¹¹²In ε decay (14.88 min) 1983Ry03,1962Ru05,1972Ka34

	His	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Lalkovski, F. G. Kondev	NDS 124, 157 (2015)	1-Aug-2014

Parent: ¹¹²In: E=0.0; $J^{\pi}=1^+$; $T_{1/2}=14.88 \text{ min } 17$; $Q(\varepsilon)=2585 4$; $\%\varepsilon+\%\beta^+$ decay=62 4

1962Ru05: Facility: Osaka University cyclotron; Source: ¹¹²In from ¹¹²Cd(d,2n) and ¹⁰⁹Ag(α ,n) reactions at E(d)=11 MeV and E(α)=15-16 MeV, respectively; Targets: 2.7 mg/cm² enriched in ¹¹²Cd and 5 mg/cm² enriched to 99.2% in ¹⁰⁹Ag; Detectors: two mushroom β -spectrometers, one NaI(Tl) scintillator; Measured: I β ⁻, I β ⁺, E β ⁺; Deduced: ¹¹²Cd level scheme, I $_{\beta+\epsilon}$ (GS).

1972Ka34: Source: ¹¹²In produced in ¹¹³In(γ ,n) reaction. ¹¹³In irradiated with γ -rays for 15 min. γ -flux=1.0x10⁶ R.min⁻¹;

Detectors: one Ge(Li), one NaI(Tl); Measured: $E\gamma$, $I\gamma$, γ - γ , γ - $\gamma(\theta)$ coinc.; Deduced: γ -mult., δ , ¹¹²Cd levels, J^{π} , log *ft*. 1983Ry06: Facility: SAMES at National Physics Laboratory, Teddington, UK; Source: from (n,2n) reaction with E(n)=14.3 MeV on 37 or 187 mg/cm² thick natural In targets; Detectors: one HPGe detector, one 4π proportional counter; Measured: γ , $E\gamma$, $\gamma(t)$,

 $\sigma^{(112m}$ In), $\sigma^{(112}$ In), Isomeric Ratio; Deduced: ¹¹²Cd level scheme, I_{β^+}(GS).

1991Gi05: Facility: Van de Graaff accelerator at LNL (Italy); Source: ¹¹²In activated in (p,n) reaction. E(p)=6.8 MeV; Target enriched to 94% in ¹¹²Cd. Carbon backing; Detectors: one HPGe, one Si(Li), magnetic transport system; Measured: α (K)exp(851 γ). Deduced B(E0)/B(E2) and B(E0)/B(M1); Also, from the same collaboration: 1979Gi05.

2009Gr10: Facility: TRIUMF cyclotron; Detectors: ISAC, TRILIS, 8π γ-array comprising 20 Compton-suppressed HPGe detectors; Measured: γ, γ-γ coinc., Eγ, Iγ.

Others: 1986Ho12, 1979OhZV, 1975GaZB, 1972Yo06, 1971It01, 1965Fu07, 1959Gi51, 1953Bl44.

¹¹²Cd Levels

E(level) [†]	J^{π}
0.0	0^{+}
617.519 <i>3</i>	2^{+}
1224.345 5	0^{+}
1312.394 8	2^{+}
1433.282 17	0^{+}
1468.811 15	2^{+}
1871.17 10	0^{+}
2121.48 6	2^{+}
2156.22 6	2^{+}
2300.66 7	0^{+}

[†] From a least-squares fit to $E\gamma$.

[‡] From the Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\!\beta^+$ ‡	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(284 4)	2300.66		0.023 7	5.80 14	0.023 7	εK=0.8434 4; εL=0.1248 3; εM+=0.03180 8
(429 4)	2156.22		0.013 6	6.43 21	0.013 6	εK=0.8512 2; εL=0.1188 1; εM+=0.03002 4
(464 4)	2121.48		0.053 7	5.89 7	0.053 7	εK=0.8523 2; εL=0.1179 1; εM+=0.02977 3
(714 4)	1871.17		0.23 3	5.65 7	0.23 3	εK=0.8569; εL=0.11434 4; εM+=0.02872 1
(1116 4)	1468.811		0.173 25	6.17 7	0.173 25	εK=0.8599; εL=0.11204 2; εM+=0.028051 5
(1152 4)	1433.282		0.036 15	6.88 19	0.036 15	εK=0.8600; εL=0.11191 2; εM+=0.028014 5
(1361 4)	1224.345	0.0029 4	1.00 12	5.58 6	1.00 12	av Eβ=158.3 18; εK=0.8583 2; εL=0.11100 3; εM+=0.027761 7
(1967 4)	617.519	0.70 6	5.2 4	5.19 5	5.9 5	av E β =422.2 18; ε K=0.7590 14; ε L=0.09713 18; ε M+=0.02426 5
						$I\beta^+$: from $I\beta^+$ (tot)=24% 2 in 1983Ry06, deduced from $I\gamma(511\gamma)$, and $I\beta^+(617.37)/I\beta^+$ (g.s.)=0.029 (1962Ru05), and by assuming that the $I\beta^+$ feedings to the

