				Hi	story		
		Туре	Author		Citation		Literature Cutoff Date
		Full Evaluation	S. Lalkovski, F. G	. Kondev	NDS 124, 157 ((2015)	1-Aug-2014
$Q(\beta^{-})=665 \ 4; \ S$	(n)=767	71 6; S(p)=6027 4	$Q(\alpha) = -2809 5$	2012Wa3	8		
				¹¹² In	Levels		
			Cros	ss Referen	ce (XREF) Flags		
		A ¹⁰⁹ A B ¹¹² Ir C ¹¹⁰ P D ¹¹⁰ C	g(α ,n γ) 1 IT decay (20.67 n d(⁷ Li,5n γ) d(α ,np γ)	E nin) F G H	110 Cd(α ,d) 111 Cd(3 He,d) 112 Cd(p ,n γ) 112 Cd(d ,2n γ)	I J K L	 ¹¹³In(p,d) ¹¹³In(d,t) ¹¹³In(γ,xn) ¹⁰⁰Mo(¹⁶O,p3nγ)
E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{b}$	XREF				Comments
0.0‡	1+‡	14.88 min <i>15</i>	ABCDEFGHIJK	$%β^-=38$ μ=+2.82 %ε+%β $Iβ^+(61)$ feedin $J^π: L=4$ ^{112}Cd $T_{1/2}: wether (1953)$ 6 (196) μ,Q: Usic configuration	4; %ε+%β ⁺ =62 2; 3; Q=+0.087 5 +: From Iβ ⁺ (tot)=: 17.37)/Iβ ⁺ (g.s.)=0. gs to the higher-ly in ¹¹³ In(p,d) (197 following ¹¹² In ε sighted average of B144), 14.4 min 4 58Ro03); Other: 12 ng atomic beam n ation: $\pi(1g_{9/2})^{-1}$	4 24% 2 .029 (1 ying lev 78EmZ7 2 Decay 14.97 (1965F 3.8 min magneti $\delta v(1g_{7/2})$	in 1983Ry06 and 962Ru05), and by assuming that the $I\beta^+$ vels are negligible. T); Direct feeding of 0 ⁺ and 2 ⁺ states in γ . min 10 (1983Ry06), 14.5 min 1 Fu07), 15.2 min 1 (1980Ad04), 14.5 min n (1974Ku10) and 14.4 min (1998Ko24). ic resonance technique in 1968CaZX. γ^{+1} .
156.592# 25	4 ^{+#}	20.67 min 8	ABCDEFGHIJK	%IT=10 μ =5.277 XREF: J μ ,Q: Usi J ^{π} : L=0 T _{1/2} : we (1953) <i>I</i> (198 (1968) configura	0 4; Q=+0.714 10 (147). ng colinear fast-be in ¹¹³ In(d,t) (1967) eighted average of B144), 21.0 min 5 30Ad04); Others: 2 Ro03). ation: $\pi(1g_{9/2})^{-1}$	eam las 7Hj03): 20.56 (1962F 20.7 mi	ser spectroscopy technique in 1987Eb02. ; 156.56 γ M3 to 1 ⁺ . min 6 (1983Ry06), 20.7 min 3 Ru05), 20.9 min 2 (1968Ko25), 20.9 min in (1974Ku10) and 20.4 min 4) ⁺¹ .
162.89 [#] 4	(5) ^{+#}		A CD GH L	J^{π} : 187.9	93γ E2 from (7) ⁺ ;	; multir	blet member.
206.717 [‡] 20	(2)+‡		A D GHI	J ^π : 206.7	75γ M1 to 1 ⁺ ; mu	ultiplet	member.
350.80 [@] 5	(7)+@	0.69 μs 5	A CDE GHIJ L	configura %IT=10 XREF: H J^{π} : L=2 $T_{1/2}$: from $\mu s 2$ for $\mu s 2$ for $187\gamma(0)$ value, μ : +4.73 Q: 1.03 group: configura	ation: $\pi(1g_{9/2}^{-1})\nu(1g_{0}^{-1})$ = (354)I(356)J(339) = (354)I(356)J(339) = (113)In(p,d) (197) = (197)In(197)I	$g_{7/2}^{+1}$).). 78EmZ7 3 γ (t) in ² Cd(d,2 0 (1973) 75 6 in n ¹¹² Cd ND in ¹⁰ ω (2d _{5/2})	T); multiplet member. $a^{109}Ag(\alpha,n\gamma)$ (1976Io04); Other: 2.1 $2n\gamma$) (1972BrYL) and 1.48 μ s from FrYM) differ significantly from adopted 1976Io04. $((d,2n\gamma)$ (1993Io02); Also from the same $a^{99}Ag(\alpha,n\gamma)(1981Io07)$. p^{+1} .
456.426 [‡] 24	(3)+‡		A E GHIJ	XREF: H J^{π} : 249.6	E(420)J(447). 58γ M1 to (2) ⁺ ; L	L=2+4 i	in ¹¹³ In(d,t) (1967Hj03); multiplet

Continued on next page (footnotes at end of table)

¹¹²In Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{b}$	XREF	Comments
				member. $(1 \rightarrow 1 - (1 \rightarrow 1))$
562 78 & 1	(5)+ &			configuration: $\pi(1g_{9/2})^{-\infty} \otimes V(1g_{7/2})^{-1}$.
302.78 4	(3)		A EGIJ	<i>J</i> ^π : 399.87γ M1,E2 to (5) ⁺ ; 406.20γ M1,E2 to 4 ⁺ ; L=2 in ¹¹³ In(p,d) (1978EmZT); Member of the π g _{9/2} ⊗νd _{3/2} multiplet.
592.08 [‡] 4	(4) ^{+‡}		A GHJ	XREF: J(591). J^{π} : 135.64 γ M1 to (3) ⁺ , 385.5 γ to (2) ⁺ , 429.17 γ to (5) ⁺ ; L=(2+4) in ¹¹³ In(d,t) (1967Hi03); member of the $\pi_{g_{0/2} \otimes v_{g_{7/2}}}$ multiplet.
594.888 [@] 22	2 ⁺ @		A GI	J^{π} : 388.20 γ M1 to (2) ⁺ , 594.85 γ M1+E2 to 1 ⁺ ; L=2+4 in ¹¹³ In(p,d) (1978EmZT); multiplet member.
613 82 ^{ac} 6	$(8)^{-a}$	281 / 183	A CDF GHT I	configuration: $\pi(1g_{9/2})^{-1} \otimes \nu(2d_{5/2})^{+1}$.
013.02	(0)	2.01 µ8 5		XREF: E(620)I(622). J^{π} : 263.01 γ E1+M2 to (7) ⁺ ; member of the split $\pi g_{9/2} \otimes v h_{11/2}$ multiplet.
				T _{1/2} : from 187.93 γ (t) in ¹⁰⁹ Ag(α ,n γ) (1976Io04); 2.81 μ s 6 in ¹¹² Cd(p,n γ) (1976Io05); Others: 1.6 μ s 2 in ¹¹⁰ Cd(α ,np γ) (1972BrYL). μ : +3.08 3 (1976Io02).
				Q: 0.095 3 from $\gamma(t,\theta)$ in (1993Io02).
624.42 5	(7 ⁺)		A CD GH J	XREF: J(648).
,				J^{π} : 273.01 γ to (7) ⁺ ; L(p,d)=(2).
670.23 ^{<i>d</i>} 5	(8+)		ACE I L	XREF: $E(680)I(672)$.
676.29 6	(6+)		ACEGH	3^{+} : 519.417 MT to (7) ; band member. XREF: E(680).
720 070 25	$(1, 2)^{-}$		A EC I	J^{π} : L=4 in ¹¹³ In(p,d) (1978EmZT); 51.87 γ M1+E2 to (7 ⁺).
120.910 25	(1,2)		A LG J	J^{π} : 728.98 γ E1 to 1 ⁺ ; 522.29 γ to (2) ⁺ .
729.87 ^{&} 4	(3) ⁺ &		A EGJ	XREF: E(730)J(742). J^{π} : 573.29 γ M1+E2 to 4 ⁺ , 523.13 γ to (2) ⁺ ; Member of the split $\pi g_{5/2} \otimes v_{51/2}$ multiplet; However 4 ⁺ can not be excluded; L=2 in ¹¹¹ Cd(³ He d) (1078Em/T)
790.28 5	(6,7,8)+		A E	XREF: E(790).
795 25 [‡] 6	$(5)^{+\ddagger}$		A GT	J [*] : 439.497 M1,E2 to (7) [*] . I^{π} : 203 172 M1(+E2) to (4) ⁺ : Member of the split $\pi\sigma_{0/2} \otimes \nu\sigma_{7/2}$
193.23	(3)			multiplet.
800.56 ^{<i>ac</i>} 7	$(9^{-})^{a}$		A C L	J^{π} : 186.74 γ M1+E2 to (8) ⁻ ; band member.
822.32 0	$(5^{+})^{+}$		ACGH A TI	J^{*} : 140.04 γ M1 to (6*). XREF: J(866)
0001100	(0,0)			J^{π} : 670.19 γ M1 to (5) ⁺ , 482.31 γ M1,E2 to (7) ⁺ ; L=2+4 in ¹¹³ In(p,d) (1978EmZT).
883.72 [@] 5	3+ [@]		A GI	XREF: I(886). J ^{π} : 288.81 γ M1+E2 to 2 ⁺ and 727.16 γ to 4 ⁺ ; Member of the split $\pi g_{9/2} \otimes v d_{5/2}$ multiplet.
918.84 5	(1,2) ⁻		A EFG	configuration: $\pi(1g_{9/2})^{-1} \otimes \nu(2d_{5/2})^{+1}$. XREF: E(920)F(915). J ^{π} : 323.87 γ E1 to 2 ⁺ , 918.81 γ E1 to 1 ⁺ ; L=1 in ¹¹¹ Cd(³ He,d)
924.66 5	(1,2,3)-		A GI	(19/8EmZT). XREF: I(923).
928.67 5	(0,1,2)-		EG	J : /1/.90γ E1 to (2) ⁻ , 195./3γ M1 to (1) ,2 ; XREF: E(920).
955	(2,3)+		FJ	J [*] : 928.59 γ E1 to 1 ⁺ ; XREF: J(963).

Continued on next page (footnotes at end of table)

