<br>Mult., $\delta$ : A <sub>22</sub> =0.089 34 gated on 348.7 $\gamma$ and 388.7 $\gamma$ in                               |
| 396.6 <sup>&amp;</sup> 4            | 0.3 1                          | 1759.00                | (5 <sup>+</sup> )                        | 1362.39           | (4 <sup>+</sup> )                     | [M1+E2] |                       | 0.00981             | $\alpha(K)=0.00857 \ 13; \ \alpha(L)=0.001015 \ 15; \ \alpha(M)=0.000191 \ 3$                                                                                                                                                          |
| 400.3 2                             | 4.1 5                          | 2754.81                | 5+                                       | 2354.51           | (4,5 <sup>+</sup> )                   | M1+E2   |                       | 0.00959             | $\alpha(N)=3.21\times10^{-5} 5$<br>$\alpha(K)=0.00838 \ 12; \ \alpha(L)=0.000992 \ 14; \ \alpha(M)=0.000186 \ 3$<br>$\alpha(N)=3.14\times10^{-5} 5$<br>Mult.: A <sub>22</sub> =-0.131 54 gated on 400.3 $\gamma$ and 534.3 $\gamma$ in |
| 435.6 2                             | 0.4 1                          | 2194.61                | (4) <sup>-</sup>                         | 1759.00           | (5 <sup>+</sup> )                     | [E1]    |                       | 0.00265             | $\alpha(K)=0.00232 \ 4; \ \alpha(L)=0.000270 \ 4; \ \alpha(M)=5.04\times10^{-5} \ 7 \ \alpha(N)=8.46\times10^{-6} \ 12$                                                                                                                |
| 441.3 <sup>&amp;</sup> 4<br>464.7 4 | 0.2 <i>1</i><br>0.3 <i>1</i>   | 2200.62<br>1887.4      | (5,6 <sup>+</sup> )<br>(4 <sup>+</sup> ) | 1759.00<br>1422.7 | (5 <sup>+</sup> )<br>2 <sup>+</sup>   | [E2]    |                       | 0.00741             | $\alpha(K)=0.00641 \ 10; \ \alpha(L)=0.000823 \ 12; \ \alpha(M)=0.0001551 \ 23$<br>$\alpha(N)=2.57\times10^{-5} \ 4$                                                                                                                   |
| 479.4 2                             | 1.4 2                          | 1362.39                | (4+)                                     | 882.99            | 4+                                    | [M1+E2] |                       | 0.00617             | $\alpha(N)=2.57\times10^{-5}$ 4<br>$\alpha(K)=0.00540$ 8; $\alpha(L)=0.000635$ 9; $\alpha(M)=0.0001192$ 17<br>$\alpha(N)=2.01\times10^{-5}$ 3                                                                                          |
| 479.7 2                             | 1.7 2                          | 2194.61                | (4) <sup>-</sup>                         | 1714.91           | (3,4+)                                | [E1]    |                       | 0.00210             | $\alpha(K) = 0.00184 \ 3; \ \alpha(L) = 0.000213 \ 3; \ \alpha(M) = 3.97 \times 10^{-5} \ 6 \ \alpha(N) = 6.67 \times 10^{-6} \ 10$                                                                                                    |
| 485.4 2                             | 1.2 2                          | 2754.81                | 5+                                       | 2269.40           | (5 <sup>-</sup> )                     | [E1]    |                       | 0.00204             | $\alpha(K) = 0.00178 \ 3; \ \alpha(L) = 0.000207 \ 3; \ \alpha(M) = 3.86 \times 10^{-5} \ 6 \ \alpha(N) = 6.49 \times 10^{-6} \ 10$                                                                                                    |
| 485.7 2<br>534.3 2                  | 0.8 <i>1</i><br>37 <i>3</i>    | 2200.62<br>882.99      | (5,6 <sup>+</sup> )<br>4 <sup>+</sup>    | 1714.91<br>348.70 | (3,4 <sup>+</sup> )<br>2 <sup>+</sup> | E2      |                       | 0.00494             | $\alpha$ (K)=0.00428 6; $\alpha$ (L)=0.000539 8; $\alpha$ (M)=0.0001014 15<br>$\alpha$ (N)=1.688×10 <sup>-5</sup> 24<br>Mult.: A <sub>22</sub> =0.105 34 gated on 348.7 $\gamma$ and 534.3 $\gamma$ in<br>1999Lh01.                    |

