				History					
		Туре	А	Author Citation Literature Cutoff Date					
	Full I	Evaluation	S. Lalkovsk	ii, F. G. Kondev NDS 124, 157 (2015) 1-Aug-2014					
$Q(\beta^{-})=262\ 7;\ S(\beta^{-})=262\ 7;\ S(\beta^{-})=2$	(n)=8407 7; S	S(p)=11306 9	; $Q(\alpha) = -50$	087 11 2012Wa38					
				¹¹² Pd Levels					
				Cross Reference (XREF) Flags					
			. 112						
			A 112	Rh β decay (3.6 s) D ¹¹⁰ Pd(t,p) Ph β^{-} decay (6.76 s) E ¹¹⁰ Pd(t pa)					
			C 252	$\begin{array}{ccc} \text{Fr}(t,py) \\ \text{Cf} \text{SE decay} \\ \text{F} \\ \end{array} \\ \begin{array}{c} 208 \text{ Pb}(^{18}\text{O Ya}) \\ \text{Fr}(t,py) \\ $					
			C	10(0,Xy)					
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments					
0.0#	0^{+}	21.04 h 17	ABCDEF	$\%\beta^{-}=100$					
				$T_{1/2}$: Weighted average of 21.045 h +29-65 (1977Gi11), 21.12 h 8 (1974Ro18), 20.12 h 6 (1971Ba28), 21.0 h 5 (1959Gi66) and 21.02 h 2 (1957Me49).					
348.66 [#] 13	2+	84 ps 14	ABCDEF	XREF: D(351).					
				J^{π} : L=2 in ¹¹⁰ Pd(t,p) (1972Ca10); 348.7 γ to 0 ⁺ .					
				$T_{1/2}$: from recoil-distance Doppler-shift method in ²⁵² Cf SF decay					
				(1986Ma22) Other: <1 ns from ²³² Cf SF decay (19/0Ch11); Also: $T_{1/2}$					
726 72 0 14	2+		ADCDEE	might be overestimated according to $B(E2)$ systematics in 2011K117.					
/30.72 - 14	2		ABCDEF	2^+ states: Other: (4^+) from L (t p)–(4) in ¹¹⁰ Pd(t p) (1972Ca10)					
882.96# 16	<i>A</i> +		ARCDEE	2^{-1} states, other. (4) from $E(t,p) = (4)$ in -1 $u(t,p)$ (1972earo).					
882.90 10	4		ABCDEF	I^{π} : 534 3 γ E2 to 2 ⁺ : hand member: Other: (2 ⁺) from L=(2) in ¹¹⁰ Pd(t n)					
				(1972Ca10).					
923.7 7	$1,2^{+}$		DE	XREF: D(928).					
				J^{π} : 924.4 γ to 2 ⁺ , 574.4 γ to 0 ⁺ .					
1096.27 ^{^w} 16	3+		ABC EF	J^{π} : 359.6 γ E2(+M1) to 2 ⁺ , 213.3 γ to 4 ⁺ ; band member.					
1125.48 ^a 21	0^{+}		A DE	XREF: $D(1123)$.					
1120 92 21	$(0, 1, 2)^{+}$		٨	J [*] : L=0 in ¹¹⁰ Pd(t,p); 1125.3 γ E0 to 0 ⁺ .					
1139.03 21 1262 27 @ 17	(0,1,2) (4^+)		A DC EE	J [*] . 791.27 E2 to 2, Direct recalling from $J = (1)$ in Kit β decay (5.0 s). I^{π_1} 625 7 μ to 2^+ 470 4 μ to 4^+ ; hand member					
1402.64 17	$\binom{4}{2^+}$		A	J^{π} : 519.8 γ to 4 ⁺ , 1402.6 γ to 0 ⁺ .					
1422.68^{d} 15	2+		AB F	J^{π} : 539.7 γ to 4 ⁺ , 1422.6 γ to 0 ⁺ : band member.					
$1550.47^{\#}$ 19	- 6 ⁺		BCEF	I^{π} : 667.3 γ E2 to 4 ⁺ : hand member.					
1714.87 17	$(3,4^+)$		BC F	J^{π} : 978.2 γ to 2 ⁺ and 831.9 γ to 4 ⁺ ; near-vrast state populated in ²⁵² Cf SF					
				decay (1999Bu32); not observed in ¹¹² Rh β^- decay (3.6 s), (1 ⁺) (1999Lh01).					
1747.5? 5	$(1,2^{+})$		Α	J^{π} : 1398.8 γ to 2 ⁺ ; observation in ¹¹² Rh β^{-} decay (3.6 s), $J^{\pi} = (1^{+})$.					
1758.97 [@] 19	(5^{+})		BC F	J^{π} : 662.7 γ to 3 ⁺ , 876.0 γ to 4 ⁺ ; no observation γ rays to 2 ⁺ states;					
				observation in ¹¹² Rh β^- decay (3.76 s), $J^{\pi} = (6^+)$; band member.					
17/4.4? 5	$(1,2^{+})$		A	J^{n} : 1425.7 γ to 2 ⁺ ; observation in ¹¹² Rh β^{-} decay (3.6 s), $J^{n} = (1^{+})$.					
1887.4 ⁴ 3	(4')		ВF	XREF: F(1886.4). J^{π} : 464.7 γ to 2 ⁺ , 791.1 γ M1+E2 to 3 ⁺ , a tentative 1004.7 γ to 4 ⁺ ; observation in ¹¹² Rh β^- decay (3.76 s). J^{π} =(6 ⁺): band member.					
1951.6 4	(3,4 ⁺)		В	J^{π} : 1069.2 γ to 4 ⁺ and 1214.8 γ to 2 ⁺ ; not observed in ¹¹² Rh β^- decay (3.6 s), (1 ⁺) (1999Lh01).					
2002.73 [@] 23	(6 ⁺)		BC EF	J^{π} : 640.4 γ to (4 ⁺); band member.					
2036.47 25	$(2^{-},3,4^{+})$		В	J^{π} : 1687.8 γ to 2 ⁺ ; 158.1 γ from (4) ⁻ .					

