¹⁰⁰Mo(¹⁶O,p3nγ) 2012Tr01

	His	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Lalkovski, F. G. Kondev	NDS 124, 157 (2015)	1-Aug-2014

Facility: 15-UD Pelletron accelerator at IUAC, New Delhi; Beam: $E(^{18}O)=80$ MeV; Target: 2.7 mg/cm² enriched in ¹⁰⁰Mo and deposited on a 12 mg/cm² Pb backing; Detectors: INGA γ -ray array comprising 18 Compton-suppressed Clover detectors working in add-back mode. The Clovers were also used as Compton polarimeters; Measured: $E\gamma$, $I\gamma$, γ - γ , γ - γ - γ coinc., γ - $\gamma(\theta)$, γ - $\gamma(lin pol)$; Deduced: ¹¹²In level scheme, DCO, γ -polarization asymmetry (pol), J^{π} , $T_{1/2}$; Also, from the same collaboration: 2012Tr11.

112	In	Lev	/el	5
112	In	Lev	/el	

E(level) [†]	J π ‡	T _{1/2} #	Comments
162.89 ^{&} 4	5+		Additional information 1. E(level), J^{π} : from the Adopted Levels.
350.82 ^{&} 3	7+		•
613.9 [@] 3	8-		
670.02 ^{&} 24	8+		
801.0 [@] 4	9-		
1389.2 [@] 5	10^{-}		
1754.82 ^{&} 24	9+		
2113.6 [@] 5	11-		
2115.2 ^{&} 4	10^{+}		
2493.5 5	11^{-}		
$2666.0^{\textcircled{0}}{5}$	12^{-}		
2802.1 ^{&} 4	11^{+}		
3062.7 ^{<i>a</i>} 5	12^{+}		
3103.1 ^{<i>@</i>} 6	13-		
3127.4 6	13-		
3153.70 6	12-		
3191.04 6	13		
$3262.7 \circ 6$	14		
$3347.9^{\circ} 6$	13 14 ⁺		
$3509.5 \ 0$	14		
3642.2^{a} 7	15^{+}	0.58 ps 11	
3644.8 ^b 6	14-	I I I	
3991.9 <mark>b</mark> 7	15-	0.50 ps +25-19	
4035.5 ^a 8	16^{+}	0.34 ps 7	
4354.3 ^b 10	16^{-}	<0.42 ps	
4395.2 [@] 10	16-		
4589.7 ^{<i>a</i>} 8	17^{+}	0.15 ps 4	
4759.0 ^b 12	17^{-}		
5168.2 ^b 14	18^{-}		
5297.3 ^a 9	18^{+}	<0.17 ps	
5638.2 ^b 16	19-		

[†] From a least-squares fit to $E\gamma$.

^{\ddagger} From 2012Tr01, based on γ -ray Mult.

[#] From DSAM measurements in 2012Tr01. Systematic error of 15% as estimated by the authors was taken into account by the

100 Mo(16 O,p3n γ) 2012Tr01 (continued)

¹¹²In Levels (continued)

evaluators. ^(a) Band(A): $\Delta J=1$ structure based on 8⁻. ^(b) Band(B): $\Delta J=1$ structure based on 5⁺. ^(a) Band(C): $\Delta J=1$ band based on 12⁺; configuration= $\pi g_{9/2}^{-1} \otimes \nu (h_{11/2}^2)(g_{7/2}/d_{5/2})$.

^b Band(D): $\Delta J=1$ band based on 12⁻; configuration= $\pi g_{9/2}^{-1} \otimes v(h_{11/2}^3)$.

 $\gamma(^{112}{\rm In})$

DCO ratios were obtained by sorting the detectors at 32° on one axis and the detectors at 90° on the other axis, with gate on $\Delta J=1$, dipole transition. Expected values are 2.0 for $\Delta J=2$, quadrupole and 1.0 for $\Delta J=1$, dipole.