 $^{112}_{46}{\rm Pd}_{66}$ -2

|                          |                              |                        |                                            |                                                  | $^{112}\mathbf{Rh}\beta^{-}\mathbf{d}$ | ecay (6.76 s)             | 1999Lh01              | (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------|------------------------------|------------------------|--------------------------------------------|--------------------------------------------------|----------------------------------------|---------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                              |                        |                                            |                                                  |                                        | $\gamma(^{112}\text{Pd})$ | (continued)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $E_{\gamma}^{\dagger}$   | $I_{\gamma}^{\dagger}$       | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                       | E <sub>f</sub> J                                 | $\frac{\pi}{f}$ Mult.                  | $\delta^{\dagger \#}$     | $\alpha^{\ddagger}$   | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 554.2 2<br>560.2 2       | 1.0 <i>I</i><br>62 <i>6</i>  | 2754.81<br>2754.81     | 5+<br>5+                                   | 2200.62 (5,<br>2194.61 (4)                       | 6 <sup>+</sup> )<br>- [E1]             |                           | $1.45 \times 10^{-3}$ | $\alpha$ (K)=0.001274 <i>18</i> ; $\alpha$ (L)=0.0001470 <i>21</i> ; $\alpha$ (M)=2.75×10 <sup>-5</sup> <i>4</i> $\alpha$ (N)=4.62×10 <sup>-6</sup> <i>7</i> Mult.: A <sub>22</sub> =0.013 <i>35</i> gated on 359.6 $\gamma$ and 560.2 $\gamma$ in 1999Lh01.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 618.6 2                  | 3.8 4                        | 1714.91                | $(3,4^{+})$                                | 1096.31 3+                                       |                                        |                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 625.7 2                  | 5.7 5                        | 1362.39                | (4 <sup>+</sup> )                          | 736.70 2+                                        | [E2]                                   |                           | 0.00319               | $\alpha(K)=0.00277 \ 4$ ; $\alpha(L)=0.000342 \ 5$ ; $\alpha(M)=6.43\times10^{-5} \ 9 \ \alpha(N)=1.074\times10^{-5} \ 15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 640.4 2                  | 1.8 2                        | 2002.76                | (6 <sup>+</sup> )                          | 1362.39 (4+                                      | E2]                                    |                           | 0.00300               | $\alpha(K)=0.00261 \ 4; \ \alpha(L)=0.000321 \ 5; \ \alpha(M)=6.03\times10^{-5} \ 9 \ \alpha(N)=1.007\times10^{-5} \ 15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 650.1 2                  | 0.4 1                        | 2200.62                | $(5,6^+)$                                  | 1550.50 6+                                       |                                        |                           |                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 662.7 2                  | 5.8 6                        | 1759.00                | (5 <sup>+</sup> )                          | 1096.31 3+                                       | [E2]                                   |                           | 0.00274               | $\alpha(K)=0.00238 \ 4; \ \alpha(L)=0.000292 \ 4; \ \alpha(M)=5.49\times10^{-5} \ 8 \ \alpha(N)=9.17\times10^{-6} \ 13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 667.5 2                  | 9.2 10                       | 1550.50                | 6+                                         | 882.99 4+                                        | E2                                     |                           | 0.00269               | $\alpha$ (K)=0.00234 4; $\alpha$ (L)=0.000286 4; $\alpha$ (M)=5.38×10 <sup>-5</sup> 8<br>$\alpha$ (N)=8.99×10 <sup>-6</sup> 13<br>Mult.: A <sub>22</sub> =0.097 45 gated on 348.7 $\gamma$ and 667.5 $\gamma$ in<br>19991 b01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 726.5 3                  | 0.4 1                        | 2441.4                 | $(5,6^+)$                                  | 1714.91 (3,                                      | 4+)                                    |                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 736.7 2                  | 10.6 12                      | 736.70                 | 2+                                         | 0.0 0+                                           | (E2)                                   |                           | 0.00209               | $\alpha$ (K)=0.00182 3; $\alpha$ (L)=0.000220 3; $\alpha$ (M)=4.13×10 <sup>-5</sup> 6<br>$\alpha$ (N)=6.92×10 <sup>-6</sup> 10<br>Mult.: A <sub>22</sub> =-0.208 41 gated on 359.6 $\gamma$ and 736.7 $\gamma$ in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 747.6 2                  | 29 3                         | 1096.31                | 3+                                         | 348.70 2+                                        | E2(+M1)                                | -1.65 10                  | 0.00205               | $\alpha(K) = 0.00179 \ 3; \ \alpha(L) = 0.000214 \ 3; \ \alpha(M) = 4.02 \times 10^{-5} \ 6 \\ \alpha(N) = 6.75 \times 10^{-6} \ 10 \\ \text{Mult} = 4.02 \times 10^{-6} \ 10^{-6} \ 10 \\ \text{Mult} = 4.02 \times 10^{-6} \ 10^{-6} \ 10 \\ \text{Mult} = 4.02 \times 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6}$ |