Continued on next page (footnotes at end of table)

¹¹²Pd Levels (continued)

E(level) [†]	Jπ‡	XRI	EF	Comments
2107.4 4	(1,2 ⁺)	A		J^{π} : 1758.7 γ to 2 ⁺ , a tentative 2106.6 γ to 0 ⁺ ; direct feeding in ¹¹² Rh β^- decay (3.6 s), $I^{\pi}=(1^+)$
2158.0 4	$(3.4.5^{+})$	В		J^{π} : 1061.7 γ to 3 ⁺ : observation in ¹¹² Rh β^{-} decay (3.76 s), J^{π} =(6 ⁺).
2194.57 17	(4)	BC	F	J^{π} : 1098.6y E1(+M2) to 3 ⁺ , 1311.6y E1+M2 to 4 ⁺ ; 435.6y to (5 ⁺).
2200.59 18	(5,6 ⁺)	В	F	XREF: F(2199.6).
				J^{π} : 1317.6 γ to 4 ⁺ and 650.1 γ to 6 ⁺ ; observation in ¹¹² Rh β^- decay (3.76 s), $J^{\pi}=(6^+)$.
2269.38 ^{&} 21	(5 ⁻)	BC	F	J^{π} : 1386.4 γ to 4 ⁺ .
2318.3 [#] 4	8+	С	EF	J^{π} : 767.8 γ E2 to 6 ⁺ ; band member.
2334.1 4	$(5,6^+)$	В		J^{π} : 1451.1 γ to 4 ⁺ ; observation in ¹¹² Rh β^{-} decay (3.76 s), $J^{\pi} = (6^{+})$.
2354.47 19	(4,5 ⁺)	BC	F	J^{π} : 159.9 γ to (4) ⁻ , 1471.5 γ to 4 ⁺ , 1258.2 γ to 3 ⁺ . No transitions to 2 ⁺ ; observation in ¹¹² Rh β^{-} decay (3.76 s), J^{π} =(6 ⁺).
2356.7 7	$(1,2^+)$	A		J^{π} : 2008.1 γ to 2 ⁺ ; observation in ¹¹² Rh β^{-} decay (3.6 s), $J^{\pi}=(1^{+})$.
2395.17 22	(5 ⁺)	В		J^{π} : 1298.9 γ to 3 ⁺ and 1512.1 γ to 4 ⁺ ; observation in ¹¹² Rh β^- decay (3.76 s), $J^{\pi}=(6^+)$.
2430.8 5	$(5,6^+)$	В		J^{π} : 1547.8 γ to 4 ⁺ ; observation in ¹¹² Rh β^{-} decay (3.76 s), $J^{\pi} = (6^{+})$.
2432.5? 5	$(1,2^+)$	A		J^{π} : 2432.7 γ to 0 ⁺ ; observation in ¹¹² Rh β^{-} decay (3.6 s), J^{π} =(1 ⁺).
2441.4 3	$(5,6^+)$	В		J^{π} : 726.5 γ to (3,4 ⁺) and 890.9 γ to 6 ⁺ ; observation in ¹¹² Rh β^- decay (3.76 s), J^{π} =(6 ⁺).
2466.1? 6	$(1,2^+)$	Α		J^{π} : 2117.4 γ to 2 ⁺ ; direct feeding in ¹¹² Rh β^- decay (3.6 s), $J^{\pi}=(1^+)$.
2482.9 [@] 5	(7^{+})	C	F	J^{π} : 724.0 γ to (5 ⁺); band member.
2496.87 24	$(0^+, 1, 2)$	Α		J^{π} : 1760.1 γ to 2 ⁺ ; direct feeding in ¹¹² Rh β^- decay (3.6 s), $J^{\pi}=(1^+)$.
2509.8 6	$(1,2^{+})$	A		J^{π} : 2161.1 γ to 2 ⁺ , 2511.2 γ to 0 ⁺ ; direct feeding in ¹¹² Rh β^- decay (3.6 s), $J^{\pi}=(1^+)$.
2540.5 5	$(0^+, 1, 2)$	A		J^{π} : 1803.8 γ to 2 ⁺ ; direct feeding in ¹¹² Rh β^{-} decay (3.6 s), $J^{\pi} = (1^{+})$.
2543.2 3	(5^{+})	В		J^{π} : 1446.9 γ to 3 ⁺ and 1660.3 γ to 4 ⁺ ; direct feeding in ¹¹² Rh β^- decay (3.76 s), $J^{\pi} = (6^+)$.
2578.7 ^{<i>a</i>} 4	(6 ⁻)	BC	F	J^{π} : 1028.3 γ to 6 ⁺ , 309.2 γ to (5 ⁻). No γ transitions to 4 ⁺ states; band member.
2603.9 5	$(0^+, 1, 2)$	A		J^{π} : 1867.2 γ to 2 ⁺ ; direct feeding in ¹¹² Rh β^{-} decay (3.6 s), $J^{\pi} = (1^{+})$.
2614.5 ⁰ 8	(6 ⁻)		F	J^{π} : 855 γ to (5 ⁺); band member.
2629.7 6	(5,6,7)	В		J^{π} : 1079.2 γ to 6 ⁺ ; direct feeding in ¹¹² Rh β^- decay (3.76 s), $J^{\pi}=(6^+)$.
2638.6 ⁶ 6	(8^+)		F	J^{π} : 1088 γ to 6 ⁺ ; band member.
2665.5 5	$(1,2^+)$	A		J^{π} : 2316.8 γ to 2 ⁺ , 2664.7 γ to 0 ⁺ ; direct feeding in ¹¹² Rh β^{-} decay (3.6 s), $J^{\pi} = (1^{+})$.
2688.14 24	$(0^+, 1, 2)$	A	-	J^{π} : 2339.7 γ to 2 ⁺ ; direct feeding in ¹¹² Rh β^{-} decay (3.6 s), $J^{\pi} = (1^{+})$.
2091.2 4	(8)	C	r	J^{T} : 1140.37 10 6°.
$2/04.5^{\circ} 4$	(/)	C	F	J^{*} : 1153.9 γ to 6', 434.8 γ to (5); band member.
2711.4 5	(7) (12^+)		г	J. 1101.37 to 0, band memori. I^{π} : 2746 7a; to 0 ⁺ ; direct feeding in ¹¹² Ph β^{-} decay (3.6 c). I^{π} -(1 ⁺)
2747.5 5	(1,2) 5 ⁺	RC	F	$J = 2140.77$ to 0, uncer recurs in -1000 km β^{-1} decay (3.0 s), $J = (1^{-1})$.
2770.0.7	(0+ 1 2)		Î	J^{π} =(6 ⁺); Others: J=4 in ²⁵² Cf SF decay (1999Bu32) and ²⁰⁸ Pb(¹⁸ O,Xγ) (2001Kr08).
2770.07	$(0^+, 1, 2)$	A		$J^{*}: 2421.3\gamma$ to 2'; direct feeding in ¹¹² Rh β decay (3.6 s), $J^{*}=(1^{+})$.
2793.87 0	$(0^+, 1, 2)$ $(0^+, 1, 2)$	A		J^{**} 2447.17 to 2 ^{-*} ; direct feeding in ¹¹² Rh β^{-} decay (3.6 s), $J^{**}=(1^{+})$.
2830.45	(0, 1, 2) (8^{-})	ⁿ c	F	J . 2406.27 to 2, direct recurring in Kirp decay (5.0.8), $J = (1^{-1})$.
2966 60 23	$(5 6^+)$	BC	r	I^{π} : 1604 2v to (4 ⁺) 1416 1v to 6 ⁺ : direct feeding in ¹¹² Rh β^- decay (3.76 s) I^{π} =(6 ⁺)
2977.2? 6	$(0^+, 1, 2)$	A		J^{π} : 2628.6v to 2 ⁺ : direct feeding in ¹¹² Rh β^{-} decay (3.6 s), J^{π} =(1 ⁺).
3013.8 5	$(0^+, 1, 2)$	A		J^{π} : 2665.0v to 2 ⁺ ; direct feeding in ¹¹² Rh β^- decay (3.6 s), $J^{\pi} = (1^+)$.
3043.3 4	(5,6)	В		J^{π} : 1493.1 γ to 6 ⁺ ; direct feeding in ¹¹² Rh β^{-} decay (3.76 s), $J^{\pi} = (6^{+})$.
3045.5 ^b 13	(8 ⁻)		F	J^{π} : 431 γ to (6 ⁻); band member.
3050.1 [#] 6	10+	с	F	J^{π} : 731.9 γ E2 to 8 ⁺ ; band member.
$3084.7^{@}6$	(9^+)	C	F	I^{π} : 393 γ to (8 ⁺), 601.9 γ to (7 ⁺); band member.
3137 3 ^{&} 4	(9^{-})	c	F	I^{π} : 432 9v to (7 ⁻) 819 0v to 8 ⁺ ; hand member
3175.3 11	())		F	3 . 152.57 to (7), 015.07 to 0°, build memorial
3225.5 6	$(0^+, 1, 2)$	Α		J^{π} : 2876.6 γ to 2 ⁺ ; direct feeding in ¹¹² Rh β^{-} decay (3.6 s), $J^{\pi} = (1^{+})$.
3260.9 11			F	
3265.2 [°] 6	(9 ⁻)	C	F	XREF: C(3266.0)F(3263.4).
2227 o@ -	(10-1)		_	$J'': 554.1\gamma$ to (7), 946 γ to 8'; band member.
3327.0° 7	(10^{+})		F	J': $\delta \delta \gamma$ to (δ^{-}) ; band member. Continued on next page (footnotes at end of table)