¹¹²In Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
			J^{π} : L=2 in ¹¹¹ Cd(³ He,d) (1978EmZT); L=(2) in ¹¹³ In(d,t) (1967Hi03).
1003 4	+	IJ	XREF: J(996).
			J^{π} : L=2 in ¹¹³ In(p,d).
1007.42 7	(4 ⁺)	ACEGH	XREF: E(1005).
			J^{π} : 185.10 γ M1 to (5 ⁺); L=(2) in ¹¹³ In(d,t) (1967Hj03), L=2 in ¹¹³ In(p,d)
1027 79 9	$(0, 1, 2)^{-}$	C	(19/8 EmZT).
1057.78 8	(0,1,2) 3 ⁺	A FFC	J^{*} : 1057.77 γ E1 to 1 . XREE: E(1060)E(1056)
1002.90 4	5	A LIG	I^{π} : 1062 92 γ E2 to 1 ⁺ : 856 22 M1 to (2) ⁺ : I =4 in ¹¹¹ Cd(³ He d) (1978EmZT):
			However, 1^+ , $(2)^+$ in 109 Ag(α , ny) and 112 Cd(n, ny) (1988Ki04).
1151.26 9	$(4,5)^+$	G IJ	XREF: I(1142)J(1117).
			J^{π} : 421.39 γ to (3) ⁺ ; L=2 in ¹¹³ In(d,t) (1967Hj03); possible L=2(+0) doublet in
			¹¹³ In(p,d) (1978EmZT).
1212.16 10	$(0^{-}, 1^{-}, 2^{-})$	FG J	XREF: F(1212)J(1202).
			possibly unresolved doublet in 113 In(d,t) and 111 Cd(3 He,d).
			J^{π} : 293.32 γ E2,M1 to (1,2) ⁻ ; L=1 in ¹¹¹ Cd(³ He,d) (1978EmZT).
1212.25 5	$(1^+, 2^+, 3^+)$	GI	XREF: I(1213).
			possibly unresolved doublet in $113 \ln(p,d)$.
1221 50 5	$(2, 4)^+$	• •	J^{π} : L=2(+0) in ¹¹³ In(p,d) (19/8EmZ1); 149.46 γ to 3 ⁺ .
1221.30 3	$(0, to 3)^+$	A GT	$J = 705.007$ M1 to $(5)^{-}$, 214.127 to (4^{-}) .
1250.057	(0 10 5)	n di	J^{π} : 326 19 γ E1 to (1.2.3) ⁻ , 521.94 γ to (1.2) ⁻ : L=0+2 in ¹¹³ In(n.d) (1978EmZT).
1260.47 8	$(0,1,2)^{-}$	A G	J^{π} : 531.44 γ M1,E2 to (1,2) ⁻ , 1260.51 γ to 1 ⁺ .
1261.57 8	$(0 \text{ to } 4)^+$	A G	J^{π} : 1054.92 γ M1,E2 to (2) ⁺ .
1279.67 4	$(0 \text{ to } 3)^+$	EG	XREF: E(1270).
1006 01 7	(2, 4)	6	J^{π} : 1073.01 γ M1,E2 to (2) ⁺ , 1279.65 γ to 1 ⁺ .
1286.31 /	(3,4)	G A C CU	J [*] : 223.51 γ E1 to 3 ⁺ .
1280.957	(3,4,5) $(0,1)^+$	FF TI	J : 279.517 M1 to (4). XREF: $F(1345)I(1340)I(1322)$
1550	(0,1)		I^{π} : L=0 in ¹¹¹ Cd(³ He d) (1978EmZT).
1388.90 ^{ac} 8	$(10^{-})^{a}$	AC L	J^{π} : 588.34 γ M1,E2 to (9 ⁻); Member of the split $\pi g_{9/2} \otimes vh_{11/2}$ multiplet.
1398	$(0 \text{ to } 3)^+$	EF I	XREF: E(1395)I(1401).
			J^{π} : L=2 in ¹¹¹ Cd(³ He,d) (1978EmZT).
1435	$(0 \text{ to } 3)^+$	FΙ	XREF: I(1438).
1.450	(0, 0, 2) +		J^{π} : L=2 in ¹¹¹ Cd(³ He,d) (1978EmZT).
1473	$(0 \text{ to } 3)^{+}$	EF	XREF: $E(14/0)$.
1 / 0 0	$(0, t_0, 2)^+$	F	$J^{*}: L=2 \text{ in } ^{**}Cd(^{2}\text{He},d) (1978\text{EmZ1}).$
1400	$(0 to 3)^+$	г F T	J^{*} : L=2 III Cu(The,u) (1978EIIIZ1). XREF: I(1531)
1527	(0 10 5)	• •	I^{π} : L=2 in ¹¹¹ Cd(³ He d) (1978EmZT)
1554	$(0 \text{ to } 3)^+$	I	J^{π} : L=2 in ¹¹¹ Cd(³ He.d) (1978EmZT).
1608	$(0,1)^+$	EF I	XREF: E(1590)I(1593).
			J^{π} : L=0 in ¹¹¹ Cd(³ He,d) (1978EmZT).
1631		F	
1678	$(0 \text{ to } 3)^+$	FΙ	XREF: I(1976).
1500	(0, 0) +	_	J^{π} : L=2 in ¹¹¹ Cd(³ He,d) (1978EmZT).
1708	$(0 \text{ to } 3)^+$	F	J^{n} : L=2 in ¹¹¹ Cd(² He,d) (19/8EmZT).
1/41	$(0 \ 10 \ 3)^{\circ}$	F 1	AKEF: $I(1/36)$. I^{π} : $I = 2$ in ¹¹¹ Cd(³ He d) (1078Em7T)
1754 00d 21	(0^{+})	с т	J. $L = 2$ III Cu($\Pi C_{,u}$) (17/0EIIIZ1).
1/54.90°° 21 1777	(9°) (0 to 3) ⁺		J:: 1404.07 E2 to $(/)$; band member. XREE: E(1800)I(1783)
1///	(0 10 3)	EF 1	$I^{\pi} \cdot I = 2 \text{ in } {}^{111}\text{Cd}({}^{3}\text{He d}) (1978\text{Em}7\text{T})$
1872	$(0 \text{ to } 3)^+$	F	I^{π} : L=2 in ¹¹¹ Cd(³ He d) (1978EmZT)
1955	$(0 \text{ to } 3)^+$	F	I^{π} : L=2 in ¹¹¹ Cd(³ He.d) (1978EmZT).
2011.9 4	$(10)^{-}$	c	J^{π} : 1398.0 γ (E2) to (8) ⁻ ; near-yrast state assumed.
			Continued on payt page (footnotes at and of table)
			Continued on next page (noomotes at end of table)

¹¹²In Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{b}$	XREF		Comments
2067	$(0 \text{ to } 3)^+$		F		I^{π} : L = 2 in ¹¹¹ Cd(³ He d) (1978EmZT)
2070.7^{m} 8	(0, 0, 0, 0) (11^{-})		c		$J^{\pi}: 682\gamma$ (M1) to (10 ⁻), 1270 γ (E2) to (9 ⁻); band member.
2113.15 ^c 19	(11-)		C	L	J^{π} : 724.3 γ M1 to (10 ⁻), 1312.5 γ to (9 ⁻); band member.
2115.28 ^d 24	(10^{+})		С	L	J^{π} : 360.4 γ M1 to (9 ⁺), 1445.2 γ E2 to 8 ⁺ ; band member.
2172	$(0 \text{ to } 3)^+$		F		J^{π} : L=2 in ¹¹¹ Cd(³ He.d) (1978EmZT).
2234	$(0 \text{ to } 3)^+$		F		J^{π} : L=0+2 in ¹¹¹ Cd(³ He.d) (1978EmZT).
2374.9 6	$(11^{-}, 12^{-})$		С		J^{π} : 986 γ to (10 ⁻), 973 γ from (13 ⁻).
2441.2 8			С		
2493.2 <i>3</i>	(11 ⁻)		С	L	J^{π} : 1104.2 γ M1 to (10 ⁻); yrast state assumed.
2652.7 ^m 13	(13 ⁻)		C		J^{π} : 582 γ E2 to (11 ⁻); band member.
2665.59 [°] 22	$(12)^{-}$		C	L	J ^{π} : 552.4 γ M1 to (11 ⁻), 1276.7 γ E2 to (10 ⁻); band member.
2756.1 ^J 7	(12 ⁻)		С		J^{π} : 643 γ to (11 ⁻), 1367 γ to (10 ⁻); band member.
2802.05 ^d 25	(11^{+})		С	L	J^{π} : 686.9 γ M1 to (10 ⁺), 1047.4 γ E2 to (9 ⁺); band member.
2964.0 6	(12 ⁻)		C		J^{π} : 952 γ to (10 ⁻), 1575 γ to (10 ⁻).
3062.6 ^e 4	(12^{+})		C	L	J^{π} : 260.6 γ M1 to (11 ⁺), 947.4 γ (E2) to (10 ⁺) band member.
3102.7° 4	$(13)^{-}$		C	L	J^{π} : 437.1 γ M1 to (12) ⁻ ; band member.
3126.9 4	(13)		C	L	J [*] : 461.4 γ M1 to (12) , 135.3 γ (M1) from 14 .
3133.3 3	(12) (13^+)		C	L	J^{T} : 000.2 γ M1 to (11), 487.7 γ to (12), 1705 γ to (10). I^{π} : 128.3 α (M1) to 12 ⁺
3191.0.8	(13^{-}) $(11^{-}12^{-})$		C	L	$J = 120.3 \text{ y} (1011) \text{ to } 12^{-1}$. $I^{\pi} = 1802 \text{ y} \text{ to } (10^{-1})$
3262.3 [°] 5	$(11^{-}, 12^{-})$		c	L	J^{π} : 159.6 γ (M1) to (13) ⁻ : hand member.
$3293.1f_{6}$	(12^+)		C		I^{π} : 491x to 11 ⁺ 329x to (12 ⁻); hand member
3296.1 ⁸ 6	(12^{+})		c		J^{π} : 332 γ to (12 ⁻), 1181 γ to 10 ⁺ : band member.
$3327.2^{i}.7$	(12^{-})		C		I^{π} : 363y to (12 ⁻), 1214y to (11 ⁻); hand member
3327.2^{k}	(12^{-})		C	T	I^{π} : 104 2a (M1) to (12) ⁻ 681 0a (M1) to (12 ⁻); band member
3369.3 ^e 6	(13^{+})		C	T	J^{π} : 178.5 γ (M1) to (12) , 001.9 γ (M1) to (12), 0and member.
3378.0^{j} 10	(13^{-})		c	-	J^{π} : 622 γ to (12 ⁻), band member.
$3391.1^{h}.12$	[13+]		C		I^{π} : 427 γ to (12 ⁻); essumed hand head in ¹¹⁰ Pd(⁷ I i 5n γ)
3457.7^{m} 16	(15^{-})		c		J^{π} : 805 γ E2 to (12 ⁻); band member.
3523.1^{f} 12	(13^{+})		C		J^{π} : 230y to (12 ⁺); hand member.
$3564 3^{i} 9$	(13^{-})		C		I^{π} : 237 γ to (12 ⁻); hand member
3584.1 <mark>8</mark> 12	(13^+)		c		$J^{\pi}: 288\gamma$ to (12 ⁺); band member.
3606.8 [°] 6	(15^{-})		č	L	XREF: C(3605).
					J^{π} : 344.6 γ (M1) to (14 ⁻); band member.
3642.0 ^e 6	(15 ⁺)	0.58 ps 11	С	L	XREF: C(3641).
					J^{π} : 272.7 γ M1 to (14 ⁺); band member.
3644.7 ^k 4	(14 ⁻)		С	L	J^{π} : 296.9 γ M1 to (13 ⁻); band member.
3685.1 ^h 15	[14 ⁺]		С		J^{π} : 294 γ to [13 ⁺]; probable band member.
3769.7 ⁱ 11	(14 ⁻)		С		J^{π} : 205 γ to (13 ⁻); band member.
3853.1 ^f 16	(14^{+})		С		J^{π} : 330 γ to (13 ⁺); band member.
3854.9 11	(13 ⁻ to 15 ⁻)		С		J^{π} : 477 γ to (13 ⁻); 554 γ from (15 ⁻).
3862.9 ^j 13	(14 ⁻)		С		J^{π} : 485 γ to (13 ⁻); band member.
3991.8 ^k 5	(15 ⁻)	0.50 ps +25-19	С	L	XREF: C(3991).
					J^{π} : 347.1 γ (M1) to (14 ⁻); band member.
4035.2 ^e 7	(16 ⁺)	0.34 ps 7	С	L	XREF: C(4034)L(4036).
					J^{π} : 393.3 γ M1 to (15 ⁺); band member.
4041.18 16	(14 ⁺)		С		J^{n} : 45/ γ to (13 ⁺); band member.
4064.1 ["] 18	[15 ⁺]		С		J^{n} : 379 γ to [14 ⁺]; probable band member.
4105.0 ^{<i>t</i>} 12	(15^{-})		C		J^{π} : 335 γ to (14 ⁻); band member.
4166.98 11	(15 ⁺)		С		J^{n} : 9/6 γ to (13 ⁺); band member.
4170.1 ^J 19	(15^{+})		C		J^{n} : 317 γ to (14 ⁺); band member.