|                          |                              |                        |                                            |                                                  |                                        |                           |                       | Mult.: $A_{22} = -0.485 47$ gated on 548.7 $\gamma$ and 747.0 $\gamma$ in 1999Lh01.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 791.1 <i>3</i>           | 0.6 2                        | 1887.4                 | (4 <sup>+</sup> )                          | 1096.31 3+                                       | M1+E2                                  |                           | 0.00191               | $\alpha$ (K)=0.001669 24; $\alpha$ (L)=0.000194 3; $\alpha$ (M)=3.63×10 <sup>-5</sup> 5<br>$\alpha$ (N)=6.13×10 <sup>-6</sup> 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0                        |                              |                        |                                            |                                                  |                                        |                           |                       | Mult.: $A_{22}=0.339$ 77 gated on 348.7 $\gamma$ and 791.1 $\gamma$ in 1999Lh01.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 802.9 <sup>&amp;</sup> 4 | 0.2 1                        | 2754.81                | 5+                                         | 1951.7 (3,                                       | 4+)                                    |                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 831.9 2                  | 1.0 2                        | 1714.91                | $(3,4^+)$                                  | 882.99 4+                                        | •) [[]1]                               |                           | 6 17. 10-4            | (T) 0.000541.0 (T) (10.10-5.0 (D) 1.15( 10-5.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 832.2.2                  | 0.14 3                       | 2194.61                | (4) <sup>-</sup>                           | 1362.39 (4*                                      | ) [E1]                                 |                           | 6.17×10 <sup>-4</sup> | $\alpha(K)=0.000541 \ \delta; \ \alpha(L)=6.19\times10^{-5} \ 9; \ \alpha(M)=1.156\times10^{-5} \ 17 \ \alpha(N)=1.95\times10^{-6} \ 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 838.2 2                  | 0.82                         | 2200.62                | $(5,6^{+})$                                | 1362.39 (4*                                      | -)<br>6+)                              |                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 042.4 J<br>855.1 5       | 0.5 I<br>0.4 I               | 3043.4<br>1951.7       | (3,0)<br>$(3,4^+)$                         | 2200.02 (5, 1096.31 3 <sup>+</sup>               | 0)                                     |                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 876.0 4                  | 0.2 1                        | 1759.00                | $(5^+)$                                    | 882.99 4+                                        | [M1+E2]                                |                           | $1.51 \times 10^{-3}$ | $\alpha$ (K)=0.001327 <i>19</i> ; $\alpha$ (L)=0.0001535 <i>22</i> ; $\alpha$ (M)=2.88×10 <sup>-5</sup> <i>4</i><br>$\alpha$ (N)=4.86×10 <sup>-6</sup> <i>7</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 890.9 <i>3</i>           | 0.23 5                       | 2441.4                 | (5,6 <sup>+</sup> )                        | 1550.50 6+                                       |                                        |                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 963.9 2<br>978.2 2       | 0.6 <i>1</i><br>2.0 <i>2</i> | 2966.64<br>1714.91     | (5,6 <sup>+</sup> )<br>(3,4 <sup>+</sup> ) | 2002.76 (6 <sup>+</sup><br>736.70 2 <sup>+</sup> | -)                                     |                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                          |                              |                        |                                            |                                                  |                                        |                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