¹¹²Pd Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XRE	EF	Comments
3337.9? 9	$(0^+, 1, 2)$	A		J^{π} : 2989.2 γ to 2 ⁺ ; direct feeding in ¹¹² Rh β^- decay (3.6 s), $J^{\pi} = (1^+)$.
3447.2 ^{<i>a</i>} 6	(10 ⁻)	С	F	J^{π} : 548.0 γ to (8 ⁻); band member.
3597.9 [#] 8	(12^{+})	С	F	J^{π} : 547.8 γ to 10 ⁺ ; band member.
3625.7 [@] 12	(11^{+})		F	J^{π} : 541 γ to (9 ⁺); band member.
3654.5 ^b 16	(10 ⁻)		F	J^{π} : 609 γ to (8 ⁻); band member.
3744.7 <mark>&</mark> 6	(11 ⁻)	С	F	J^{π} : 297 γ to (10 ⁻), 607.7 γ to (9 ⁻); band member.
3759.6 5	$(5,6^+)$	В		J^{π} : 2208.9 γ to 6 ⁺ , 2397.6 γ to (4 ⁺); direct feeding in ¹¹² Rh β^- decay (3.76 s), $J^{\pi}=(6^+)$.
3772.0 8	$(5,6^+)$	В		J^{π} : 2409.6 γ to (4 ⁺); direct feeding in ¹¹² Rh β^{-} decay (3.76 s), J^{π} =(6 ⁺).
3794.3 9	$(5,6^+)$	В		J^{π} : 2911.3 γ to 4 ⁺ ; direct feeding in ¹¹² Rh β^{-} decay (3.76 s), $J^{\pi} = (6^{+})$.
3940.3 9	$(5,6^+)$	В		J^{π} : 3057.3 γ to 4 ⁺ ; direct feeding in ¹¹² Rh β^{-} decay (3.76 s), $J^{\pi} = (6^{+})$.
3951.2 ^c 12	(11 ⁻)		F	J^{π} : 686 γ to (9 ⁻); band member.
4046.3 15			F	
4086.3 15			F	
4117.0 ^a 9	(12^{-})		F	J^{π} : 373 γ to (11 ⁻), 669 γ to (10 ⁻); band member.
4321.9 [#] 9	(14 ⁺)	С	F	J^{π} : 724.0 γ to (12 ⁺); band member.
4327.7 [@] 16	(13 ⁺)		F	J^{π} : 702 γ to (11 ⁺); band member.
4391.5 ^b 19	(12 ⁻)		F	J^{π} : 737 γ to (10 ⁻); band member.
4477.7 <mark>&</mark> 12	(13 ⁻)		F	J^{π} : 733 γ to (11 ⁻); band member.
4748.2 ^C 16	(13-)		F	J^{π} : 797 γ to (11 ⁻); band member.
4931.3 18			F	
5221.9 [#] 14	(16 ⁺)		F	J^{π} : 900 γ to (14 ⁺); band member.