¹¹²In Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{b}$	XREF		Comments
4203.9 ^j 13	(15 ⁻)		С		J^{π} : 341 γ to (14 ⁻); band member.
4354.2 ^k 9	(16 ⁻)	<0.42 ps	С	L	J^{π} : 362.4 γ (M1) to (15 ⁻); band member.
4390.7 ^m 19	(17-)	1	С		J^{π} : 933 γ E2 to (15 ⁻); band member.
4394.7 [°] 9	(16 ⁻)		С	L	XREF: C(4393).
					J^{π} : 787.9 γ M1 to (15 ⁻); band member.
4408.8 ¹ 9	(15^{-})		С		J^{π} : 764 γ to (14 ⁻); band member.
4452.1 ^{<i>h</i>} 21	(16^{+})		С		J ^{π} : 388 γ to (15 ⁺); probable band member.
4551.1 ^{<i>f</i>} 21	(16^{+})		С		J^{π} : 381 γ to (15 ⁺); band member.
4552.4 ⁱ 12	(16 ⁻)		С		J^{π} : 447 γ to (15 ⁻); band member.
4589.4 <mark>°</mark> 8	(17^{+})	0.15 ps 4	С	L	XREF: C(4588).
					J^{π} : 554.2 γ M1 to (16 ⁺); band member.
46/8.6 8	(16)		C		$J^{*}: 10/2\gamma$ to (15), 1416 γ to (14).
4751.38 10	(10)		C		J^{*} : 1562 γ to (14); band member.
4/58.9" 11	(17)		C	L	AREF: $C(4/58)$. I^{π} : 404 7 $_{27}$ (M1) to (16 ⁻): hand member
4822.8 ¹ 12	(16^{-})		C		I^{π} : 414 γ to (15 ⁻): band member.
$4917 1^{h} 23$	(10 ⁺)		C		I^{π} : 465 γ to [16 ⁺]; band member
5063.7 10	(17^{-})		c		J^{π} : 1457 γ to (15 ⁻); vrast state assumed.
5073.7 <mark>8</mark> 9	(17 ⁺)		С		J^{π} : 322 γ to (16 ⁺), 1432 γ to (15 ⁺); band member.
5168.1 ^k 14	(18^{-})		С	L	J^{π} : 409.2 γ (M1) to (17 ⁻); band member.
5235.7 ^m 22	(19 ⁻)		С		J^{π} : 845 γ (E2) to (17 ⁻); band member.
5272.8 ¹ 16	(17^{-})		С		J^{π} : 450 γ to (16 ⁻); band member.
5297.0 ^e 8	(18^{+})	<0.17 ps	С	L	XREF: C(5295).
5527 09 10	(10+)		<i>c</i>		J^{π} : 707.6 γ to 17 ⁺ ; band member.
5537.08 10	(18^{+})		C		J^{*} : 463 γ to (17 ⁺), 1502 γ to (16 ⁺); band member.
5638.1 15	(19)		C	L	XREF: $C(5636)$. I^{π}_{12} , 470 Ω_{12} (M1) to (12 ⁻); hand member
5772 8 10	(10^{-})		C		J : 470.07 (M1) to (18), band member.
$60351^{e}10$	(10) (19^+)		C		I^{π} : 738 0v to (17 ⁻), band member.
6059.0^{g} 14	(19^+)		c		J^{π} : 522 γ to (18 ⁺); band member.
6155.8 ^m 24	(21 ⁻)		C		J^{π} : 920 γ E2 to (19 ⁻); band member.
6322.8 ¹ 21	(19 ⁻)		С		J^{π} : 549 γ to (18 ⁻); band member.
6373.1 ^k 18	(20^{-})		С		J^{π} : 735 γ to (19 ⁻); band member.
6412.0 ^g 18	(20^{+})		С		J^{π} : 353 γ to (19 ⁺); band member.
6850.0 ^g 20	(21^{+})		С		J^{π} : 438 γ to (20 ⁺); band member.
6859.8 ¹ 24	(20^{-})		С		J^{π} : 537 γ to (19 ⁻); band member.
7148 ^m 3	(23-)		C		J^{π} : 992 γ to (21 ⁻); band member.
8328 ^m 3	(25^{-})		C		J^{n} : 1180 γ to (23 ⁻); band member.

[†] From a least-squares fit to $E\gamma$.

[‡] Member of the $\pi g_{9/2} \otimes \nu g_{7/2}$ multiplet.

[#] Member of the $\pi g_{9/2} \otimes v s_{1/2}$ multiplet.

[@] Member of the $\pi g_{9/2} \otimes \nu d_{5/2}$ multiplet.

[&] Member of the $\pi g_{9/2} \otimes \nu d_{3/2}$ multiplet.

^{*a*} Member of the $\pi g_{9/2} \otimes \nu h_{11/2}$ multiplet.

^b From ¹⁰⁰Mo(¹⁶O,p $3n\gamma$), unless otherwise noted.

^c Band(A): Band based on 614-keV level; configuration= $\pi g_{9/2}^{-1} \otimes v h_{11/2}$; configuration= $\pi g_{9/2}^{-1} \otimes v (h_{11/2}(g_{7/2}/d_{5/2})^2)$ after the

¹¹²In Levels (continued)

back bending.

- ^d Band(B): Band based on 670-keV level; configuration= $\pi g_{9/2}^{-1} \otimes \nu g_{7/2}$.
- ^{*e*} Band(C): band based on 3063-keV level; configuration= $\pi g_{9/2}^{-1} \otimes \nu(h_{11/2}^2 g_{7/2})$.
- ^f Band(D): Band based on 3293-keV level (2010He09).
- ^g Band(E): Band based on 3296-keV level (2010He09).
- ^h Band(F): Band based on 3390-keV level (2010He09).
- ⁱ Band(G): Band based on 3327-keV level (2010He09).
- ^j Band(H): Band based on 2756-keV level (2010He09).
- ^k Band(I): Band based on 3154-keV level (2010He09).
- ¹ Band(J): Band based on 4409-keV level (2010He09).

^{*m*} Band(K): $\Delta J=2$ band based on (11⁻) level; configuration= $\pi g_{9/2}^{-2} g_{7/2} \otimes v h_{11/2}$.

							Α	dopted Level	s, Gammas (continued)
									$\underline{\gamma(^{112}In)}$
	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult.‡	α^{a}	Comments
	156.592	4+	156.61 3	100	0.0	1+	M3	6.50	B(M3)(W.u.)=0.00511 24 α (K)=5.00 7; α (L)=1.208 17; α (M)=0.249 4 α (N)=0.0448 7; α (O)=0.00254 4 Mult.: α (K)exp=5.4 5 in ¹¹² Cd(p,n γ) (1988Ki04), 5.8 12 in ¹¹² In IT decay (20.56 min) (1962Ru05) and 4.8 3 in ¹⁰⁹ Ag(α ,n γ) (1991Kr14); α (L)exp=1.36 12 in ¹¹² Cd(p,n γ) (1988Ki04); K/LM=3.3 7 (1962Ru05) and 3.7 4 in ¹¹² In IT decay
	162.89	(5)+	(6.30 5)	100	156.592	4+	[M1]	240 7	(20.5 min) (1953B144). $\alpha(L)=195$ 6; $\alpha(M)=38.1$ 11 $\alpha(N)=6.94$ 20; $\alpha(O)=0.505$ 14 E_{γ} : not observed experimentally. Obtained from energy level difference by the
	206.717	(2)+	206.75 3	100	0.0	1+	M1	0.0692	evaluators. Mult.: From J^{π} difference. $\alpha(K)=0.0600 \ 9; \ \alpha(L)=0.00746 \ 11; \ \alpha(M)=0.001447 \ 21$ $\alpha(N)=0.000265 \ 4; \ \alpha(O)=1.97\times10^{-5} \ 3$ Mult.: A ₂ =-0.130 4; A ₄ =0.022 6 in ¹¹² Cd(p,n γ) (1983Ko12); $\alpha(K)$ exp=0.066 5, weighted average of 0.059 7 in ¹⁰⁹ Ag(α n γ) (1988Ki04) and 0.072 6 in
7	350.80	(7)+	187.93 <i>3</i>	100	162.89	(5)+	E2	0.1663	¹¹² Cd(p,ny) (1988Ki04); α (L)exp=0.0068 7 in ¹⁰⁹ Ag(α ,ny) (1988Ki04) and 0.0075 6 in ¹¹² Cd(p,ny) (1988Ki04); α (M)exp=0.0015 4 in ¹⁰⁹ Ag(α ,ny) (1988Ki04) and 0.0013 <i>I</i> in ¹¹² Cd(p,ny) (1988Ki04). B(E2)(W.u.)=0.094 7 α (K)=0.1360 <i>I</i> 9; α (L)=0.0245 4; α (M)=0.00485 7 α (N)=0.000853 <i>I</i> 2; α (O)=4.40×10 ⁻⁵ 7
	456.426	(3)+	249.68 <i>3</i>	100	206.717	(2)+	M1	0.0420	Mult.: $\alpha(K)\exp=0.11 I$, $\alpha(L)\exp=0.021 3$ and $\alpha(M)\exp=0.0056 6$ (1988Ki04). $\alpha(K)=0.0365 6$; $\alpha(L)=0.00450 7$; $\alpha(M)=0.000874 I3$ $\alpha(N)=0.0001601 23$; $\alpha(O)=1.193\times10^{-5} I7$ Mult.: $A_2=-0.203 9$; $A_4=-0.007 II$ in ¹¹² Cd(p,n γ) (1983Ko12); $\alpha(K)\exp=0.036 4$ in ¹⁰⁹ Ag(α ,n γ) (1988Ki04) and 0.041 3 ¹¹² Cd(p,n γ) (1988Ki04); $\alpha(L)\exp=0.0054 I0$ in ¹¹² Cd(p,n γ) (1988Ki04); $\alpha(M)\exp=0.0013 3$ in
	562.78	(5)+	456.40 <i>5</i> 399.88 <i>4</i>	3.0 <i>5</i> 50.0 <i>19</i>	0.0 162.89	1^+ (5) ⁺	M1,E2	0.01260	¹¹² Cd(p,n γ) (1988Ki04). α (K)=0.01096 <i>16</i> ; α (L)=0.001333 <i>19</i> ; α (M)=0.000258 <i>4</i>
			406.18 <i>3</i>	100 <i>3</i>	156.592	4+	M1.E2	0.01212	α (N)=4.73×10 ⁻⁵ 7; α (O)=3.55×10 ⁻⁶ 5 Mult.: α (K)exp=0.0125 <i>15</i> in ¹⁰⁹ Ag(α ,n γ) (1988Ki04). α (K)=0.01054 <i>15</i> ; α (L)=0.001281 <i>18</i> ; α (M)=0.000248 <i>4</i>
	592.08	(4)+	135.64 3	100 3	456.426	(3)+	, M1	0.218	$\alpha(N)=4.55\times10^{-5} 7; \alpha(O)=3.41\times10^{-6} 5$ Mult.: $\alpha(K)$ exp=0.0123 14 in ¹⁰⁹ Ag(α ,n γ) (1988Ki04). $\alpha(K)=0.188 3; \alpha(L)=0.0237 4; \alpha(M)=0.00460 7$ $\alpha(N)=0.000842 12; \alpha(O)=6.23\times10^{-5} 9$ M bit $\alpha = 0.00247 420 + 0.00245 420 = 0.10225 420 = 0.10225 420 = 0.10225 420 = 0.10225 420 = 0.10$
									Mult.: $A_2 = -0.287/52$; $A_4 = 0.005/66$ in ¹¹² Cd(p,n γ) (1983Ko12); α (K)exp=0.18/2 in ¹⁰⁹ Ag(α ,n γ) (1988Ki04) and 0.20/4 in ¹¹² Cd(p,n γ) (1988Ki04); δ =0.01/10 in ¹¹² Cd(p,n γ) (1983Ko12).

From ENSDF

 $^{112}_{49} {\rm In}_{63}$ -7

γ (¹¹²In) (continued)