ω

From ENSDF

L

|                                              |                                                |                            |                                     |                              | <sup>112</sup> <b>R</b>                            | $\beta^{-}$ decay | (6.76 s) 1            | 999Lh01 (contin          | ued)                                                                                                                                                                                                                                                                   |  |  |
|----------------------------------------------|------------------------------------------------|----------------------------|-------------------------------------|------------------------------|----------------------------------------------------|-------------------|-----------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                              | $\gamma$ ( <sup>112</sup> Pd) (continued)      |                            |                                     |                              |                                                    |                   |                       |                          |                                                                                                                                                                                                                                                                        |  |  |
| $E_{\gamma}^{\dagger}$                       | $I_{\gamma}^{\dagger @}$                       | E <sub>i</sub> (level)     | $\mathbf{J}_i^{\pi}$                | $E_f$                        | $\mathrm{J}_f^\pi$                                 | Mult.             | $\delta^{\dagger \#}$ | $\alpha^{\ddagger}$      | Comments                                                                                                                                                                                                                                                               |  |  |
| 993.3 <sup>&amp;</sup> 6                     | 0.07 3                                         | 2354.51                    | (4,5 <sup>+</sup> )                 | 1362.39                      | (4+)                                               | [M1+E2]           |                       | 1.14×10 <sup>-3</sup> 2  | $\alpha(K) = 0.001004 \ 15; \ \alpha(L) = 0.0001158 \ 17;$<br>$\alpha(M) = 2.17 \times 10^{-5} \ 3$<br>$\alpha(N) = 3.66 \times 10^{-6} \ 6$                                                                                                                           |  |  |
| 995.8 2                                      | 2.3 3                                          | 2754.81                    | 5+                                  | 1759.00                      | (5 <sup>+</sup> )                                  | [M1+E2]           |                       | $1.14 \times 10^{-3}$    | $\alpha(K) = 3.00 \times 10^{-6} \text{ or } 0$<br>$\alpha(K) = 0.000998 \ 14; \ \alpha(L) = 0.0001151 \ 17;$<br>$\alpha(M) = 2.16 \times 10^{-5} \ 3$<br>$\alpha(K) = 3.64 \times 10^{-6} \ 6$                                                                        |  |  |
| 1004.7 <sup>&amp;</sup> 5                    | 0.14 6                                         | 1887.4                     | (4+)                                | 882.99                       | 4+                                                 | [M1+E2]           |                       | $1.12 \times 10^{-3}$    | $\alpha(K) = 3.04 \times 10^{-6} \text{ or } 0$<br>$\alpha(K) = 0.000979 \ 14; \ \alpha(L) = 0.0001129 \ 16;$<br>$\alpha(M) = 2.11 \times 10^{-5} \ 3$<br>$\alpha(N) = 3.57 \times 10^{-6} \ 5$                                                                        |  |  |
| 1013.9 <sup>&amp;</sup> 4                    | 0.27 14                                        | 1362.39                    | (4 <sup>+</sup> )                   | 348.70                       | 2+                                                 | [E2]              |                       | 9.76×10 <sup>-4</sup>    | $\alpha(K) = 0.000853 \ I2; \ \alpha(L) = 0.0001005 \ I5; \ \alpha(M) = 1.88 \times 10^{-5} \ 3 \ \alpha(N) = 3.17 \times 10^{-6} \ 5$                                                                                                                                 |  |  |
| 1028.3 4                                     | 0.12 4                                         | 2578.8                     | (6 <sup>-</sup> )                   | 1550.50                      | 6+                                                 | [E1]              |                       | $4.07 \times 10^{-4}$    | $\alpha(K) = 0.000358 5; \alpha(L) = 4.07 \times 10^{-5} 6; \alpha(M) = 7.60 \times 10^{-6} 11 \alpha(N) = 1.282 \times 10^{-6} 18$                                                                                                                                    |  |  |