[†] From a least squares fit to γ ray energies.

^{\ddagger} Based on the band structure, unless otherwise noted. [#] Band(A): Member of $\Delta J=2$ ground-state band.

[@] Band(B): Member of the quasi-gamma band.

& Band(C): Member of $\Delta J=2$ band built on the (5⁻) state; configuration= $\nu h_{11/2} \otimes (g_{7/2}, d_{5/2}), \alpha=1$.

^{*a*} Band(c): Member of $\Delta J=2$ band built on the (6⁻) state; configuration= $\nu h_{11/2} \otimes (g_{7/2}, d_{5/2}), \alpha=0.$

^b Band(D): Member of $\Delta J=2$ band built on the (6⁻) state; configuration= $vh_{11/2} \otimes (s_{1/2}, d_{3/2}), \alpha=0.$

^c Band(d): Member of $\Delta J=2$ band built on the (7⁻) state; configuration= $vh_{11/2} \otimes (s_{1/2}, d_{3/2}), \alpha=1$.

^{*d*} Band(E): Probable member of $\Delta J=2$ intruder band (1999Lh01).

	Adopted Levels, Gammas (continued)										
	$\gamma^{(112}\text{Pd})$										
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	$\delta^{\dagger b}$	α^{a}	Comments			
348.66	2+	348.7 2	100	0.0 0+	(E2)		0.0181	B(E2)(W.u.)=40 7 α (K)=0.01552 22; α (L)=0.00210 3; α (M)=0.000396 6 α (N)=6 53×10 ⁻⁵ 10			
736.72	2+	388.0 2	100 7	348.66 2+	E2(+M1)	-4.7 +17-35	0.01276 23	$\alpha(K)=0.03040$ 20; $\alpha(L)=0.00145$ 3; $\alpha(M)=0.000274$ 6 $\alpha(N)=4.52\times10^{-5}$ 10 Mult.: A ₂ =0.08 4; A ₄ =0.28 5, gated on 388.0 γ and 348.8 γ in ²⁵² Cf SF decay (1999Bu32); A ₂₂ =0.089 34 gated on 348.7 γ and 388.0 γ in 1999Lh01.			
		736.7 2	31 4	0.0 0+	(E2)		0.00209	α (K)=0.00182 3; α (L)=0.000220 3; α (M)=4.13×10 ⁻⁵ 6 α (N)=6.92×10 ⁻⁶ 10 Mult: A ₂₂ =-0.208 41 gated on 359.6 γ and 736.7 γ in 19991 b01			
882.96	4+	534.3 2	100	348.66 2+	E2		0.00494	$\alpha(K)=0.00428 \ 6; \ \alpha(L)=0.000539 \ 8; \ \alpha(M)=0.0001014 \ 15 \ \alpha(N)=1.688 \times 10^{-5} \ 24 \ Mult.: \ A_2=0.14 \ 2; \ A_4=-0.01 \ 2, \ gated \ on \ 534.3\gamma \ and \ 348.8\gamma \ in \ ^{252}Cf \ SF \ (1999Bu32); \ A_{22}=0.105 \ 34 \ gated \ on \ 348.7\gamma \ and \ 534.3\gamma \ in \ 1999Lh01.$			
923.7	1,2+	574.4 [‡] 924.4 [‡]	100 [‡] 19 [‡]	$348.66 \ 2^+ \ 0.0 \ 0^+$							
1096.27	3+	213.3 2 359.6 2	3.6 6 100 8	882.96 4 ⁺ 736.72 2 ⁺	M1+E2		0.01252	$\alpha(K)=0.01093 \ 16; \ \alpha(L)=0.001298 \ 19; \ \alpha(M)=0.000244 \ 4 \\ \alpha(N)=4.11\times10^{-5} \ 6 \\ Mult.: A_2=-0.16 \ 7; A_4=-0.06 \ 8, gated on 359.4 \\ \gamma and 736.8 \\ \gamma in \\ ^{252}Cf \ SF \ (1999Bu32); A_{22}=0.041 \ 35 \ gated on 348.7 \\ \gamma and 359.6 \\ \gamma in \ 1999Lh01. \end{cases}$			
		747.6 2	79 8	348.66 2+	E2(+M1)	-1.65 10	0.00205	α (K)=0.00179 3; α (L)=0.000214 3; α (M)=4.02×10 ⁻⁵ 6 α (N)=6.75×10 ⁻⁶ 10 Mult.: A ₂₂ =-0.485 47 gated on 348.7 γ and 747.6 γ in 1999Lh01.			
1125.48	0+	386.2 776.9 2	100	736.72 2 ⁺ 348.66 2 ⁺	E2		0.00183	E _γ : from ¹¹⁰ Pd(t,pγ). α (K)=0.001593 23; α (L)=0.000192 3; α (M)=3.60×10 ⁻⁵ 5 α (N)=6.03×10 ⁻⁶ 9 Mult.: A ₂₂ =0.493 66 gated on 348.7γ and 776.9 in ¹¹² Rh β ⁻ decay (19991 b01)			
		1125.3		0.0 0+	E0			$E_{\gamma}: \text{ from }^{110}\text{Pd}(t,p\gamma).$ Mult.: from I(E0,K)/I(tot)>58×10 ⁶ (1987Es01) and I(ce(K) 1125)/I γ (777 γ)=1.26×10 ⁻⁴ in 110Pd(t,p γ) (1987Es01, 1986He7T)			
1139.83	(0,1,2)+	402.8 ^{&} 4	31 ^{&} 7	736.72 2+				(17672301,17001021).			