E _i (level)	J^{π}_i	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E _f	\mathbf{J}_f^{π}	Mult. [‡]	δ	α^{a}	Comments
592.08	$(4)^{+}$	385.5 <i>1</i> 429 17 5	6.2 <i>4</i> 9 4 <i>4</i>	206.717 ($(2)^+$ $(5)^+$				
594.888	2^{+}	138.37 [#] 8	0.96 [#] 8	456.426 ($(3)^+$				
		388.20 <i>3</i>	43 3	206.717 ($(2)^{+}$	M1		0.01357	$\alpha(K)=0.01180 \ 17; \ \alpha(L)=0.001436 \ 21; \ \alpha(M)=0.000278 \ 4$
									$\alpha(N)=3.10\times10^{-5} 8; \ \alpha(O)=3.82\times10^{-5} 0$ Mult.: A ₂ =0.156 25: A ₄ =-0.020 30 in ¹¹² Cd(p.n γ)
									(1983Ko12);
									Mult.: α (K)exp=0.0111 <i>11</i> in ¹⁰⁹ Ag(α ,n γ) (1988Ki04) and 0.0127 <i>12</i> in ¹¹² Cd(p,n γ) (1988Ki04); δ =0.05 5 in ¹¹² Cd(p,n γ) (1983Ko12).
		594.85 <i>3</i>	100 4	0.0	1^{+}	M1+E2	+0.10 3	0.00478	$\alpha(K)=0.00416\ 6;\ \alpha(L)=0.000500\ 7;\ \alpha(M)=9.68\times10^{-5}\ 14$
									$\alpha(N)=1.776\times10^{-5} 25; \alpha(O)=1.335\times10^{-6} 19$ Mult: $A_{2}=0.082 11; A_{3}=0.032 14$ in (1083Ko12) and
									$p_{exp} = -0.19 \ 4 \ in \ ^{112}Cd(p,n\gamma) \ (1983Ko12); \ \alpha(K)exp = 0.0046$
									6 in 109 Ag(α ,n γ) (1988Ki04) and 0.0045 4 in 112 Cd(p,n γ) (1988Ki04).
613.82	(8)-	263.01 3	100	350.80 ($(7)^{+}$	E1+M2	0.09 4	0.0129 15	$B(E1)(W.u.)=5.58\times10^{-9} 8; B(M2)(W.u.)=0.003 3$
									$\alpha(N)=4.9\times10^{-5}$ 7: $\alpha(O)=3.4\times10^{-6}$ 5
									Mult.: DCO=1.17 <i>10</i> in 100 Mo(16 O,p3n γ) (2012Tr01);
									α (K)exp=0.015 2 and α (L)exp=0.0015 2 in ¹⁰⁹ Ag(α ,n γ) (1988Ki04).
624 42	(7^{+})	273 62 3	100	350.80	$(7)^{+}$				δ : from PAC measurements (1987/1w04). Mult : A ₂ =0.176.35, A ₄ ==0.019.47 (1978Em7T), consistent
024.42	(r)	275.02 5	100	550.00	(7)				with J to J.
670.23	(8 ⁺)	319.41 <i>3</i>	100	350.80 ($(7)^{+}$	M1		0.0222	$\alpha(K)=0.0193 \ 3; \ \alpha(L)=0.00237 \ 4; \ \alpha(M)=0.000458 \ 7$
									$\alpha(N)=8.41\times10^{-5}$ 12; $\alpha(O)=6.28\times10^{-6}$ 9 Mult = $\alpha(K)=0.022$ 2; $\alpha(U)=0.0010$ 2 in $\frac{109}{2}$ A $\alpha(\alpha,m_1)$
									Mult: $a(k)exp=0.022$ 5; $a(L)exp=0.0019$ 5 in $(Ag(a,iy))$ (1988Ki04); DCO=0.42 15 in 110 Pd(7 Li,5ny) (2011He04);
									$DCO=1.06 7 \text{ in } {}^{100}Mo({}^{16}O \text{ p}3n\gamma) (2012 \text{ Tr}01);$ $pol=-0.079.28 \text{ in } {}^{100}Mo({}^{16}O \text{ p}3n\gamma) (2012 \text{ Tr}01)$
676.29	(6 ⁺)	51.87 <i>3</i>	100	624.42 ((7^{+})	M1+E2		3.37	$\alpha(K)=2.915; \alpha(L)=0.3726; \alpha(M)=0.072311$
									α (N)=0.01322 <i>19</i> ; α (O)=0.000971 <i>14</i>
									Mult.: $A_2 = -0.084 \ I4$; $A_4 = -0.008 \ I8$ in $^{109}Ag(\alpha, n\gamma)$ (1978EmZT)
728.978	(1,2)-	522.29 8	9.5 11	206.717 ($(2)^{+}$				(1)/02/02/02/02
		728.98 <i>3</i>	100	0.0	1^{+}	E1+M2	+0.13 +5-7	0.00109 11	$\alpha(K)=0.00095 \ 10; \ \alpha(L)=0.000113 \ 12; \ \alpha(M)=2.18\times 10^{-5} \ 23$
									$\alpha(N) = 4.0 \times 10^{-6} 5; \ \alpha(O) = 2.9 \times 10^{-7} 4$
									NUILL: $\alpha(K)\exp=0.00100 \ 9 \ \text{in}^{-27} \operatorname{Ag}(\alpha, n\gamma) (1988K104).$ δ : from ¹¹² Cd(n nz)
729.87	$(3)^{+}$	273.49 8	100.0 16	456.426 ($(3)^{+}$				I_{γ} : from $(\alpha, n\gamma)$ (1978EmZT).
		523.13 8	32 4	206.717 ($(2)^{+}$				I_{γ} : from $(\alpha, n\gamma)$ (1978EmZT).

 ∞

						Adopted	Levels, Gan	<mark>imas</mark> (continu	1ed)
							$\gamma(^{112}\text{In})$ (con	ntinued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ	α^{a}	Comments
729.87	(3)+	573.29 3	38.3 21	156.592	4+	M1+E2	+0.10 5	0.00522	
790.28	(6,7,8)+	120.01 <i>4</i> 439.49 <i>3</i>	10 2 100 4	670.23 350.80	(8^+) $(7)^+$	M1,E2		0.00997	$\alpha(K)=0.00867 \ 13; \ \alpha(L)=0.001051 \ 15; \ \alpha(M)=0.000204 \ 3 \\ \alpha(N)=3.74 \times 10^{-5} \ 6; \ \alpha(O)=2.80 \times 10^{-6} \ 4$
795.25	(5) ⁺	203.17 4	100	592.08	(4)+	M1(+E2)	+0.01 11	0.0725 13	Mult.: α (K)exp=0.0090 <i>16</i> in ¹⁰⁹ Ag(α ,n γ) (1988Ki04). α (K)=0.0629 <i>11</i> ; α (L)=0.00782 <i>19</i> ; α (M)=0.00152 <i>4</i> α (N)=0.000278 <i>7</i> ; α (O)=2.07×10 ⁻⁵ <i>4</i> Mult.: A ₂ =-0.238 <i>69</i> ; A ₄ =0.033 <i>91</i> in ¹¹² Cd(p,n γ) (1983Ko12); α (K)exp=0.072 <i>12</i> ; α (L)exp=0.0097 <i>10</i> in ¹⁰⁹ Ag(α p γ) (1988Ki04):
800.56	(9 ⁻)	186.74 <i>4</i>	100	613.82	(8)-	M1+E2		0.0909	δ : from ¹¹² Cd(p,n γ) (1983Ko12). α (K)=0.0788 <i>11</i> ; α (L)=0.00982 <i>14</i> ; α (M)=0.00191 <i>3</i> α (N)=0.000349 <i>5</i> ; α (O)=2.59×10 ⁻⁵ <i>4</i> Mult.: A ₂ =-0.105 <i>14</i> , A ₄ =0.010 <i>20</i> in ¹⁰⁹ Ag(α ,n γ)
822.32	(5 ⁺)	146.04 <i>3</i>	100	676.29	(6+)	M1		0.1775	(1978EmZT). $\alpha(K)=0.1538\ 22;\ \alpha(L)=0.0193\ 3;\ \alpha(M)=0.00375\ 6$ $\alpha(N)=0.000686\ 10;\ \alpha(O)=5.08\times10^{-5}\ 8$ Mult.: $\alpha(K)exp=0.17\ 4;\ \alpha(L)exp=0.022\ 9\ in\ ^{109}Ag(\alpha,n\gamma)$ (1089K:04)
833.10	(5,6)+	270.22 8 482.31 <i>3</i>	7.5 <i>17</i> 100 6	562.78 350.80	$(5)^+$ $(7)^+$	M1,E2		0.00793	$\alpha(K)=0.00691 \ 10; \ \alpha(L)=0.000835 \ 12; \ \alpha(M)=0.0001616 \ 23 \ \alpha(N)=2.96\times10^{-5} \ 5; \ \alpha(Q)=2.22\times10^{-6} \ 4$
		670.19 <i>13</i>	9.8 12	162.89	(5)+	M1		0.00361	Mult.: α (K)exp=0.0081 <i>13</i> in ¹⁰⁹ Ag(α ,n γ) (1988Ki04). α (K)=0.00314 <i>5</i> ; α (L)=0.000376 <i>6</i> ; α (M)=7.28×10 ⁻⁵ <i>11</i> α (N)=1.336×10 ⁻⁵ <i>19</i> ; α (O)=1.005×10 ⁻⁶ <i>14</i>
883.72	3+	288.81 [#] 8	100 [#] 3	594.888	2+	M1+E2	+0.05 3	0.0288	Mult.: $\alpha(K)\exp=0.0036 \ \delta \ in \ ^{109}Ag(\alpha,n\gamma) \ (1988Ki04).$ $\alpha(K)=0.0250 \ 4; \ \alpha(L)=0.00308 \ 5; \ \alpha(M)=0.000597 \ 9$ $\alpha(N)=0.0001093 \ 16; \ \alpha(O)=8.15\times10^{-6} \ 12$ Mult.: $A_2=-0.171 \ 14; \ A_4=0.006 \ 18 \ in \ ^{112}Cd(p,n\gamma)$ $(1983Ko12); \ pol=-0.35 \ 6 \ in \ ^{112}Cd(p,n\gamma) \ (1983Ko12);$ $\alpha(K)\exp=0.024 \ 5 \ in \ ^{112}Cd(p,n\gamma) \ (1988Ki04).$ $\delta; \ from \ ^{112}Cd(p,n\gamma).$
		291.5 [#] 2 427.29 [#] 8	3.2 [#] 16 10.3 [#] 10	592.08 456.426	$(4)^+$ $(3)^+$				

γ (¹¹²In) (continued)

E_i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α^{a}	Comments
883.72	3+	727.16 [#] 8	63 [#] 3	156.592	4+			
918.84	(1,2)-	189.86 [#] 8	22.0 [#] 12	728.978	$(1,2)^{-}$			
		323.87# 8	100 [#] 5	594.888	2+	E1	0.00666	$\begin{aligned} &\alpha(\text{K}) = 0.00580 \; 9; \; \alpha(\text{L}) = 0.000696 \; 10; \; \alpha(\text{M}) = 0.0001342 \; 19 \\ &\alpha(\text{N}) = 2.44 \times 10^{-5} \; 4; \; \alpha(\text{O}) = 1.739 \times 10^{-6} \; 25 \\ &\text{Mult.:} \; \alpha(\text{K}) \exp = 0.0065 \; 14, \; \text{weighted average of } 0.007 \; 2 \; \text{in} \\ & {}^{109}\text{Ag}(\alpha, n\gamma) \; (1988\text{Ki04}) \; \text{and} \; 0.006 \; 2 \; \text{in} \; {}^{112}\text{Cd}(\text{p}, n\gamma) \; (1988\text{Ki04}). \end{aligned}$
		918.81# 8	93.9# 25	0.0	1+	E1	6.07×10 ⁻⁴	$\begin{aligned} &\alpha(\text{K}) = 0.000531 \ 8; \ \alpha(\text{L}) = 6.19 \times 10^{-5} \ 9; \ \alpha(\text{M}) = 1.193 \times 10^{-5} \ 17 \\ &\alpha(\text{N}) = 2.19 \times 10^{-6} \ 3; \ \alpha(\text{O}) = 1.619 \times 10^{-7} \ 23 \\ &\text{Mult.: } \ A_2 = 0.086 \ 20; \ A_4 = 0.029 \ 27 \ \text{in} \ ^{112}\text{Cd}(\text{p},\text{n}\gamma) \ (1983\text{Ko12}); \\ &\text{pol} = -0.20 \ 10 \ \text{in} \ ^{112}\text{Cd}(\text{p},\text{n}\gamma) \ (1983\text{Ko12}); \ \alpha(\text{K})\text{exp} = 0.00063 \ 7 \ \text{in} \\ & \ ^{112}\text{Cd}(\text{p},\text{n}\gamma) \ (1988\text{Ki04}); \ \delta = 0.00 \ 12 \ \text{or} \ -0.31 \ 7 \ \text{in} \ ^{112}\text{Cd}(\text{p},\text{n}\gamma) \\ &(1983\text{Ko12}); \end{aligned}$
924.66	(1,2,3)-	195.73 [#] 8	51 [#] 3	728.978	(1,2)-	M1	0.0801	$\begin{aligned} &\alpha(\text{K}) = 0.0695 \ 10; \ \alpha(\text{L}) = 0.00864 \ 13; \ \alpha(\text{M}) = 0.001678 \ 24 \\ &\alpha(\text{N}) = 0.000307 \ 5; \ \alpha(\text{O}) = 2.28 \times 10^{-5} \ 4 \\ &\text{Mult.:} \ \alpha(\text{K}) \text{exp} = 0.067 \ 7, \text{ weighted average of } 0.060 \ 6 \text{ in} \\ & \ ^{109}\text{Ag}(\alpha, n\gamma) \ (1988\text{Ki04}) \ 0.073 \ 6 \ \text{in} \ ^{112}\text{Cd}(\text{p}, n\gamma) \ (1988\text{Ki04}). \end{aligned}$
		468.15 [#] 8	10.9 [#] 8	456.426	$(3)^{+}$			
		717.90 [#] 8	100 [#] 4	206.717	(2)+	E1	1.00×10 ⁻³	$\alpha(K)=0.000876 \ I3; \ \alpha(L)=0.0001029 \ I5; \ \alpha(M)=1.98\times10^{-5} \ 3 \\ \alpha(N)=3.63\times10^{-6} \ 5; \ \alpha(O)=2.67\times10^{-7} \ 4 \\ Mult.: \ A_2=0.159 \ I9; \ A_4=0.009 \ 25 \ in \ ^{112}Cd(p,n\gamma) \ (1983Ko12); \\ pol=-0.24 \ I1 \ in \ ^{112}Cd(p,n\gamma) \ (1983Ko12); \ \alpha(K)exp=0.009 \ I \ in \ ^{112}Cd(p,n\gamma) \ (1988Ki04); $
928.67	$(0.1.2)^{-}$	199.73 [#] 8	2.0 [#] 6	728.978	$(1.2)^{-}$			
		928.59 [#] 8	100 [#] 3	0.0	1+	E1	5.95×10 ⁻⁴	$\alpha(K)=0.000520 \ 8; \ \alpha(L)=6.06\times10^{-5} \ 9; \ \alpha(M)=1.168\times10^{-5} \ 17$ $\alpha(N)=2.14\times10^{-6} \ 3; \ \alpha(O)=1.586\times10^{-7} \ 23$ Mult.: A ₂ =0.016 <i>18</i> ; A ₄ =0.028 <i>24</i> in ¹¹² Cd(p,n\gamma) (1983Ko12); pol=-0.21 9 in ¹¹² Cd(p,n\gamma) (1983Ko12); \ \alpha(K)exp=0.00057 \ 6 in ¹¹² Cd(p,n\gamma) (1988Ki04).
1007.42	(4 ⁺)	185.10 <i>3</i>	100	822.32	(5 ⁺)	M1	0.0931	$\alpha(K)=0.0807 \ I2; \ \alpha(L)=0.01006 \ I4; \ \alpha(M)=0.00195 \ 3 \ \alpha(N)=0.000358 \ 5; \ \alpha(O)=2.66\times10^{-5} \ 4 \ Mult.; \ \alpha(K)exp=0.07 \ I \ in \ ^{112}Cd(p,n\gamma) \ (1988Ki04).$
1037.78	(0,1,2) ⁻	1037.77 [#] 8	100 [#]	0.0	1+	E1	4.81×10 ⁻⁴	$\alpha(K)=0.000420 \ 6; \ \alpha(L)=4.89\times10^{-5} \ 7; \ \alpha(M)=9.42\times10^{-6} \ 14 \\ \alpha(N)=1.726\times10^{-6} \ 25; \ \alpha(O)=1.283\times10^{-7} \ 18 \\ \text{Mult.:} \ \alpha(K)\text{exp}=0.00044 \ 6 \ \text{in}^{\ 112}\text{Cd}(\text{p.ny}) \ (1988\text{Ki04}).$
1062.90	3+	333.2 1	7.1 18	729.87	(3)+			
		856.22 6	34 3	206.717	(2)+	M1	0.00205	$\begin{split} &\alpha(\text{K}) = 0.001785 \ 25; \ \alpha(\text{L}) = 0.000212 \ 3; \ \alpha(\text{M}) = 4.10 \times 10^{-5} \ 6 \\ &\alpha(\text{N}) = 7.53 \times 10^{-6} \ 11; \ \alpha(\text{O}) = 5.68 \times 10^{-7} \ 8 \\ &\text{Mult.: } \text{A}_2 = 0.148 \ 67; \ \text{A}_4 = -0.062 \ 82 \ \text{in} \ {}^{112}\text{Cd}(\text{p},\text{n}\gamma) \ (1983\text{Ko}12); \\ &\alpha(\text{K}) \text{exp} = 0.0015 \ 35 \ \text{in} \ {}^{112}\text{Cd}(\text{p},\text{n}\gamma) \ (1988\text{Ki}04). \end{split}$