| 1039.9 2                                     | 1.2 2                                          | 2754.81                    | 5+                                  | 1714.91                      | (3,4 <sup>+</sup> )                                | [M1,E2]           |                       | $1.04 \times 10^{-3}$    | $\alpha(K)=0.000908 \ 13; \ \alpha(L)=0.0001046 \ 15; \ \alpha(M)=1.96 \times 10^{-5} \ 3 \ \alpha(N)=3.31 \times 10^{-6} \ 5$                                                                                                                                         |  |  |
| 1061.7 <i>3</i><br>1069.2 <i>6</i><br>1079.2 | 0.4 <i>1</i><br>0.21 <i>5</i><br>0.27 <i>7</i> | 2158.0<br>1951.7<br>2629.7 | $(3,4,5^+)$<br>$(3,4^+)$<br>(5,6,7) | 1096.31<br>882.99<br>1550.50 | 3 <sup>+</sup><br>4 <sup>+</sup><br>6 <sup>+</sup> |                   |                       |                          |                                                                                                                                                                                                                                                                        |  |  |
| 1098.3 2                                     | 50 5                                           | 2194.61                    | (4)-                                | 1096.31                      | 3+                                                 | E1(+M2)           | -0.03 5               | 3.62×10 <sup>-4</sup> 11 | $\alpha(K)=0.000318 \ 10; \ \alpha(L)=3.61\times10^{-5} \ 12; \ \alpha(M)=6.75\times10^{-6} \ 22 \ \alpha(N)=1.14\times10^{-6} \ 4 \ Mult.: A_{22}=0.014 \ 40 \ gated on \ 359.6\gamma \ and \ 1098.3\gamma \ in \ 1999Lh01.$                                          |  |  |
| 1204.3 2                                     | 2.5 4                                          | 2754.81                    | 5+                                  | 1550.50                      | 6+                                                 | M1+E2             |                       | 7.60×10 <sup>-4</sup>    | $\alpha(K)=0.000661 \ 10; \ \alpha(L)=7.59\times10^{-5} \ 11; \ \alpha(M)=1.420\times10^{-5} \ 20 \ \alpha(N)=2.40\times10^{-6} \ 4; \ \alpha(IPF)=6.58\times10^{-6} \ 10 \ Mult.: \ A_{22}=0.078 \ 73 \ gated on \ 348.7\gamma \ and \ 1204.3\gamma \ in \ 1999Lh01.$ |  |  |
| 1214.8 5                                     | 0.5 2                                          | 1951.7                     | $(3,4^{+})$                         | 736.70                       | $2^{+}$                                            |                   |                       |                          |                                                                                                                                                                                                                                                                        |  |  |
| 1258.2 2                                     | 1.0 2                                          | 2354.51                    | (4,5 <sup>+</sup> )                 | 1096.31                      | 3+                                                 | [E2]              |                       | $6.28 \times 10^{-4}$    | $\alpha(K)=0.000536 \ 8; \ \alpha(L)=6.23\times10^{-5} \ 9;$<br>$\alpha(M)=1.166\times10^{-5} \ 17$<br>$\alpha(N)=1.96\times10^{-6} \ 3; \ \alpha(IPF)=1.648\times10^{-5} \ 24$                                                                                        |  |  |
| 1298.9 <i>3</i>                              | 0.6 1                                          | 2395.20                    | (5 <sup>+</sup> )                   | 1096.31                      | 3+                                                 | [E2]              |                       | 5.97×10 <sup>-4</sup>    | $\alpha(K)=0.000502\ 7;\ \alpha(L)=5.82\times10^{-5}\ 9;$<br>$\alpha(M)=1.090\times10^{-5}\ 16$<br>$\alpha(N)=1.84\times10^{-6}\ 3;\ \alpha(IPF)=2.44\times10^{-5}\ 4$                                                                                                 |  |  |
| 1311.6 2                                     | 8.6 11                                         | 2194.61                    | (4) <sup>-</sup>                    | 882.99                       | 4+                                                 | E1+M2             | -0.43 32              | 0.00053 21               | $\alpha(K) = 0.00038 \ 20; \ \alpha(L) = 4.4 \times 10^{-5} \ 24; \ \alpha(M) = 8.E - 6.5 \ \alpha(N) = 1.4 \times 10^{-6} \ 8; \ \alpha(IPF) = 8.8 \times 10^{-5} \ 20 \ Mult.: A_{22} = 0.169 \ 52 \ gated on \ 348.7\gamma \ and \ 1311.6\gamma \ in \ 1999Lh01.$   |  |  |