4

From ENSDF

 $^{112}_{46}\text{Pd}_{66}\text{--}4$

 $^{112}_{46}{\rm Pd}_{66}$ -4

L

					Adopted	Levels, Gamm	as (continued)
					<u>)</u>	v(¹¹² Pd) (conti	nued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	α^{a}	Comments
1139.83	(0,1,2)+	791.2 ^{&} 2	100 ^{&} 14	348.66 2+	E2	1.75×10 ⁻³	$\alpha(K)=0.001523\ 22;\ \alpha(L)=0.000183\ 3;\ \alpha(M)=3.44\times10^{-5}\ 5$ $\alpha(N)=5.76\times10^{-6}\ 8$ Mult: $\Delta = 0.24\ 8 \text{ in } \frac{112}{2}$ Pb θ^{-} decay (2.6 c) (10001 b01)
1362.37	(4+)	479.4 2 625.7 2 1013 9 ^C 4	25 4 100 9 4 7 25	882.96 4 ⁺ 736.72 2 ⁺ 348.66 2 ⁺			Mult.: $A_{22}=0.34 \ 8 \ \text{in}^{-1} \text{Kn} \ \beta$ decay (3.6 s) (1999Ln01).
1402.64	2+	519.8 ^{&} 5 665.8 ^{&} 5 1054.0 ^{&} 2	9.3 ^{&} 23 30 ^{&} 12 100 ^{&} 14	882.96 4 ⁺ 736.72 2 ⁺ 348.66 2 ⁺			
1422.68	2+	$1402.6^{\&} 3$ 297.1 ^{&} 4 326.6 ^{&} 3 539.7 ^{&} 3	$67^{\&} 9$ $14^{\&} 3$ $28^{\&} 6$ $25^{\&} 6$	$\begin{array}{ccc} 0.0 & 0^{+} \\ 1125.48 & 0^{+} \\ 1096.27 & 3^{+} \\ 882.96 & 4^{+} \end{array}$			
1550.47	6+	686.0 ^{&} 2 1074.0 ^{&} 2 1422.6 ^{&} 3 667.5 2	$100^{& 11}$ $56^{& 11}$ $81^{& 17}$ 100	$\begin{array}{rrrrr} 736.72 & 2^+ \\ 348.66 & 2^+ \\ 0.0 & 0^+ \\ 882.96 & 4^+ \end{array}$	E2	0.00269	$\alpha(K)=0.00234$ 4; $\alpha(L)=0.000286$ 4; $\alpha(M)=5.38\times10^{-5}$ 8
							$\alpha(N)=8.99\times10^{-6}$ 13 Mult.: A ₂ =0.13 2; A ₄ =-0.03 3, gated on 667.3 γ and 534.3 in ²⁵² Cf SF (1999Bu32); A ₂₂ =0.097 45 gated on 348.7 γ and 667.5 γ in ¹¹² Rh β^- decay (6.76 s) (1999Lh01).
1714.87	(3,4 ⁺)	618.6 2 831.9 2 978.2 5 1366.2 ^c 4	100 <i>11</i> 26 5 53 5 11 5	$\begin{array}{rrrr} 1096.27 & 3^+ \\ 882.96 & 4^+ \\ 736.72 & 2^+ \\ 348.66 & 2^+ \end{array}$			
1747.5? 1758.97	(1,2 ⁺) (5 ⁺)	1398.8 ^{&c} 4 396.6 ^c 4 662.7 2 876.0 4	100 ^{&} 5.2 <i>17</i> 100 <i>10</i> 3.5 <i>17</i>	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
1774.4? 1887.4	(1,2 ⁺) (4 ⁺)	1425.7 ^{&c} 4 464.7 4 791.1 3	100 ^{&} 50 <i>17</i> 100 <i>33</i>	348.66 2 ⁺ 1422.68 2 ⁺ 1096.27 3 ⁺	M1+E2	0.00191	$\alpha(K)=0.001669\ 24;\ \alpha(L)=0.000194\ 3;\ \alpha(M)=3.63\times10^{-5}\ 5$ $\alpha(N)=6\ 13\times10^{-6}\ 9$
		1004 76 5	22.10	000 cr 4 ⁺			Mult.: A_{22} =0.339 77 gated on 348.7 γ and 791.1 γ in ¹¹² Rh β^- decay (6.76 s) (1999Lh01).
1951.6	(3,4+)	855.1 5 1069.2 6 1214.8 5	23 10 80 20 42 10 100 40	882.96 4 ⁺ 1096.27 3 ⁺ 882.96 4 ⁺ 736.72 2 ⁺			