10

					Ado	opted Leve	ls, Gammas (continued)
						$\gamma(^{112}$	In) (continued	<u>4)</u>
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [‡]	α^{a}	Comments
1062.90	3+	1062.92 7	100 7	0.0	1+	E2	1.06×10^{-3}	$\alpha(K)=0.000922 \ 13; \ \alpha(L)=0.0001115 \ 16; \ \alpha(M)=2.16\times10^{-5} \ 3$
			μ					$\begin{array}{l} \alpha(N)=3.94\times10^{-6} \ 6; \ \alpha(O)=2.89\times10^{-7} \ 4 \\ \mbox{Mult.: } A_{2}=-0.036 \ 14; \ A_{4}=0.023 \ 19 \ in \ ^{112}Cd(p,n\gamma) \ (1983Ko12); \\ pol=-0.32 \ 7 \ in \ ^{112}Cd(p,n\gamma) \ (1983Ko12); \ \alpha(K)exp=0.00086 \ 9, \\ \mbox{weighted average of } 0.00083 \ 13 \ in \ ^{109}Ag(\alpha,n\gamma) \ (1988Ki04) \\ \mbox{and } 0.00088 \ 12 \ in \ ^{112}Cd(p,n\gamma) \ (1988Ki04). \end{array}$
1151.26	$(4,5)^+$	421.39# 8	100#	729.87	$(3)^{+}$			
1212.16	(0-,1-,2-)	293.32# 8	100#	918.84	(1,2)-	E2,M1	0.0277	$\alpha(K)=0.0240 \ 4; \ \alpha(L)=0.00295 \ 5; \ \alpha(M)=0.000572 \ 8 \\ \alpha(N)=0.0001049 \ 15; \ \alpha(O)=7.82\times10^{-6} \ 11 \\ Mult: \ \alpha(K)=0.030 \ 5 \ in \ ^{112}Cd(p,nz) \ (1988Ki04)$
1212 25	$(1^+ 2^+ 3^+)$	149 46 [#] 8	24 # 2	1062.90	3+			$Munt.: u(K)exp=0.050 \ 5 \ m Cu(p,ny) (1900K104).$
1212.23	(1,2,5)	$283.56^{\#}.8$	$24^{\pm} 2$	928.67	$(0 \ 1 \ 2)^{-}$			
		285.50^{-0}	$100^{\#} 4$	924.66	(0,1,2) $(1,2,3)^{-}$			
		483 25 [#] 8	$67^{\#} 4$	728.00	$(1,2,3)^{-}$			
1221.50	$(3.4)^+$	214.12 9	22.7	1007.42	(1,2) (4^+)			I_{α} : weighted average of 18.0 13 in ¹⁰⁹ Ag(α ,n γ) (1988Ki04) and
	(=, :)							$35.0 \ 25 \ \text{in}^{112} \text{Cd}(p,n\gamma) \ (1988 \text{Ki} 04).$
		765.06 4	100 4	456.426	(3)+	M1	0.00265	$\alpha(K)=0.00231 4; \alpha(L)=0.000275 4; \alpha(M)=5.32\times10^{-5} 8 \\ \alpha(N)=9.78\times10^{-6} 14; \alpha(O)=7.37\times10^{-7} 11 \\ \text{Mult: } \alpha(K) = 0.0025 4 \text{ in } 109 \text{ Ag}(\alpha, \alpha, \alpha) (1088 \text{ Ki04})$
1250.89	(0 to 3) ⁺	326.19 <i>10</i>	100 20	924.66	(1,2,3) ⁻	E1	0.00653	α(K) = 0.0025 + 31 - Ag(a,hγ) (1268K104). α(K) = 0.00569 + 3; α(L) = 0.000683 10; α(M) = 0.0001317 19 $ α(N) = 2.40 \times 10^{-5} 4; α(O) = 1.708 \times 10^{-6} 24 $ $ I_{\gamma}: 18\% \text{ from } I\gamma(521.94) \text{ in } ^{112}Cd(p,nγ) (1988Ki04). $ Mult.: $ α(K) \exp \le 0.012 \text{ in } ^{112}Cd(p,nγ) (1988Ki04). $
12(0.17	(0,1,0) =	521.94 8	100 30	728.978	$(1,2)^{-}$		0.00/05	
1260.47	(0,1,2) ⁻	531.44 11	83 9	728.978	(1,2)-	M1,E2	0.00627	$\alpha(K)=0.00546\ 8;\ \alpha(L)=0.000658\ 10;\ \alpha(M)=0.0001273\ 18$ $\alpha(N)=2.34\times10^{-5}\ 4;\ \alpha(O)=1.755\times10^{-6}\ 25$ Mult : $\alpha(K)$ evp=0.006 2 in ¹¹² Cd(p.px) (1988Ki04)
		1260.51 11	100 17	0.0	1+			$Mult.: \ u(K)exp = 0.000 \ 2 \ II \qquad Cu(p,IV) \ (1900K)OV).$
1261.57	$(0 \text{ to } 4)^+$	666.6 1	20 5	594.888	2+			
		1054.92 10	100 8	206.717	(2)+	M1,E2	1.28×10^{-3}	$\alpha(K)=0.001117 \ 16; \ \alpha(L)=0.0001320 \ 19; \ \alpha(M)=2.55\times10^{-5} \ 4 \ \alpha(N)=4.68\times10^{-6} \ 7; \ \alpha(O)=3.54\times10^{-7} \ 5 \ Mult: \ \alpha(K)\exp=0.0010 \ 2 \ in \ ^{112}Cd(p, p_X) \ (1988Ki04).$
1279.67	$(0 \text{ to } 3)^+$	823.22 [#] 8	88 [#] 13	456.426	$(3)^{+}$			
	(0 10 2)	1073.01 [#] 8	100 [#] 6	206.717	$(2)^+$	M1.E2	1.23×10^{-3}	$\alpha(K)=0.001076\ 15;\ \alpha(L)=0.0001271\ 18;\ \alpha(M)=2.45\times10^{-5}\ 4$
					~ /	,		α (N)=4.51×10 ⁻⁶ 7; α (O)=3.41×10 ⁻⁷ 5 Mult.: α (K)exp=0.0011 2 in ¹¹² Cd(p,n γ) (1988Ki04).
		1279.65 5		0.0	1^{+}			E_{γ} : from ¹¹² Cd(p,n γ).
1286.31	(3,4)-	223.51 [#] 8	100 [#] 6	1062.90	3+	E1	0.0180	α (K)=0.01570 22; α (L)=0.00190 3; α (M)=0.000367 6 α (N)=6.65×10 ⁻⁵ 10; α (O)=4.63×10 ⁻⁶ 7 Mult.: α (K)exp=0.019 5 in ¹¹² Cd(p,n γ) (1988Ki04).