Continued on next page (footnotes at end of table)

			¹¹² In ε decay (14.88 min)			1983Ry03,1962Ru05,1972Ka34 (continued)				
					ϵ,eta^+ 1	radiations (continued)				
E(decay)	E(level)	Ιβ ⁺ ‡	Ie‡	Log ft	$I(\varepsilon + \beta^+)^{\ddagger\ddagger}$	Comments				
2582 20	0.0	23.3 19	32 2	4.64 5	55 4	higher-lying levels are negligible. I ε : from I β^+ and I $\varepsilon/I\beta^+$ =7.36 13. av E β =696.9 18; ε K=0.5022 18; ε L=0.06390 22; ε M+=0.01595 6				
						E(decay): From 1962Ru05. $I\beta^+$: from $I\beta^+(tot)=24\%$ 2 in 1983Ry06, deduced from $I\gamma(511\gamma)$, and $I\beta^+(617.37)/I\beta^+(g.s.)=0.029$ (1962Ru05), and by assuming that the $I\beta^+$ feedings to the higher-lying levels are negligible. Others: $I\beta^+(tot)=21$ (1962Ru05) and 24 (1953B144).				

I: from $I\beta^+$ and $I\varepsilon/I\beta^+=1.392$ 18.

[†] From intensity balances, unless otherwise stated.
[‡] Absolute intensity per 100 decays.

$\gamma(^{112}\text{Cd})$

Iγ normalization: from (100 -(Iβ⁺(g.s.)+Iε(g.s.)))/Σ Ti(g.s.), where Iβ⁺(g.s.)+Iε(g.s.)=89% 4.