S

L

					Add	opted Levels,	, Gammas (c	continued)	
						γ (¹¹² Pd	l) (continued	<u>)</u>	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult.	$\delta^{\dagger b}$	α^{a}	Comments
2002.73	(6 ⁺)	$453.8^{\ddagger c}$	45 [‡]	1550.47	6^+ (4 ⁺)				
2036.47	$(2^{-},3,4^{+})$	1687.8 5	100	348.66	2+				
2107.4	$(1,2^+)$	1758.7 ^{&} 3	$100^{\&} 21$	348.66	2^+				
2158.0 2194.57	(3,4,5 ⁺) (4) ⁻	1061.7 3 1061.7 3 158.1 2 435.6 2 479.7 2 832.2 2	$ \begin{array}{c} 19 & 5\\ 100 \\ 0.18 & 6\\ 0.8 & 2\\ 3.4 & 4\\ 0.28 & 6 \end{array} $	1096.27 2036.47 1758.97 1714.87 1362.37	3^+ (2 ⁻ ,3,4 ⁺) (5 ⁺) (3,4 ⁺) (4 ⁺)				
		1098.3 2	100 10	1096.27	3+	E1(+M2)	-0.43 32	0.0006 4	α(K)=0.0006 4; α(L)=7.E-5 4; α(M)=1.2×10-5 8 α(N)=2.1×10-6 13 Mult.: A2=0.07 5; A4=0.03 6, gated on 1098.6γ and 359.4γ in 252Cf SF (1999Bu32); A22=0.014 40 gated on 359.6γ and 1098.3γ in 112Rh β- decay (6.76 s) (1999Lh01).
		1311.6 2	17.2 22	882.96	4+	E1+M2	-0.43 32	0.00053 21	$\alpha(K)=0.00038\ 20;\ \alpha(L)=4.4\times10^{-5}\ 24;\ \alpha(M)=8.E-6\ 5$ $\alpha(N)=1.4\times10^{-6}\ 8;\ \alpha(IPF)=8.8\times10^{-5}\ 20$ Mult.: A ₂₂ =0.169\ 52 gated on 348.7 γ and 1311.6 γ in ¹¹² Rh β^- decay (6.76 s) (1999 h01)
2200.59	(5,6 ⁺)	1457.9 ^c 2 1845.9 5 441.3 ^c 4 485.7 2 650.1 2 838.2 2 1317.6 3 1386.4 2	$\begin{array}{c} 0.4 \ 4 \\ 1.0 \ 4 \\ 25 \ 13 \\ 100 \ 13 \\ 50 \ 13 \\ 100 \ 25 \\ 63 \ 25 \\ 100 \end{array}$	736.72 348.66 1758.97 1714.87 1550.47 1362.37 882.96 882.96	$2^+ 2^+ (5^+) (3,4^+) 6^+ (4^+) 4^+ 4^$				
2318.3	(3) 8 ⁺	767.8 [#] 3	100#	1550.47	6 ⁺	E2		0.00188	α (K)=0.001639 23; α (L)=0.000198 3; α (M)=3.71×10 ⁻⁵ 6 α (N)=6.22×10 ⁻⁶ 9 Mult.: A ₂ =0.16 5; A ₄ =-0.01 6, gated on 767.8 γ and 667.3 γ in 252Cf SF (1999Bu32).
2334.1 2354.47	(5,6 ⁺) (4,5 ⁺)	1451.1 <i>3</i> 159.9 <i>3</i> 993.3 ^c 6 1258.2 2	100 7.4 <i>18</i> 2.1 9 29 6	882.96 2194.57 1362.37 1096.27	4 ⁺ (4) ⁻ (4 ⁺) 3 ⁺				
		1471.5 2	100 15	882.96	4+	M1		5.57×10 ⁻⁴	$\alpha(K)=0.000433 \ 6; \ \alpha(L)=4.95\times10^{-5} \ 7;$ $\alpha(M)=9.27\times10^{-6} \ 13$ $\alpha(N)=1.566\times10^{-6} \ 22; \ \alpha(IPF)=6.31\times10^{-5} \ 9$

6

L

$\gamma(^{112}\text{Pd})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Comments
						Mult.: A ₂₂ =0.188 65 gated on 348.7 γ and 1471.5 γ in 1999Lh01; δ :-0.017 in 1999Lh01.
2356.7	$(1,2^+)$	2008.1 ^{&c} 6	100 <mark>&</mark>	348.66	2+	
2395.17	(5 ⁺)	1298.9 3	100 17	1096.27	3+	
2420.8	(5.6^{+})	1512.1 5	83 17	882.96	4+ 4+	
2430.8	$(3,0^{-})$ $(1,2^{+})$	2083.4° 7	100	348.66	$\frac{4}{2^+}$	
2102.01	(1,2)	2432.7 [°] 6	100	0.0	$\bar{0}^{+}$	
2441.4	$(5,6^+)$	726.5 3	100 25	1714.87	(3,4 ⁺)	
		890.9 3	58 13	1550.47	6+	
2466.1?	$(1,2^{+})$	$2117.4^{\text{ac}}_{\#}5$	100	348.66	2+	
2482.9	(7^{+})	724.0 [#] 5	100#	1758.97	(5^{+})	
2496.87	$(0^+, 1, 2)$	1074.3 × 3	54 [°] 13	1422.68	2+	
		1094.2 ^{X} 4	50 [°] 17	1402.64	2^{+}	
		1760.1 4	100 2 17	736.72	2+	
		2147.7 [°] 7	25° 13	348.66	2^{+}	
2509.8	$(1,2^{+})$	2161.1 5	100 33	348.66	2^{+}	
		2511.2 ^{&c} 7	25 ^{&} 8	0.0	0^{+}	
2540.5	$(0^+, 1, 2)$	1803.8 ^{X} 4	100	736.72	2^+	
2543.2	(5')	1446.9 3	100 15	1096.27	3	
2578 7	(6^{-})	309.2.5	30 0	2269 38	(5^{-})	$E \cdot From {}^{252}Cf SE decay$
2370.7	(0)	1028.3 4	100	1550.47	6 ⁺	
2603.9	$(0^+, 1, 2)$	1867.2 ^{&} 4	100 <mark>&</mark>	736.72	2+	
2614.5	(6 ⁻)	855 [@] 1	100 [@]	1758.97	(5 ⁺)	
2629.7	(5,6,7)	1079.2 5	100	1550.47	6+	
2638.6	(8 ⁺)	636 [@] 1	@	2002.73	(6 ⁺)	
		1088 [@] 1	@	1550.47	6+	
2665.5	$(1,2^{+})$	2316.8 4	100 25	348.66	2+	
		2664.7 ^{&c}	69 ^{&} 50	0.0	0^{+}	
2688.14	$(0^+, 1, 2)$	1265.5 ^{&} 4	31 & 9	1422.68	2+	
		1285.2 ^{&} 5	28 ^{&} 9	1402.64	2+	
		1951.3 ^{&} 4	41 ^{&} 9	736.72	2+	
		2339.7 ^{&} 4	100 ^{&} 16	348.66	2+	
2691.2	(8 ⁺)	688.5 [#] 5	100 [#]	2002.73	(6 ⁺)	
	(- -)	1140.3 5		1550.47	6+	E_{γ} : from ²⁵² Cf SF decay.
2704.5	(7 ⁻)	434.8° 5	100#	2269.38	(5 ⁻)	E_{γ} : from ²⁻³⁻² Cf SF decay.
	(- -)	1153.9 [#] 5	100"	1550.47	6 ⁺	
2711.4	(7 ⁻)	1161.5" 5	100"	1550.47	6+	