					Ad	lopted Lev	vels, Gammas	(continued)
						$\gamma(^1$	¹² In) (continue	ed)
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	α ^a	Comments
1286.31 1286.93	$(3,4)^{-} (3^{+},4^{+},5^{+})$	367.37 [#] 8 279.51 <i>3</i>	80 [#] 4 100	918.84 1007.42	$(1,2)^{-}$ (4^{+})	M1	0.0313	α (K)=0.0272 4; α (L)=0.00335 5; α (M)=0.000649 9 α (N)=0.0001189 17; α (O)=8.87×10 ⁻⁶ 13
1388.90	(10 ⁻)	588.34 <i>3</i>	100	800.56	(9 ⁻)	M1,E2	0.00491	Mult.: $\alpha(K)\exp=0.0295$ in ¹⁰⁹ Ag($\alpha,n\gamma$) (1988Ki04). $\alpha(K)=0.004286; \alpha(L)=0.0005148; \alpha(M)=9.94\times10^{-5}14$ $\alpha(N)=1.82\times10^{-5}3; \alpha(O)=1.372\times10^{-6}20$ Mult.: DCO=0.62 10 in ¹¹⁰ Pd(⁷ Li,5n\gamma) (2011He04) and 0.967 in ¹⁰⁰ Mo(¹⁶ O,p3n\gamma) (2012Tr01); pol=-0.03723 in ¹⁰⁰ Mo(¹⁶ O,p3n\gamma) (2012Tr01); $\alpha(K)\exp=0.004611$ in ¹⁰⁹ Ag($\alpha,n\gamma$) (1988Ki04).
1754.90	(9 ⁺)	1084.8 [@] 3	45.0 [@] 3	670.23	(8+)	M1	1.20×10 ⁻³	$\alpha(K)=0.001050 \ 15; \ \alpha(L)=0.0001240 \ 18; \ \alpha(M)=2.40\times10^{-5} \ 4$ $\alpha(N)=4.40\times10^{-6} \ 7; \ \alpha(O)=3.33\times10^{-7} \ 5$ Mult.: DCO=1.22 \ 10 in \ ^{100}Mo(^{16}O,p3n\gamma) \ (2012Tr01); \ Also: DCO=0.75 \ 11 in \ ^{110}Pd(^{7}Li,5n\gamma) \ (2011He04); \ pol=-0.10 \ 6 in \ ^{100}Mo(^{16}O,p3n\gamma) \ (2012Tr01).
		1404.0 [@] 3	100 [@] 4	350.80	(7)+	E2	6.42×10 ⁻⁴	$\alpha(K)=0.000517 \ 8; \ \alpha(L)=6.13\times10^{-5} \ 9; \ \alpha(M)=1.184\times10^{-5} \ 17$ $\alpha(N)=2.17\times10^{-6} \ 3; \ \alpha(O)=1.611\times10^{-7} \ 23; \ \alpha(IPF)=4.99\times10^{-5} \ 7$ Mult.: DCO=1.96 <i>15</i> in ¹⁰⁰ Mo(¹⁶ O,p3n\gamma) (2012Tr01); Also: DCO=1.60 7 in ¹¹⁰ Pd(⁷ Li,5n\gamma) (2011He04); pol=+0.08 3 in ¹⁰⁰ Mo(¹⁶ O,p3n\gamma) (2012Tr01).
2011.9	(10)-	1398.0 ^{&} 5	100	613.82	(8)-	(E2)	6.46×10 ⁻⁴	$\alpha(K)=0.000521 \ 8; \ \alpha(L)=6.19\times10^{-5} \ 9; \ \alpha(M)=1.195\times10^{-5} \ 17$ $\alpha(N)=2.19\times10^{-6} \ 3; \ \alpha(O)=1.625\times10^{-7} \ 23; \ \alpha(IPF)=4.81\times10^{-5} \ 7$ Mult.: DCO=1.7 4 in ¹¹⁰ Pd(⁷ Li,5n\gamma) (2011He04).
2070.7	(11 ⁻)	682 ^{&}		1388.90	(10 ⁻)	(M1)	0.00346	$\alpha(K)=0.00302 5; \alpha(L)=0.000361 5; \alpha(M)=6.98\times10^{-5} 10$ $\alpha(N)=1.281\times10^{-5} 18; \alpha(O)=9.65\times10^{-7} 14$ Mult : DCO=1.18 5 in ¹¹⁰ Pd(⁷ Li 5nx) (2012Li51)
		1270 ^{&}		800.56	(9 ⁻)	(E2)	7.44×10 ⁻⁴	$\alpha(K)=0.000633 \ 9; \ \alpha(L)=7.56\times10^{-5} \ 11; \ \alpha(M)=1.460\times10^{-5} \ 21 \\ \alpha(N)=2.67\times10^{-6} \ 4; \ \alpha(O)=1.98\times10^{-7} \ 3; \ \alpha(IPF)=1.777\times10^{-5} \ 25 \\ Mult : DCO=1.28 \ 25 in \ ^{110}Pd(^{7}Li \ 5nr) \ (2012Li \ 51)$
2113.15	(11-)	724.3 [@] 3	100 [@] 6	1388.90	(10 ⁻)	M1	0.00301	$\begin{aligned} \alpha(\text{K}) = 0.00262 \ 4; \ \alpha(\text{L}) = 0.000313 \ 5; \ \alpha(\text{M}) = 6.05 \times 10^{-5} \ 9 \\ \alpha(\text{N}) = 1.111 \times 10^{-5} \ 16; \ \alpha(\text{O}) = 8.37 \times 10^{-7} \ 12 \\ \text{Mult.: DCO} = 1.02 \ 6 \ \text{in}^{\ 100} \text{Mo}(^{16}\text{O},\text{p3n\gamma}) \ (2012\text{Tr01}); \ \text{Also:} \\ \text{DCO} = 0.70 \ 14 \ \text{in}^{\ 110} \text{Pd}(^{7}\text{Li},\text{5n\gamma}) \ (2011\text{He04}); \ \text{pol} = -0.057 \ 25 \ \text{in}^{\ 100} \text{Mo}(^{16}\text{O},\text{p3n\gamma}) \ (2012\text{Tr01}). \end{aligned}$
		1312.5 [@] 3	24.8 [@] 4	800.56	(9 ⁻)	E2	7.05×10 ⁻⁴	$\begin{aligned} &\alpha(\text{K}) = 0.000592 \ 9; \ \alpha(\text{L}) = 7.05 \times 10^{-5} \ 10; \ \alpha(\text{M}) = 1.362 \times 10^{-5} \ 19 \\ &\alpha(\text{N}) = 2.49 \times 10^{-6} \ 4; \ \alpha(\text{O}) = 1.85 \times 10^{-7} \ 3; \ \alpha(\text{IPF}) = 2.61 \times 10^{-5} \ 4 \\ &\text{Mult.: DCO} = 1.69 \ 14 \ \text{in}^{\ 100} \text{Mo}(^{16}\text{O},\text{p3n}\gamma) \ (2012\text{Tr}01); \ \text{Also:} \\ &\text{DCO} = 1.7 \ 4 \ \text{in}^{\ 110} \text{Pd}(^{7}\text{Li},\text{5n}\gamma) \ (2011\text{He}04); \ \text{pol} = +0.24 \ 4 \ \text{in}^{\ 100} \text{Mo}(^{16}\text{O},\text{p3n}\gamma) \ (2012\text{Tr}01). \end{aligned}$

From ENSDF

					Adopte	d Levels, (Gammas (cont	tinued)
						$\gamma(^{112}\text{In})$	(continued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	α^{a}	Comments
2115.28	(10 ⁺)	360.4 [@] 7	8.12 [@] 13	1754.90	(9 ⁺)	M1	0.01635	α(K)=0.01422 21; α(L)=0.00173 3; α(M)=0.000336 5 α(N)=6.16×10-5 10; α(O)=4.61×10-6 7 Mult.: DCO=1.21 11 in 100Mo(16O,p3nγ) (2012Tr01); Also: DCO=1.10 15 in 110Pd(7Li,5nγ) (2011He04).
		1445.2 [@] 3	100.0 [@] 5	670.23	(8 ⁺)	E2	6.22×10 ⁻⁴	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.000488 \ 7; \ \alpha(\mathrm{L}) = 5.78 \times 10^{-5} \ 8; \ \alpha(\mathrm{M}) = 1.116 \times 10^{-5} \ 16 \\ \alpha(\mathrm{N}) = 2.04 \times 10^{-6} \ 3; \ \alpha(\mathrm{O}) = 1.520 \times 10^{-7} \ 22; \ \alpha(\mathrm{IPF}) = 6.27 \times 10^{-5} \ 9 \\ \mathrm{Mult.: \ DCO} = 1.69 \ 12 \ \mathrm{in}^{\ 100} \mathrm{Mo}(^{16}\mathrm{O},\mathrm{p3n\gamma}) \ (2012\mathrm{Tr}01); \ \mathrm{Also:} \\ \mathrm{DCO} = 1.50 \ 4 \ \mathrm{in}^{\ 110} \mathrm{Pd}(^{7}\mathrm{Li},\mathrm{5n\gamma}) \ (2011\mathrm{He}04); \ \mathrm{pol} = +0.06 \ 3 \ \mathrm{in}^{\ 100} \mathrm{Mo}(^{16}\mathrm{O},\mathrm{p3n\gamma}) \ (2012\mathrm{Tr}01). \end{array} $
2374.9	(11 ⁻ ,12 ⁻)	986 <mark>&</mark>	100	1388.90	(10 ⁻)			
2441.2		326 &	100	2115.28	(10+)			
2493.2	(11 ⁻)	1104.2 [@] 3	100 [@]	1388.90	(10 ⁻)	M1	1.16×10 ⁻³	$\begin{array}{l} \alpha(\mathrm{K}) = 0.001010 \ 15; \ \alpha(\mathrm{L}) = 0.0001192 \ 17; \ \alpha(\mathrm{M}) = 2.30 \times 10^{-5} \ 4 \\ \alpha(\mathrm{N}) = 4.23 \times 10^{-6} \ 6; \ \alpha(\mathrm{O}) = 3.20 \times 10^{-7} \ 5; \ \alpha(\mathrm{IPF}) = 4.86 \times 10^{-7} \ 9 \\ \mathrm{Mult.: \ DCO} = 1.16 \ 9 \ \mathrm{in}^{\ 100} \mathrm{Mo}(^{16} \mathrm{O}, \mathrm{p3n\gamma}) \ (2012 \mathrm{Tr}01) \ \mathrm{pol} = -0.02 \\ 5 \ \mathrm{in}^{\ 100} \mathrm{Mo}(^{16} \mathrm{O}, \mathrm{p3n\gamma}) \ (2012 \mathrm{Tr}01). \end{array}$
2652.7	(13 ⁻)	582 ^{&} 1	100	2070.7	(11 ⁻)	E2	0.00459	α (K)=0.00396 6; α (L)=0.000514 8; α (M)=9.99×10 ⁻⁵ 15 α (N)=1.81×10 ⁻⁵ 3; α (O)=1.252×10 ⁻⁶ 19 Mult.: DCO=1.52 6 in ¹¹⁰ Pd(⁷ Li,5n γ) (2012Li51).
2665.59	(12) ⁻	290 ^{&}		2374.9	(11 ⁻ ,12 ⁻)			
		552.4 [@] 3	100.0 [@] 7	2113.15	(11 ⁻)	M1	0.00571	α (K)=0.00497 7; α (L)=0.000599 9; α (M)=0.0001158 17 α (N)=2.13×10 ⁻⁵ 3; α (O)=1.597×10 ⁻⁶ 23 Mult.: DCO=1.02 6 in ¹⁰⁰ Mo(¹⁶ O,p3n γ) (2012Tr01); Also: 0.98 7 in ¹¹⁰ Pd(⁷ Li,5n γ) (2011He04); pol=-0.10 4 in ¹⁰⁰ Mo(¹⁶ O,p3n γ) (2012Tr01).
		1276.7 [@] 3	33.0 [@] 3	1388.90	(10 ⁻)	E2	7.37×10 ⁻⁴	$\begin{aligned} &\alpha(\mathrm{K}) = 0.000626 \ 9; \ \alpha(\mathrm{L}) = 7.48 \times 10^{-5} \ 11; \ \alpha(\mathrm{M}) = 1.444 \times 10^{-5} \ 21 \\ &\alpha(\mathrm{N}) = 2.64 \times 10^{-6} \ 4; \ \alpha(\mathrm{O}) = 1.96 \times 10^{-7} \ 3; \ \alpha(\mathrm{IPF}) = 1.90 \times 10^{-5} \ 3 \\ &\mathrm{I}_{\gamma}: \ 45 \ 5 \ \mathrm{in} \ ^{110}\mathrm{Pd}(^{7}\mathrm{Li}, 5n\gamma). \\ &\mathrm{Mult.: \ DCO} = 1.85 \ 18 \ \mathrm{in} \ ^{100}\mathrm{Mo}(^{16}\mathrm{O}, \mathrm{p3n\gamma}) \ (2012\mathrm{Tr}01); \ \mathrm{Also:} \\ &1.46 \ 11 \ \mathrm{in} \ ^{110}\mathrm{Pd}(^{7}\mathrm{Li}, 5n\gamma) \ (2011\mathrm{He}04); \ \mathrm{pol} = +0.16 \ 7 \ \mathrm{in} \\ &100\mathrm{Mo}(^{16}\mathrm{O}, \mathrm{p3n\gamma}) \ (2012\mathrm{Tr}01). \end{aligned}$
2756.1	(12 ⁻)	643 ^{&} 1367 ^{&}		2113.15 1388.90	(11 ⁻) (10 ⁻)			
2802.05	(11+)	361 ^{&} 686.9 [@] 3	100.0 [@] 6	2441.2 2115.28	(10 ⁺)	M1	0.00340	α (K)=0.00297 5; α (L)=0.000355 5; α (M)=6.86×10 ⁻⁵ 10 α (N)=1.260×10 ⁻⁵ 18; α (O)=9.49×10 ⁻⁷ 14 Mult.: DCO=1.03 7 in ¹⁰⁰ Mo(¹⁶ O,p3n γ) (2012Tr01); Also: 0.92 5 in ¹¹⁰ Pd(⁷ Li,5n γ) (2011He04); pol=-0.08 3 (2012Tr01).