 $\boldsymbol{\omega}$

E_{γ}^{\dagger}	I_{γ} ‡&	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	$\alpha^{@}$	$I_{(\gamma+ce)}$ [†] &	Comments
120.68 10	<0.5	1433.282	0+	1312.394 2+	E2		0.766		α (K)=0.597 9; α (L)=0.1367 20; α (M)=0.0270 4 α (N)=0.00453 7; α (O)=0.0001141 17 I_{γ} : from 1972Yo06.
208.93 3		1433.282	0^{+}	1224.345 0+	E0			≤0.074	
244.86# 23	0.031 10	1468.811	2+	1224.345 0+	(E2)		0.0641		$\alpha(K)=0.0538 \ 8; \ \alpha(L)=0.00840 \ 13; \ \alpha(M)=0.001633 \ 24$ $\alpha(N)=0.000282 \ 4; \ \alpha(O)=1.143\times10^{-5} \ 17$ $I_{\gamma}: From I_{\gamma}(233.86\gamma)/I_{\gamma}(851.285\gamma)=0.010 \ 3 \text{ and}$ $I_{\gamma}(851.285\gamma) \text{ from from } ^{112}In \ \varepsilon \text{ decay } (14.88 \text{ min})$
402.50 16	0.53 7	1871.17	0^+	1468.811 2+	E2		0.01271		$\alpha(K)=0.01088 \ 16; \ \alpha(L)=0.001485 \ 21; \ \alpha(M)=0.000287 \ 4$
558.7 5	0.16 <i>4</i>	1871.17	0+	1312.394 2+	E2		0.00487		$\begin{aligned} &\alpha(N) = 5.02 \times 10^{-5} \ 7; \ \alpha(O) = 2.43 \times 10^{-6} \ 4 \\ & E_{\gamma}: \ From \ 2009Gr10. \\ & I_{\gamma}: \ from \ the \ adopted \ I_{\gamma} \ branching \ ratio \ and \\ & I_{\gamma}(1253.56\gamma) = 4.7 \ 3. \\ & \alpha(K) = 0.00420 \ 6; \ \alpha(L) = 0.000541 \ 8; \ \alpha(M) = 0.0001041 \\ & I_{5} \\ & \alpha(N) = 1.83 \times 10^{-5} \ 3; \ \alpha(O) = 9.61 \times 10^{-7} \ I4 \\ & E_{\gamma}: \ From \ 2009Gr10; \ \Delta E \ estimated \ by \ the \ evaluators. \\ & I_{\gamma}: \ from \ the \ adopted \ I_{\gamma} \ branching \ ratio \ and \\ & I_{\gamma}: \ from \ the \ adopted \ I_{\gamma} \ branching \ ratio \ and \\ & I_{\gamma}: \ from \ the \ adopted \ I_{\gamma} \ branching \ ratio \ and \\ & I_{\gamma}: \ from \ the \ adopted \ I_{\gamma} \ branching \ ratio \ and \\ & I_{\gamma}: \ from \ the \ adopted \ I_{\gamma} \ branching \ ratio \ and \\ & I_{\gamma}: \ from \ the \ adopted \ I_{\gamma} \ branching \ ratio \ and \\ & I_{\gamma}: \ from \ he \ adopted \ I_{\gamma} \ branching \ ratio \ and \\ & I_{\gamma}: \ from \ he \ adopted \ I_{\gamma} \ branching \ ratio \ and \\ & I_{\gamma}: \ from \ he \ adopted \ I_{\gamma} \ branching \ ratio \ and \\ & I_{\gamma}: \ from \ he \ adopted \ I_{\gamma} \ branching \ ratio \ and \\ & I_{\gamma}: \ from \ he \ adopted \ I_{\gamma} \ branching \ ratio \ and \\ & I_{\gamma}: \ from \ he \ adopted \ I_{\gamma} \ branching \ ratio \ and \\ & I_{\gamma}: \ from \ he \ adopted \ I_{\gamma} \ branching \ ratio \ and \\ & I_{\gamma}: \ from \ he \ adopted \ I_{\gamma} \ branching \ ratio \ and \\ & I_{\gamma}: \ from \ he \ adopted \ I_{\gamma}: \ from \ he \ adopted \ I_{\gamma} \ branching \ ratio \ and \\ & I_{\gamma}: \ from \ he \ adopted \ I_{\gamma}: \ from \ he \ adopted \ I_{\gamma}: \ from \ he \ adopted \ I_{\gamma}: \ Adopte$
606.821 <i>6</i>	23.9 4	1224.345	0+	617.519 2+	E2		0.00388		$\alpha(K)=0.00336\ 5;\ \alpha(L)=0.000427\ 6;\ \alpha(M)=8.21\times10^{-5}$ 12 $\alpha(K)=1.450\times10^{-5}\ 21;\ \alpha(Q)=7.71\times10^{-7}\ 11$
617.517 <i>3</i>	100	617.519	2+	0.0 0+	E2		0.00371		$\alpha(\mathbf{K}) = 1.450 \times 10^{-5} 21, \alpha(\mathbf{O}) = 1.71 \times 10^{-5} 11^{-5}$ $\alpha(\mathbf{K}) = 0.00321 5; \alpha(\mathbf{L}) = 0.000407 6; \alpha(\mathbf{M}) = 7.82 \times 10^{-5}$ $11^{-5} \alpha(\mathbf{N}) = 1.381 \times 10^{-5} 20; \alpha(\mathbf{O}) = 7.37 \times 10^{-7} 11^{-5}$
687.41 10	0.015 7	2156.22	2+	1468.811 2+	M1+E2	-2.3 19	0.00285 24		Mult.: A ₂ =0.208 22; A ₄ =0.904 30 (1972Ka34); α (K)exp=0.0038 7 (1962Ru05). α (K)=0.00247 22; α (L)=0.000307 15; α (M)=5.9×10 ⁻⁵ 3 α (N)=1.04×10 ⁻⁵ 6; α (O)=5.7×10 ⁻⁷ 7 I _γ : from the adopted I _γ branching ratio and I _γ (1538.68γ)=0.27 12.
688.23 10	0.142 16	2121.48	2+	1433.282 0+	E2		0.00279		$\begin{aligned} &\alpha(K)=0.00242\ 4;\ \alpha(L)=0.000302\ 5;\ \alpha(M)=5.81\times10^{-5}\\ &9\\ &\alpha(N)=1.028\times10^{-5}\ 15;\ \alpha(O)=5.58\times10^{-7}\ 8\\ &I_{\gamma}:\ from\ the\ adopted\ I\gamma\ branching\ ratio\ and\\ &I\gamma(1504.04\gamma)=0.95\ 9. \end{aligned}$