7

$^{112}_{46}{\rm Pd}_{66}$ -7

From ENSDF

 $^{112}_{46}{\rm Pd}_{66}$ -7

$\gamma(^{112}\text{Pd})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f \qquad J_f^{\pi}$	Mult.	α ^{<i>a</i>}	Comments
2747.3	$(1,2^{+})$	1344.8 <mark>&</mark> <i>3</i>	25 <mark>&</mark> 6	1402.64 2+			
		1607.3 ^{&} 4	19 <mark>&</mark> 4	1139.83 (0,1,2)+			
		2398.7 <mark>&</mark> 5	100 ^{&} 13	348.66 2+			
		2746.6 <mark>&c</mark> 5	21 ^{&} 4	0.0 0+			
2754.78	5+	359.6 2	0.48 16	2395.17 (5 ⁺)			
		400.3 2	6.6 8	$2354.47 (4,5^+)$			
		485.4 2	1.9 3	2269.38(5)			
		560.2.2	100 10	2200.39 (3,0) 2194 57 (4) ⁻	D		Mult : $A_2=0.14$ 3: $A_4=-0.02$ 4 gated on 560 5y and 1098 6y in 252 Cf
		500.2 2	100 10	21)4.57 (4)	D		SF (1999Bu32).
		802.9 ^C 4	0.32 16	1951.6 (3,4+)			
		995.8 2	3.7 5	$1758.97 (5^+)$			
		1039.9 2	1.93	1714.87 (3,4')	M1 + E2	7.60×10^{-4}	$\alpha(K) = 0.000661 \ 10. \ \alpha(L) = 7.50 \times 10^{-5} \ 11. \ \alpha(M) = 1.420 \times 10^{-5} \ 20$
		1204.5 2	4.3 /	1330.47 0	MIT+E2	7.00×10	$\alpha(\mathbf{K}) = 0.000001 \ 10; \ \alpha(\mathbf{L}) = 7.39 \times 10^{-6} \ 11; \ \alpha(\mathbf{M}) = 1.420 \times 10^{-6} \ 20$ $\alpha(\mathbf{N}) = 2.40 \times 10^{-6} \ 4. \ \alpha(\mathbf{IDE}) = 6.58 \times 10^{-6} \ 10$
							Mult: $A_{22}=0.078$ 73 gated on 348.7 γ and 1204.3 γ in ¹¹² Rh β^- decay
							(6.76 s) (1999Lh01).
		1392.4 3	0.81 16	1362.37 (4+)		100 10 1	
		1658.5 3	5.5 8	1096.27 3+	(E2)	4.98×10^{-4}	$\alpha(K) = 0.000309 5; \alpha(L) = 3.54 \times 10^{-5} 5; \alpha(M) = 6.63 \times 10^{-6} 10$
							$\alpha(N)=1.118\times10^{-7}16$; $\alpha(1PF)=0.000143727$ Mult.: A ₂₂ =-0.105 89 gated on 359.6 γ and 1658.5 γ in 1999Lh01 would suggest D, but the level scheme requires $\Lambda J=2$.
		1871.8 4	3.7 7	882.96 4+			
2770.0	$(0^+, 1, 2)$	2421.3 <mark>&</mark> 6	100 ^{&}	348.66 2+			
2795.8?	$(0^+, 1, 2)$	2447.1 ^{&c} 6	100 ^{&}	348.66 2+			
2836.4	$(0^+, 1, 2)$	1413.5 <mark>&</mark> 5	100 <mark>&</mark> 27	1422.68 2+			
		2488.2 <mark>&</mark> 7	64 ^{&} 27	348.66 2+			
2898.9	(8 ⁻)	188 [@] 1	@	2711.4 (7 ⁻)			
		194 [@] 1	@	2704.5 (7-)			
		284 [@] 1	@	2614.5 (6 ⁻)			
		320.2 [#] 5	100 [#]	2578.7 (6 ⁻)			
		416 [@] 1	@	2482.9 (7 ⁺)			
2966.60	$(5,6^+)$	963.9 2	86 14	2002.73 (6 ⁺)			
		1416.1 2	100 14	$1550.47 6^+$			
2077 29	(0 ± 1.2)	1004.2.5	45 14	1302.37 (4')			
2977.2?	$(0^+, 1, 2)$	2028.0 5	100~	348.00 2			
3013.8	$(0^+, 1, 2)$	1611.2 5	48 [~] 11	1402.64 2'			
3043.3	(5,6)	842.4 <i>5</i>	100 33	348.66 2 2200.59 (5,6 ⁺)			