Polarization asymmetry (pol) is positive for electric and negative for magnetic transitions.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ	Comments
128.3.3	60.1.2	3191.0	13^{+}	3062.7	12^{+}	D		Mult.: DCO=1.21 13 (2012Tr01).
135.3 7	6.1 7	3262.7	14-	3127.4	13-	D		Mult.: $DCO=1.09$ // (2012Tr01).
159.6.3	26.7.2	3262.7	14^{-}	3103.1	13-	D		Mult : $DCO=0.97.9(2012Tr01)$
178 5 3	5932	3369.5	14^{+}	3191.0	13+	D		Mult: $DCO=1.06.9$ (2012Tr01)
187 1 3	0,10 2	801.0	9-	613.9	8-	2		
187 93 3		350.82	7+	162.89	5 ⁺			E_{n} from the adopted gammas
194.2.3	10.8 7	3347.9	13-	3153.7	12^{-}	D		Mult.: $DCO=0.99.9$ (2012Tr01).
260.6 3	56.9 2	3062.7	12+	2802.1	11+	M1		Mult.: DCO=0.97 7 (2012Tr01); pol=-0.03 4 (2012Tr01).
263.1 3		613.9	8-	350.82	7+	E1+M2	0.09 4	Mult., δ : from the adopted gammas; DCO=1.17 <i>10</i> (2012Tr01).
272.7 3	47.2 2	3642.2	15+	3369.5	14+	M1		Mult.: DCO=0.91 6 (2012Tr01); pol=-0.09 4 (2012Tr01).
296.9 <i>3</i>	17.0 2	3644.8	14-	3347.9	13-	M1		Mult.: DCO=0.86 7 (2012Tr01); pol=-0.04 4 (2012Tr01).
319.2 <i>3</i>	104.3 8	670.02	8+	350.82	7+	M1		Mult.: DCO=1.06 7 (2012Tr01); pol=-0.079 28 (2012Tr01).
344.6 <i>3</i>	20.7 1	3607.3	15^{-}	3262.7	14-	D		Mult.: DCO=1.01 9 (2012Tr01).
347.1 <i>3</i>	10.4 <i>1</i>	3991.9	15^{-}	3644.8	14^{-}	(M1)		Mult.: DCO=1.01 9 (2012Tr01).
360.4 7	6.1 <i>1</i>	2115.2	10^{+}	1754.82	9+	D		Mult.: DCO=1.21 11 (2012Tr01).
362.4 7	7.8 1	4354.3	16-	3991.9	15^{-}	(M1)		Mult.: DCO=0.91 7 (2012Tr01).
393.3 <i>3</i>	34.5 2	4035.5	16+	3642.2	15+	M1		Mult.: DCO=1.10 7 (2012Tr01); pol=-0.14 3 (2012Tr01).
404.7 7	5.4 1	4759.0	17^{-}	4354.3	16-	D		Mult.: DCO=0.74 7 (2012Tr01).
409.2 7	3.9 1	5168.2	18^{-}	4759.0	17^{-}	D		Mult.: DCO=1.00 9 (2012Tr01).
437.1 <i>3</i>	35.6 3	3103.1	13-	2666.0	12-	M1		Mult.: DCO=0.98 6 (2012Tr01); pol=-0.01 4 (2012Tr01).
461.4 3	30.3 2	3127.4	13-	2666.0	12-	M1		Mult.: DCO=0.80 5 (2012Tr01); pol=-0.13 3 (2012Tr01).
470.0 7	2.0 1	5638.2	19-	5168.2	18^{-}	D		Mult.: DCO=0.92 7.
487.7 7	2.2 1	3153.7	12^{-}	2666.0	12^{-}			
552.4 <i>3</i>	59.4 4	2666.0	12-	2113.6	11-	M1		Mult.: DCO=1.02 6 (2012Tr01); pol=-0.10 4 (2012Tr01).
554.2 3	20.3 2	4589.7	17+	4035.5	16+	M1		Mult.: DCO=0.89 6 (2012Tr01); pol=-0.16 4 (2012Tr01)
588.2 <i>3</i>	134.8 9	1389.2	10-	801.0	9-	M1		Mult.: DCO=0.96 7 (2012Tr01); pol=-0.037 23; (2012Tr01)
660.2 <i>3</i>	11.7 3	3153.7	12-	2493.5	11-	M1		Mult.: DCO=0.94 9 (2012Tr01); pol=-0.05 5 (2012Tr01)
681.9 <i>3</i>	12.1 2	3347.9	13-	2666.0	12-	D		Mult.: DCO=0.95 6 (2012Tr01).

Continued on next page (footnotes at end of table)

¹⁰⁰Mo(¹⁶O,p3nγ) **2012Tr01** (continued)

γ (¹¹²In) (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.‡	Comments
686.9 <i>3</i>	53.9 3	2802.1	11^{+}	2115.2 10	M1	Mult.: DCO=1.03 7 (2012Tr01); pol=-0.08 3 (2012Tr01).
707.6 <i>3</i>	15.6 <i>1</i>	5297.3	18^{+}	4589.7 17	[M1]	
724.3 <i>3</i>	100 6	2113.6	11-	1389.2 10	M1	Mult.: DCO=1.02 6 (2012Tr01); pol=-0.057 25 (2012Tr01).
787.97	3.8 1	4395.2	16-	3607.3 15	D	Mult.: DCO=0.89 7 (2012Tr01).
947.4 7	4.2 2	3062.7	12^{+}	2115.2 10	-	
949.1 7	6.8 <i>3</i>	3062.7	12^{+}	2113.6 11	-	
1047.4 7	9.1 <i>1</i>	2802.1	11^{+}	1754.82 9+	E2	Mult.: DCO=1.78 13 (2012Tr01); pol=+0.12 4 (2012Tr01).
1084.8 <i>3</i>	13.1 <i>I</i>	1754.82	9+	670.02 8+	M1	Mult.: DCO=1.22 10 (2012Tr01); pol=-0.10 6 (2012Tr01).
1104.2 3	17.2 2	2493.5	11-	1389.2 10	M1	Mult.: DCO=1.16 9 (2012Tr01); pol=-0.02 5 (2012Tr01).
1276.7 3	19.6 2	2666.0	12-	1389.2 10	E2	Mult.: DCO=1.85 <i>18</i> (2012Tr01); pol=+0.16 7 (2012Tr01).
1312.5 3	24.8 4	2113.6	11-	801.0 9-	E2	Mult.: DCO=1.69 14 (2012Tr01); pol=+0.24 4 (2012Tr01).
1404.0 3	29.1 13	1754.82	9+	350.82 7+	E2	Mult.: DCO=1.96 15 (2012Tr01); pol=+0.08 3 (2012Tr01).
1445.2 <i>3</i>	75.1 4	2115.2	10^{+}	670.02 8+	E2	Mult.: DCO=1.69 12 (2012Tr01); pol=+0.06 3 (2012Tr01).

[†] From 2012Tr01; $\Delta E=0.3$ keV for intense lines and 0.7 keV for weak lines. The evaluators assign 0.3 keV for I $\gamma \ge 10$ and 0.7 keV for I $\gamma < 10$.

 \ddagger From 2012Tr01, based on DCO and pol measurements.

¹¹²₄₉In₆₃

4

¹⁰⁰Mo(¹⁶O,p3nγ) 2012Tr01

 $^{112}_{49} In_{63}$

¹⁰⁰Mo(¹⁶O,p3nγ) 2012Tr01

 $^{112}_{49} In_{63}$