4

 $^{112}_{46}\mathrm{Pd}_{66}$ -4

L

## <sup>112</sup>Rh $β^-$ decay (6.76 s) 1999Lh01 (continued)

## $\gamma$ (<sup>112</sup>Pd) (continued)

| ${\rm E_{\gamma}}^{\dagger}$ | Ι <sub>γ</sub> †@ | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$  | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$ | Mult.   | $\alpha^{\ddagger}$   | Comments                                                                                                                                                                                                                                                                                           |
|------------------------------|-------------------|------------------------|---------------------|------------------------------------------|---------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1317.6 <i>3</i>              | 0.5 2             | 2200.62                | $(5,6^{+})$         | 882.99 4+                                |         |                       |                                                                                                                                                                                                                                                                                                    |
| 1366.2 <mark>&amp;</mark> 4  | 0.4 2             | 1714.91                | $(3.4^{+})$         | $348.70 \ 2^+$                           |         |                       |                                                                                                                                                                                                                                                                                                    |
| 1386.4 2                     | 2.0 3             | 2269.40                | (5 <sup>-</sup> )   | 882.99 4+                                | [E1]    | $3.91 \times 10^{-4}$ | $\alpha$ (K)=0.000209 3; $\alpha$ (L)=2.36×10 <sup>-5</sup> 4; $\alpha$ (M)=4.41×10 <sup>-6</sup> 7<br>$\alpha$ (N)=7.45×10 <sup>-7</sup> 11; $\alpha$ (IPF)=0.0001528 22                                                                                                                          |
| 1392.4 <i>3</i>              | 0.5 1             | 2754.81                | 5+                  | 1362.39 (4+)                             | [M1+E2] | $5.95 \times 10^{-4}$ | $\alpha(K)=0.000486\ 7;\ \alpha(L)=5.56\times10^{-5}\ 8;\ \alpha(M)=1.041\times10^{-5}\ 15$<br>$\alpha(N)=1.759\times10^{-6}\ 25;\ \alpha(IPF)=4.11\times10^{-5}\ 6$                                                                                                                               |
| 1416.1 2                     | 0.7 1             | 2966.64                | $(5,6^+)$           | 1550.50 6+                               |         |                       |                                                                                                                                                                                                                                                                                                    |
| 1446.9 <i>3</i>              | 1.3 2             | 2543.2                 | (5 <sup>+</sup> )   | 1096.31 3+                               | [E2]    | $5.24 \times 10^{-4}$ | $\alpha(K)=0.000403 \ 6; \ \alpha(L)=4.65\times10^{-5} \ 7; \ \alpha(M)=8.71\times10^{-6} \ 13$<br>$\alpha(N)=1.468\times10^{-6} \ 21; \ \alpha(IPF)=6.41\times10^{-5} \ 9$                                                                                                                        |
| 1451.1 <i>3</i>              | 0.5 1             | 2334.1                 | $(5,6^+)$           | 882.99 4+                                |         |                       |                                                                                                                                                                                                                                                                                                    |
| 1457.9 <sup>&amp;</sup> 2    | 0.2 2             | 2194.61                | (4)-                | 736.70 2+                                | [M2]    | $1.10 \times 10^{-3}$ | $\alpha$ (K)=0.000940 <i>14</i> ; $\alpha$ (L)=0.0001100 <i>16</i> ; $\alpha$ (M)=2.06×10 <sup>-5</sup> <i>3</i> $\alpha$ (N)=3.49×10 <sup>-6</sup> <i>5</i> ; $\alpha$ (IPF)=2.08×10 <sup>-5</sup> <i>3</i>                                                                                       |
| 1471.5 2                     | 3.4 5             | 2354.51                | (4,5 <sup>+</sup> ) | 882.99 4+                                | M1      | 5.57×10 <sup>-4</sup> | $\alpha(K)=0.000433 6$ ; $\alpha(L)=4.95\times10^{-5} 7$ ; $\alpha(M)=9.27\times10^{-6} 13$<br>$\alpha(N)=1.566\times10^{-6} 22$ ; $\alpha(IPF)=6.31\times10^{-5} 9$<br>Mult.: A <sub>22</sub> =0.188 65 gated on 348.7 $\gamma$ and 1471.5 $\gamma$ in 1999Lh01; $\delta$ :-0.017 in              |
| 1/03 1 /                     | 031               | 30/13 /                | (5.6)               | 1550 50 6+                               |         |                       | 1999Ln01.                                                                                                                                                                                                                                                                                          |
| 1512.1 5                     | 0.5 1             | 2395.20                | (5,0)<br>$(5^+)$    | 882.99 4+                                | [M1+E2] | $5.43 \times 10^{-4}$ | $\alpha(K)=0.000409\ 6;\ \alpha(L)=4.68\times10^{-5}\ 7;\ \alpha(M)=8.75\times10^{-6}\ 13$                                                                                                                                                                                                         |