I	Adopted Levels, Gammas (continued)											
	γ ⁽¹¹² In) (continued)											
	E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [‡]	α^{a}	Comments			
	2802.05	(11 ⁺)	790.0 ^{&} 5	19.2 14	2011.9	(10)-	(E1)	8.22×10 ⁻⁴	$\alpha(K)=0.000718 \ I0; \ \alpha(L)=8.41\times10^{-5} \ I2; \ \alpha(M)=1.621\times10^{-5} \ 23$ $\alpha(N)=2.97\times10^{-6} \ 5; \ \alpha(O)=2.19\times10^{-7} \ 3$ Mult.: DCO=0.92 \ I8 in 110 Pd(7 Li.5ny) (2011He04).			
			1047.4 [@] 7	16.9 [@] 2	1754.90	(9 ⁺)	E2	1.09×10 ⁻³	$\begin{aligned} \alpha(\text{K}) = 0.000952 \ 14; \ \alpha(\text{L}) = 0.0001153 \ 17; \ \alpha(\text{M}) = 2.23 \times 10^{-5} \ 4 \\ \alpha(\text{N}) = 4.08 \times 10^{-6} \ 6; \ \alpha(\text{O}) = 2.98 \times 10^{-7} \ 5 \\ \text{I}_{\gamma}: \ 24.1 \ 19 \ \text{in}^{-110} \text{Pd}(^7 \text{Li}, 5n\gamma) \ (2011 \text{He}04). \\ \text{Mult.: DCO} = 1.78 \ 13 \ \text{in}^{-100} \text{Mo}(^{16}\text{O}, p3n\gamma) \ (2012 \text{Tr}01); \ \text{Also: } 1.69 \ 14 \\ \text{in}^{-110} \text{Pd}(^7 \text{Li}, 5n\gamma) \ (2011 \text{He}04); \ \text{pol} = +0.12 \ 4 \ \text{in}^{-100} \text{Mo}(^{16}\text{O}, p3n\gamma) \\ (2012 \text{Tr}01). \end{aligned}$			
	2964.0	(12 ⁻)	1412.9 ^{&} 5 952 ^{&} 1575 ^{&}	4.4 5	1388.90 2011.9 1388.90	(10^{-}) $(10)^{-}$ (10^{-})						
	3062.6	(12+)	260.6 [@] 3	100.0 [@] 4	2802.05	(11 ⁺)	M1	0.0376	α (K)=0.0326 5; α (L)=0.00402 6; α (M)=0.000780 12 α (N)=0.0001430 21; α (O)=1.066×10 ⁻⁵ 16 Mult.: DCO=0.97 7 in ¹⁰⁰ Mo(¹⁶ O,p3n γ) (2012Tr01); Also: 1.03 6 in ¹¹⁰ Pd(⁷ Li,5n γ) (2011He04); pol=-0.03 4 in ¹⁰⁰ Mo(¹⁶ O,p3n γ) (2012Tr01).			
			947.4 [@] 7	7.4 [@] 4	2115.28	(10 ⁺)	(E2)	1.37×10 ⁻³	$\begin{aligned} &\alpha(K) = 0.001189 \ 17; \ \alpha(L) = 0.0001453 \ 21; \ \alpha(M) = 2.81 \times 10^{-5} \ 4 \\ &\alpha(N) = 5.14 \times 10^{-6} \ 8; \ \alpha(O) = 3.73 \times 10^{-7} \ 6 \\ &\text{Mult.: DCO} = 1.32 \ 14 \ \text{in} \ {}^{110}\text{Pd}({}^{7}\text{Li},5n\gamma) \ (2011\text{He04}). \\ &\text{I}_{\gamma}: \ 11.8 \ 8 \ \text{in} \ {}^{110}\text{Pd}({}^{7}\text{Li},5n\gamma) \ (2011\text{He04}). \end{aligned}$			
	3102.7	$(13)^{-}$	$949.1^{\circ}7$ $437.1^{\circ}3$	$12.0^{\textcircled{0}}{5}$	2113.15	(11^{-}) $(12)^{-}$	M1	0.01010	$\alpha(K) = 0.00879$ 13: $\alpha(L) = 0.001066$ 15: $\alpha(M) = 0.000206$ 3			
	5102.7	(13)	437.1 3	100	2003.39	(12)	1011	0.01010	$\begin{aligned} \alpha(N) = 0.00379 15, \alpha(L) = 0.001000 15, \alpha(M) = 0.000200 5 \\ \alpha(N) = 3.79 \times 10^{-5} 6; \alpha(O) = 2.84 \times 10^{-6} 4 \\ \text{Mult.: DCO} = 0.98 6 \text{in}^{100} \text{Mo}(^{16}\text{O},\text{p3n}\gamma) (2012 \text{Tr}01); \text{Also: } 1.05 10 \\ \text{in}^{110} \text{Pd}(^7 \text{Li},\text{5n}\gamma) (2011 \text{He}04); \text{pol} = -0.01 4 \text{in}^{100} \text{Mo}(^{16}\text{O},\text{p3n}\gamma) \\ (2012 \text{Tr}01). \end{aligned}$			
	3126.9	(13)-	461.4 [@] 3	100 [@]	2665.59	(12) ⁻	M1	0.00884	$\begin{aligned} &\alpha(\text{K}) = 0.00770 \ 11; \ \alpha(\text{L}) = 0.000932 \ 14; \ \alpha(\text{M}) = 0.000180 \ 3 \\ &\alpha(\text{N}) = 3.31 \times 10^{-5} \ 5; \ \alpha(\text{O}) = 2.48 \times 10^{-6} \ 4 \\ &\text{Mult.: DCO=0.80 \ 5 in } \ ^{100}\text{Mo}(^{16}\text{O},\text{p3n}\gamma) \ (2012\text{Tr}01); \ \text{Also: } 0.98 \ 7 \ \text{in} \\ & \ ^{110}\text{Pd}(^7\text{Li},\text{5n}\gamma) \ (2011\text{He}04); \ \text{pol} = -0.13 \ 3 \ \text{in} \ ^{100}\text{Mo}(^{16}\text{O},\text{p3n}\gamma) \\ &(2012\text{Tr}01). \end{aligned}$			
	3153.5	(12)-	487.7 [@] 7 660.2 [@] 3	18.8 [@] 9 100 [@] 3	2665.59 2493.2	(12) ⁻ (11 ⁻)	M1	0.00374	$\alpha(K)=0.00326\ 5;\ \alpha(L)=0.000390\ 6;\ \alpha(M)=7.54\times10^{-5}\ 11$ $\alpha(N)=1.384\times10^{-5}\ 20;\ \alpha(O)=1.042\times10^{-6}\ 15$ Mult.: DCO=0.94 9 in ¹⁰⁰ Mo(¹⁶ O,p3n\gamma) (2012Tr01); pol=-0.05 5 in ¹⁰⁰ Mo(¹⁶ O,p3n\gamma) (2012Tr01);			
			779 ^{&}		2374.9	(11 ⁻ ,12 ⁻)			(-0,psir)(20121r01).			

 $^{112}_{49} \mathrm{In}_{63}$ -14

γ ⁽¹¹² In) (continued)										
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α^{a}	Comments		
3153.5	(12)-	1041 ^{&}		2113.15	(11 ⁻)					
		1765 ^{&}	_	1388.90	(10 ⁻)					
3190.8	(13 ⁺)	128.3 [@] 3	100 [@]	3062.6	(12 ⁺)	(M1)	0.254	α (K)=0.220 4; α (L)=0.0277 5; α (M)=0.00537 9 α (N)=0.000984 16; α (O)=7.27×10 ⁻⁵ 12 Mult.: DCO; 0.21 13 in ¹⁰⁰ Mo(¹⁶ O,p3n γ) (2012Tr01); Also: 1.03 10 in ¹¹⁰ Pd(⁷ Li,5n γ) (2011He04).		
3191.0	$(11^{-}, 12^{-})$	1802 ^{&}	100	1388.90	(10^{-})					
3262.3	(14 ⁻)	135.3 [@] 7	22.9 [@] 4	3126.9	(13) ⁻	(M1)	0.219 5	$\alpha(K)=0.190 4$; $\alpha(L)=0.0238 5$; $\alpha(M)=0.00463 10$ $\alpha(N)=0.000848 18$; $\alpha(O)=6.28\times10^{-5} 13$ Mult.: DCO=1.09 11 in ¹⁰⁰ Mo(¹⁶ O,p3n γ) (2012Tr01); Also: 1.20 13 in ¹¹⁰ Pd(⁷ Li,5n γ) (2011He04).		
		159.6 [@] 3	100.0 [@] 7	3102.7	(13)-	(M1)	0.1392	α (K)=0.1206 <i>18</i> ; α (L)=0.01509 <i>23</i> ; α (M)=0.00293 <i>5</i> α (N)=0.000537 <i>8</i> ; α (O)=3.98×10 ⁻⁵ <i>6</i> Mult.: DCO=0.97 <i>9</i> in ¹⁰⁰ Mo(¹⁶ O,p3n γ) (2012Tr01); Also: 1.23 <i>11</i> in ¹¹⁰ Pd(⁷ Li,5n γ) (2011He04).		
3293.1	(12 ⁺)	102 ^{&}		3191.0	(11 ⁻ ,12 ⁻)					
		329&		2964.0	(12^{-})					
		491 ^{&}		2802.05	(11^{+})					
		800		2493.2	(11 ⁻)					
3296.1	(12^{+})	332		2964.0	(12 ⁻)					
		494 ^{&}		2802.05	(11^{+})					
		1181		2115.28	(10^{+})					
		1183		2113.15	(11 ⁻)					
3327.2	(12 ⁻)	363 ×		2964.0	(12 ⁻)					
		1214 ^{oc}	0	2113.15	(11 ⁻)					
3347.7	(13 ⁻)	194.2 ^w 3	89.3 ^w 8	3153.5	(12) ⁻	(M1)	0.0818	$\alpha(K)=0.0710 \ 11; \ \alpha(L)=0.00883 \ 13; \ \alpha(M)=0.00171 \ 3$ $\alpha(N)=0.000314 \ 5; \ \alpha(O)=2.33\times10^{-5} \ 4$ Mult.: D from DCO=0.99 9 in 100 Mo(16 O,p3n γ) (2012Tr01); (M1) from assumed by the evaluators; band structure.		
		681.9 [@] 3	100.0 [@] 16	2665.59	(12)-	(M1)	0.00346	$\alpha(K)=0.00302 5; \alpha(L)=0.000361 5; \alpha(M)=6.98 \times 10^{-5} 10$ $\alpha(N)=1.282 \times 10^{-5} 18; \alpha(O)=9.65 \times 10^{-7} 14$		
		P						Mult.: D from DCO=0.95 6 in ${}^{100}Mo({}^{16}O,p3n\gamma)$ (2012Tr01); (M1) from assumed by the evaluators; band structure.		
		973 °	Ø	2374.9	(11 ⁻ ,12 ⁻)					
3369.3	(14 ⁺)	178.5 [@] 3	100 [@]	3190.8	(13 ⁺)	(M1)	0.1027	α (K)=0.0890 <i>14</i> ; α (L)=0.01110 <i>17</i> ; α (M)=0.00216 <i>4</i> α (N)=0.000395 <i>6</i> ; α (O)=2.93×10 ⁻⁵ <i>5</i> Mult.: D from DCO=1.06 <i>9</i> in ¹⁰⁰ Mo(¹⁶ O,p3n γ) (2012Tr01) and 1.00 <i>8</i>		

 $^{112}_{49} In_{63}$ -15

1			Adopted Levels, Gammas (continued)							
γ ⁽¹¹² In) (continued)										
$E_i(level)$	J_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	α^{a}	Comments			
							in 110 Pd(7 Li,5n γ) (2011He04); (M1) assumed by the evaluators from the band structure.			
3378.0	(13 ⁻)	622 ^{&}	100	2756.1 (12 ⁻)						
3391.1	[13 ⁺]	427 ^{&}	100	2964.0 (12 ⁻)						
3457.7	(15 ⁻)	805 ^{&} 1		2652.7 (13 ⁻)	E2	0.00200	α (K)=0.001737 25; α (L)=0.000216 3; α (M)=4.18×10 ⁻⁵ 6 α (N)=7.62×10 ⁻⁶ 11; α (O)=5.46×10 ⁻⁷ 8 Mult.: DCO=1.86 13 (2012Li51).			
3523.1	(13 ⁺)	230 <mark>&</mark>	100	3293.1 (12 ⁺)						
3564.3	(13 ⁻)	237 <mark>&</mark>		3327.2 (12-)						
		808 <mark>&</mark>		2756.1 (12 ⁻)						
3584.1	(13 ⁺)	288 <mark>&</mark>	100	3296.1 (12 ⁺)						
3606.8	(15 ⁻)	344.6 [@] 3	100@	3262.3 (14-)	(M1)	0.0183	$\alpha(K)=0.01592\ 23;\ \alpha(L)=0.00195\ 3;\ \alpha(M)=0.000377\ 6$ $\alpha(N)=6.91\times10^{-5}\ 10;\ \alpha(O)=5.17\times10^{-6}\ 8$ Mult.: D from DCO=1.01 9 in ¹⁰⁰ Mo(¹⁶ O,p3n γ) (2012Tr01); Also: 1.06 8 in ¹¹⁰ Pd(⁷ Li 5n γ) (2011He04); assumed (M1) by the evaluators from the hand			
							structure.			
3642.0	(15 ⁺)	272.7 [@] 3	100@	3369.3 (14+)	M1	0.0334	B(M1)(W.u.)=1.8 4 $\alpha(K)=0.0290 5; \ \alpha(L)=0.00357 6; \ \alpha(M)=0.000692 \ 10$ $\alpha(N)=0.0001269 \ 19; \ \alpha(O)=9.46\times10^{-6} \ 14$ Mult.: DCO=0.91 6 in ¹⁰⁰ Mo(¹⁶ O,p3n\gamma) (2012Tr01); Also: 0.97 7 in			
3644.7	(14 ⁻)	296.9 [@] 3	100 [@]	3347.7 (13 ⁻)	M1	0.0268	$\alpha(K)=0.0233 \ 4; \ \alpha(L)=0.00286 \ 4; \ \alpha(M)=0.000554 \ 8 \\ \alpha(N)=0.0001016 \ 15; \ \alpha(O)=7.58\times10^{-6} \ 11 \\ Mult.: \ DCO=0.86 \ 7 \ in \ ^{100}Mo(^{16}O,p3n\gamma) \ (2012Tr01); \ pol=-0.04 \ 4 \ in \ ^{100}Mo(^{16}O,p3n\gamma) \ (2012Tr01).$			
		519 &		3126.9 (13)-						
3685.1	[14 ⁺]	294 <mark>&</mark>	100	3391.1 [13 ⁺]						
3769.7	(14 ⁻)	205 <mark>&</mark>	100	3564.3 (13 ⁻)						
3853.1	(14^{+})	330 <mark>&</mark>	100	3523.1 (13+)						
3854.9	(13 ⁻ to 15 ⁻)	477 ^{&}	100	3378.0 (13-)						
3862.9	(14 ⁻)	485 <mark>&</mark>	100	3378.0 (13-)						
3991.8	(15 ⁻)	347.1 [@] 3	100@	3644.7 (14 ⁻)	(M1)	0.0180	B(M1)(W.u.)=1.0 +4-6 α (K)=0.01563 23; α (L)=0.00191 3; α (M)=0.000370 6 α (N)=6.79×10 ⁻⁵ 10; α (O)=5.07×10 ⁻⁶ 8 Mult.: DCO=1.01 9 in ¹⁰⁰ Mo(¹⁶ O,p3n\gamma) (2012Tr01).			
4035.2	(16 ⁺)	393.3 [@] 3	100@	3642.0 (15 ⁺)	M1	0.01313	B(M1)(W.u.)=1.05 22 α (K)=0.01142 17; α (L)=0.001390 20; α (M)=0.000269 4 α (N)=4.94×10 ⁻⁵ 7; α (O)=3.70×10 ⁻⁶ 6			