 ∞

 $^{112}_{46}{\rm Pd}_{66}\text{--}8$

						Adopte	d Levels, G	ammas (continued)
							$\gamma(^{112}\text{Pd})$	(continued)
E _i (level)	J^{π}_i	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult.	α^{a}	Comments
3043.3	(5,6)	1493.1 4	100 33	1550.47	6+			
3045.5	(8 ⁻)	431 [@] 1	100@	2614.5	(6 ⁻)			
3050.1	10+	411 [@] 1	@	2638.6	(8^{+})			
		731.9 [#] 5	100 [#]	2318.3	8+	E2	0.00212	$\alpha(K)=0.00185 \ 3; \ \alpha(L)=0.000224 \ 4; \ \alpha(M)=4.20\times10^{-5} \ 6$
								$\alpha(N)=7.04 \times 10^{-6} \ 10$ Mult.: A ₂ =0.14 5; A ₄ =0.02 5, gated on 731.9 γ and 767.8 γ in 252Cf SF (1999Bu32).
3084.7	(9+)	393 1		2691.2	(8^+)			E_{γ} : From ²⁰⁶ Pb(¹⁶ O,X γ).
0107.0	$\langle 0 \rangle$	601.95	(0)	2482.9	$(/^{+})$			E_{γ} : From ²⁰² CI SF decay.
3137.3	(9)	$239 \degree 1$	@	2898.9	(8)			
		420 - 1	100#	2704.5	(7)			
		432.9^{+} 3	20#	2704.5	(/) 0+			
2175 2		819.0° 3	39 ^m	2318.3	8 0+			
31/5.5	$(0^{\pm} 1.2)$	837 - 1	100 ° 56 ° 21	2318.3	8' 2+			
5225.5	(0,1,2)	1823.1° 8	100° 21	249 66	2 2+			
2260.0		2870.0^{-1}	100 ⁴⁴ 51 @	2482.00	(7^+)			
3265.2	(9^{-})	55415		2482.9 2711.4	(7^{-})			$F \cdot from \frac{252}{Cf} SF decay$
5205.2	(\mathcal{F})	$560^{@}$ 1	@	2711.4	(7^{-})			Ly. nom er of decay.
		$946^{@}$ 1	@	2318 3	8+			
3327.0	(10^{+})	$635^{@}$ 1	@	2691.2	(8^+)			
202110	(10)	689 [@] 1	@	2638.6	(8+)			
		1009 [@] /	@	2318.3	8+			
3337.9?	$(0^+, 1, 2)$	2989.2 ^{&c} 9	100 <mark>&</mark>	348.66	2+			
3447.2	(10 ⁻)	310 [@] 1	@	3137.3	(9-)			
	~ /	548.0 [#] 5	#	2898.9	(8-)			
3597.9	(12^{+})	547.8 [#] 5	100 [#]	3050.1	10+			
3625.7	(11^{+})	541 [@] 1	100 [@]	3084.7	(9 ⁺)			
3654.5	(10 ⁻)	609 [@] 1	100 [@]	3045.5	(8 ⁻)			
3744.7	(11 ⁻)	297 [@] 1	@	3447.2	(10 ⁻)			
		607.7 [#] 5	100 [#]	3137.3	(9 ⁻)			
3759.6	$(5,6^+)$	2208.9 5	100 33	1550.47	6+			
2772.0	(5 (+))	2397.6 8	50 17	1362.37	(4^+)			
3794 3	(5,0') $(5,6^+)$	2409.6 / 2911 3 <i>8</i>	100	1302.37	(4 [·]) 4 ⁺			
2040.2	$(5,0^+)$	3057.3 8	100	882.96	4 ⁺			
3940.3	(

9

 $^{112}_{46}{\rm Pd}_{66}$ -9

L

From ENSDF

 $^{112}_{46}\mathrm{Pd}_{66}$ -9

$\gamma(^{112}\text{Pd})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$
4046.3		871 [@] 1	100 [@]	3175.3	4391.5	(12 ⁻)	737 [@] 1	100 [@]	3654.5 (10 ⁻)
4086.3		911 [@] 1	100 [@]	3175.3	4477.7	(13-)	733 [@] 1	100 [@]	3744.7 (11-)
4117.0	(12^{-})	373 [@] 1	@	3744.7 (11 ⁻)	4748.2	(13 ⁻)	797 [@] 1	$100^{@}$	3951.2 (11-)
		669 [@] 1	@	3447.2 (10-)	4931.3		885 [@] 1	100 [@]	4046.3
4321.9	(14^{+})	724.0 [#] 5	100 [#]	3597.9 (12+)	5221.9	(16 ⁺)	900 [@] 1	100 [@]	4321.9 (14+)
4327.7	(13 ⁺)	702 [@] 1	100 [@]	3625.7 (11+)					

[†] From ¹¹²Rh β^- decay (6.76 s), unless otherwise noted.

⁺ From ¹¹⁰Pd(t,pγ). ⁺ From ²⁵²Cf SF decay. ^(a) From ²⁰⁸Pb(¹⁸O,Xγ). [&] From ¹¹²Rh β^- decay (3.6 s).

^a Additional information 1.

^b If no value given it was assumed δ =0.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^c Placement of transition in the level scheme is uncertain.

Level Scheme	$I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $I_{\gamma} < 10\% \times I^{max}$
Intensities: Type not specified	 $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$
	 $\dot{\gamma}$ Decay (Uncertain)

Legend

 $^{112}_{46}{\rm Pd}_{66}$

Legend

¹¹²₄₆Pd₆₆

Level Scheme (continued)	>	$I_{\gamma} < 2\% \times I_{\gamma}^{max}$
		$I_{\gamma} < 10\% \times I_{\gamma}^{max}$
Intensities: Type not specified		$I_{\gamma} > 10\% \times I_{\gamma}^{max}$
		γ Decay (Uncertain)

 $^{112}_{\ 46}\mathrm{Pd}_{66}$

 $^{112}_{46}\mathrm{Pd}_{66}$

 $^{112}_{46}{\rm Pd}_{66}$