| 1547.8 4                     | 0.7.2             | 2430.8                 | $(5.6^{+})$         | 882.99 4+                                |         |                       | $u(1) = 1.479 \times 10^{-2.1}, u(11) = 7.02 \times 10^{-11}$                                                                                                                                                                                                                                      |
| 1604.2 5                     | 0.3 1             | 2966.64                | $(5,6^+)$           | 1362.39 (4 <sup>+</sup> )                |         |                       |                                                                                                                                                                                                                                                                                                    |
| 1658.5 <i>3</i>              | 3.4 5             | 2754.81                | 5+                  | 1096.31 3+                               | (E2)    | 4.98×10 <sup>-4</sup> | $\alpha(K)=0.000309 5; \alpha(L)=3.54\times10^{-5} 5; \alpha(M)=6.63\times10^{-6} 10$<br>$\alpha(N)=1.118\times10^{-6} 16; \alpha(IPF)=0.0001457 21$<br>Mult.: A <sub>22</sub> =-0.105 89 gated on 359.6y and 1658.5y in 1999Lh01 would<br>suggest D, but the level scheme requires $\Delta J=2$ . |
| 1660.3 5                     | 0.5 1             | 2543.2                 | (5 <sup>+</sup> )   | 882.99 4+                                | [M1+E2] | $5.16 \times 10^{-4}$ | $\alpha(K) = 0.000338 5; \alpha(L) = 3.85 \times 10^{-5} 6; \alpha(M) = 7.21 \times 10^{-6} 11$<br>$\alpha(N) = 1.219 \times 10^{-6} 17; \alpha(IPF) = 0.0001312 19$                                                                                                                               |
| 1687.8 <i>5</i>              | 0.3 1             | 2036.5                 | $(2^{-},3,4^{+})$   | 348.70 2+                                |         |                       |                                                                                                                                                                                                                                                                                                    |
| 1845.9 <i>5</i>              | 0.5 2             | 2194.61                | (4)-                | 348.70 2+                                | [M2]    | $7.24 \times 10^{-4}$ | $\alpha(K)=0.000544 \ 8; \ \alpha(L)=6.31\times10^{-5} \ 9; \ \alpha(M)=1.182\times10^{-5} \ 17$<br>$\alpha(N)=2.00\times10^{-6} \ 3; \ \alpha(IPF)=0.0001022 \ 15$                                                                                                                                |
| 1871.8 4                     | 2.3 4             | 2754.81                | 5+                  | 882.99 4+                                | [M1+E2] | $5.24 \times 10^{-4}$ | $\alpha(K)=0.000265 4; \alpha(L)=3.02\times10^{-5} 5; \alpha(M)=5.65\times10^{-6} 8$<br>$\alpha(N)=9.55\times10^{-7} 14; \alpha(IPF)=0.000222 4$                                                                                                                                                   |
| 2208.9 5                     | 0.6 2             | 3759.6                 | $(5,6^+)$           | 1550.50 6+                               |         |                       |                                                                                                                                                                                                                                                                                                    |
| 2397.6 8                     | 0.3 1             | 3759.6                 | $(5,6^+)$           | 1362.39 (4+)                             |         |                       |                                                                                                                                                                                                                                                                                                    |
| 2409.6 7                     | 0.5 1             | 3772.0                 | $(5,6^+)$           | 1362.39 (4+)                             |         |                       |                                                                                                                                                                                                                                                                                                    |
| 2911.3 8                     | 0.5 2             | 3794.3                 | $(5,6^+)$           | 882.99 4+                                |         |                       |                                                                                                                                                                                                                                                                                                    |
| 3057.3 8                     | 0.6 2             | 3940.3                 | $(5,6^{+})$         | 882.99 4+                                |         |                       |                                                                                                                                                                                                                                                                                                    |

S

<sup>†</sup> From 1999Lh01. <sup>‡</sup> Additional information 1.

<sup>112</sup>**Rh**  $\beta^{-}$  decay (6.76 s) 1999Lh01 (continued)

 $\gamma$ (<sup>112</sup>Pd) (continued)

<sup>#</sup> If No value given it was assumed  $\delta$ =0.00 for E2/M1,  $\delta$ =1.00 for E3/M2 and  $\delta$ =0.10 for the other multipolarities. <sup>@</sup> For absolute intensity per 100 decays, multiply by 0.890 9. <sup>&</sup> Placement of transition in the level scheme is uncertain.

## <sup>112</sup>Rh $\beta^-$ decay (6.76 s) 1999Lh01



From ENSDF



 $\frac{112}{\rm Rh}\,\beta^{-}\,\,{\rm decay}\,\,(6.76\,\,{\rm s}) \qquad 1999{\rm Lh}01$ 

 $\infty$ 

 $^{112}_{46}{\rm Pd}_{66}$ -8