				Adopted Levels, Gammas (continued)						
							$\gamma(^{112}\text{In})$ (cont	tinued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	J_f^π	Mult. [‡]	α^{a}	Comments		
								Mult.: DCO=1.10 7 in ¹⁰⁰ Mo(¹⁶ O,p3nγ) (2012Tr01); Also: 0.90 10 in ¹¹⁰ Pd(⁷ Li,5nγ) (2011He04); pol=-0.14 3 in ¹⁰⁰ Mo(¹⁶ O,p3nγ) (2012Tr01).		
4041.1	(14^{+})	457 <mark>&</mark>	100	3584.1 (1	3+)					
4064.1	[15+]	379 <mark>&</mark>	100	3685.1 [1	4+]					
4105.0	(15 ⁻)	335 &	100	3769.7 (1	4-)					
4166.9	(15^{+})	976 <mark>&</mark>	100	3190.8 (1	(3 ⁺)					
4170.1	(15^{+})	317 <mark>&</mark>	100	3853.1 (1	(4 ⁺)					
4203.9	(15^{-})	341 ^{&}	100	3862.9 (1	4-)					
4354.2	(16 ⁻)	362.4 [@] 7	100@	3991.8 (1	.5-)	(M1)	0.01613	B(M1)(W.u.)>1.1 α (K)=0.01402 21; α (L)=0.00171 3; α (M)=0.000331 5 α (N)=6.08×10 ⁻⁵ 9; α (O)=4.55×10 ⁻⁶ 7 Mult.: DCO=0.91 7 in ¹⁰⁰ Mo(¹⁶ O,p3n γ) (2012Tr01).		
4390.7	(17 ⁻)	933 ^{&} 1	100	3457.7 (1	5-)	E2	1.42×10 ⁻³	α (K)=0.001231 <i>18</i> ; α (L)=0.0001507 <i>22</i> ; α (M)=2.92×10 ⁻⁵ <i>5</i> α (N)=5.33×10 ⁻⁶ <i>8</i> ; α (O)=3.87×10 ⁻⁷ <i>6</i> Mult.: DCO=2.01 <i>11</i> (2012Li51).		
4394.7	(16 ⁻)	787.9 [@] 7	100@	3606.8 (1	5-)	M1	0.00248	α (K)=0.00216 3; α (L)=0.000257 4; α (M)=4.97×10 ⁻⁵ 7 α (N)=9.13×10 ⁻⁶ 13; α (O)=6.88×10 ⁻⁷ 10 Mult.: DCO=0.89 7 in ¹⁰⁰ Mo(¹⁶ O,p3n γ) (2012Tr01); Also: 0.54 13 in ¹¹⁰ Pd(⁷ Li,5n γ) (2011He04).		
4408.8	(15^{-})	554 <mark>&</mark>		3854.9 (1	3^{-} to 15^{-})					
	. ,	764 <mark>&</mark>		3644.7 (1	4-)					
4452.1	(16^{+})	388 <mark>&</mark>	100	4064.1 [1	5+1					
4551.1	(16^{+})	381 &	100	4170.1 (1	5 ⁺)					
4552.4	(16^{-})	447 <mark>&</mark>	100	4105.0 (1	5-)					
4589.4	(17 ⁺)	554.2 3	100	4035.2 (1	.6+)	M1	0.00567	B(M1)(W.u.)=0.86 23 α (K)=0.00494 7; α (L)=0.000594 9; α (M)=0.0001149 17 α (N)=2.11×10 ⁻⁵ 3; α (O)=1.585×10 ⁻⁶ 23 Mult.: DCO=0.89 6 in ¹⁰⁰ Mo(¹⁶ O,p3nγ) (2012Tr01); Also: 0.80 11 in ¹¹⁰ Pd(⁷ Li,5nγ) (2011He04); pol=-0.16 4 in ¹⁰⁰ Mo(¹⁶ O,p3nγ) (2012Tr01).		
4678.6	(16 ⁻)	1072 ^{&}		3606.8 (1	5-)					
		1416 <mark>&</mark>		3262.3 (1	4-)					
4751.5	(16^{+})	1382 <mark>&</mark>	100	3369.3 (1	4 ⁺)					
4758.9	(17-)	404.7 7	100	4354.2 (1	.6-)	(M1)	0.01223	α (K)=0.01064 <i>16</i> ; α (L)=0.001293 <i>19</i> ; α (M)=0.000250 <i>4</i> α (N)=4.59×10 ⁻⁵ 7; α (O)=3.44×10 ⁻⁶ 5 Mult.: D from DCO=0.74 7 in ¹⁰⁰ Mo(¹⁶ O,p3n γ) (2012Tr01); (M1) assumed from the band structure		

From ENSDF

 $^{112}_{49} In_{63}$ -17

$\gamma(^{112}In)$ (continued)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	α^{a}	Comments			
4822.8	(16^{-})	414 ^{&}		4408.8 (15 ⁻)						
	(-)	619 <mark>&</mark>		4203.9 (15 ⁻)						
4917.1	[17 ⁺]	465 <mark>&</mark>	100	4452.1 (16 ⁺)						
5063.7	(17^{-})	385 &		4678.6 (16 ⁻)						
	. ,	1457 <mark>&</mark>		3606.8 (15 ⁻)						
5073.7	(17^{+})	322 ^{&}		4751.5 (16 ⁺)						
		521 ^{&}		4552.4 (16 ⁻)						
		1432 ^{&}		3642.0 (15 ⁺)						
5168.1	(18 ⁻)	409.2 [@] 7	100 [@]	4758.9 (17 ⁻)	(M1)	0.01190	α (K)=0.01035 <i>16</i> ; α (L)=0.001258 <i>19</i> ; α (M)=0.000244 <i>4</i> α (N)=4.47×10 ⁻⁵ <i>7</i> ; α (O)=3.35×10 ⁻⁶ <i>5</i>			
							Mult.: D from DCO=1.00 9 in $^{100}Mo(^{16}O,p3n\gamma)$ (2012Tr01); (M1) assumed from the band structure.			
5235.7	(19 ⁻)	845 <mark>&</mark> 1	100	4390.7 (17 ⁻)	(E2)	0.00178	$\alpha(K)=0.001548\ 22;\ \alpha(L)=0.000191\ 3;\ \alpha(M)=3.71\times10^{-5}\ 6$			
							$\alpha(N)=6.76\times10^{-6}\ 10;\ \alpha(O)=4.87\times10^{-7}\ 7$			
		8 7					Mult.: DCO=1.29 <i>19</i> (2011Li51).			
5272.8	(17^{-})	450 ^{cc}	100	4822.8 (16 ⁻)	D.(11	0.00210	(II) 0.000777 ((I) 0.0000201 5 (AD) ((A) 10-5 0			
5297.0	(181)	/0/.6 3	100	4589.4 (17)	[MI]	0.00318	$\alpha(\mathbf{K})=0.002/74; \alpha(\mathbf{L})=0.0003313; \alpha(\mathbf{M})=6.40\times10^{-5}9$			
							$a(N)=1.1/4\times10$ 17, $a(O)=8.84\times10$ 15 B(M1)(W,u,)>0.36			
							Mult.: DCO=0.88 16 in 110 Pd(7 Li,5n γ) (2011He04).			
5537.0	(18^{+})	463 <mark>&</mark>		5073.7 (17 ⁺)						
		1502 <mark>&</mark>		4035.2 (16 ⁺)						
5638.1	(19 ⁻)	470.0 [@] 7	100 [@]	5168.1 (18-)	(M1)	0.00845	α(K)=0.00736 11; α(L)=0.000890 13; α(M)=0.0001723 25			
							$\alpha(N)=3.16\times10^{-5}$ 5; $\alpha(O)=2.37\times10^{-6}$ 4			
		Q.					Mult.: D from DCO=0.92 7; assumed (M1) from the band structure.			
5773.8	(18 ⁻)	501 [°]	100	5272.8 (17 ⁻)						
6035.1	(19+)	738.0°C 5	100	5297.0 (18+)	(M1)	0.00288	$\alpha(K)=0.002514; \alpha(L)=0.0003005; \alpha(M)=5.79\times10^{-3}9$			
							$\alpha(N)=1.064\times10^{-7}$ <i>I</i> ; $\alpha(O)=8.01\times10^{-7}$ <i>I</i> Mult: DCO=0.86 <i>I</i> ; in ¹¹⁰ Pd(⁷ I; 5nc) (2011UcO4)			
6050.0	(10^{+})	522	100	5527.0 (19+)			Fu(L1,J117) (2011 ftc04).			
6155.8	(19)	922 ···	100	$5337.0(18^{\circ})$ $5235.7(10^{-})$	F2	1.46×10^{-3}	$\alpha(\mathbf{K}) = 0.001271$ 18: $\alpha(\mathbf{I}) = 0.0001558$ 23: $\alpha(\mathbf{M}) = 2.02 \times 10^{-5}$ 5			
0155.0	(21)	720 1	100	5255.7 (19)	Ľ4	1.40×10	$\alpha(N)=5.0127176, \alpha(L)=0.000155625, \alpha(M)=5.02\times10^{-5}5$ $\alpha(N)=5.51\times10^{-6}8; \alpha(O)=3.99\times10^{-7}6$ Mult.: DCO=2.21 41 (2012Li51).			
6322.8	(19 ⁻)	549 <mark>&</mark>	100	5773.8 (18-)						
6373.1	(20 ⁻)	735 <mark>&</mark>	100	5638.1 (19 ⁻)						
6412.0	(20^{+})	353 &	100	6059.0 (19+)						
6850.0	(21^{+})	438 <mark>&</mark>	100	6412.0 (20+)						

l

γ ⁽¹¹²In) (continued)</sup>

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
6859.8	(20 ⁻)	537 ^{&}	100	6322.8	(19 ⁻)
7148	(23 ⁻)	992 <mark>&</mark> 1	100	6155.8	(21^{-})
8328	(25 ⁻)	1180 ^{&} 1	100	7148	(23 ⁻)

[†] From ¹⁰⁹Ag(α ,n γ), unless otherwise noted.

[‡] From DCO and γ -ray polarization measurements, unless otherwise noted. [#] From ¹¹²Cd(p,n γ) (1988Ki04). [@] From ¹⁰⁰Mo(¹⁶O,p3n γ) (2012Tr01). [&] From ¹¹⁰Pd(⁷Li,5n γ).

^{*a*} Additional information 1.

¹¹²₄₉In₆₃

 $^{112}_{49} In_{63}$

¹¹²₄₉In₆₃

 $^{112}_{49}\mathrm{In}_{63}$

 $^{112}_{49}\text{In}_{63}$

 $^{112}_{49}\text{In}_{63}$