 $^{112}_{48}\text{Cd}_{64}\text{-}3$

				¹¹² In ε d	ecay (14.88 min)	1983Ry03	,1962Ru05,19	072Ka34 (coi	ntinued)
						$\gamma(^{112}\text{Cd})$ (con	ntinued)		
E_{γ}^{\dagger}	Ι _γ ‡&	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	$\alpha^{(a)}$	$I_{(\gamma+ce)}$ [†] &	Comments
694.872 7	0.24 15	1312.394	2+	617.519 2+	E2+M1	-4.0 7	0.00274		$\alpha(K)=0.00238 \ 4; \ \alpha(L)=0.000296 \ 5; \ \alpha(M)=5.68 \times 10^{-5} \ 8$
808.82 19	0.035 4	2121.48	2+	1312.394 2+	M1+E2		0.00215		$\alpha(N)=1.007\times10^{-5} \ 15; \ \alpha(O)=5.50\times10^{-7} \ 8 \\ \alpha(K)=0.00187 \ 3; \ \alpha(L)=0.000221 \ 3; \\ \alpha(M)=4.23\times10^{-5} \ 6 \\ \alpha(N)=7.5(\times10^{-6} \ M_{\odot}, \alpha(O)=4.48\times10^{-7} \ 7 \\ \alpha(M)=4.23\times10^{-5} \ 6 \\ \alpha(M)=4.23\times10^{-5} \ 10^{-$
815.79 <i>3</i>	≤1	1433.282	0+	617.519 2+	E2		0.00183		$\alpha(N) = 7.56 \times 10^{-6} II; \alpha(O) = 4.48 \times 10^{-7} / I_{\gamma}$: from the adopted I γ branching ratio and I $\gamma(1504.04\gamma) = 0.95$ 9. $\alpha(K) = 0.001589 23; \alpha(L) = 0.000195 3; \alpha(M) = 3.74 \times 10^{-5} 6$ $\alpha(N) = 6.63 \times 10^{-6} I0; \alpha(O) = 3.69 \times 10^{-7} 6$ E _{γ} : Transition observed only in
831.79 8	0.18 7	2300.66	0+	1468.811 2+	E2		1.75×10^{-3}		1975GaZB. $\alpha(K)=0.001517\ 22;\ \alpha(L)=0.000186\ 3;$ $\alpha(M)=3.56\times10^{-5}\ 5$
842.8 15	0.007 4	2156.22	2+	1312.394 2+	[M1]		0.00195		$\alpha(N)=6.32\times10^{-6} \ 9; \ \alpha(O)=3.52\times10^{-7} \ 5$ I _y : from the adopted Iy branching ratio and Iy(1683.22y)=0.37 <i>14</i> . $\alpha(K)=0.001706 \ 25; \ \alpha(L)=0.000201 \ 3;$ $\alpha(M)=3.85\times10^{-5} \ 6$
851.285 <i>15</i>	3.1 <i>3</i>	1468.811	2+	617.519 2+	M1+E2+E0	+0.050 18	0.00195 4		$\begin{aligned} \alpha(N) &= 6.88 \times 10^{-6} \ 10; \ \alpha(O) &= 4.08 \times 10^{-7} \ 6 \\ I_{\gamma}: \ from the adopted I_{\gamma} \ branching ratio \\ and I_{\gamma}(1538.68\gamma) &= 0.27 \ 12. \\ \alpha(K) &= 0.001667 \ 24; \ \alpha(L) &= 0.000196 \ 3; \\ \alpha(M) &= 3.76 \times 10^{-5} \ 6 \\ \alpha(N) &= 6.72 \times 10^{-6} \ 10; \ \alpha(O) &= 3.98 \times 10^{-7} \ 6 \\ Mult.: \ \alpha(K) exp &= 2.34 \times 10^{-3} \ 12 \end{aligned}$
897.07 <i>10</i>	0.113 11	2121.48	2+	1224.345 0+	E2		1.46×10 ⁻³		(1991Gi05); A ₂ =0.086 45; A ₄ =-0.081 100 (1972Ka34). δ : Other: 0.048 22 from $\gamma(\omega)$ in 1991Gi05, -0.21 +5-6 in $\gamma\gamma(\omega)$ in 1972Ka34. Ice(K)(E0,2 ⁺ to 2 ⁺)/Ice(K)(M1,2 ⁺ to 2 ⁺)=0.41 7, B(E0)/B(E2)=2.7 13, B(E0)/B(M1)=2555 472 and $\rho^2(E0)=0.031 20$ (1991Gi05). α : From adopted gammas. $\alpha(K)=0.001271 18; \alpha(L)=0.0001545 22;$ $\alpha(M)=2.96\times10^{-5} 5$ $\alpha(N)=5.26\times10^{-6} 8; \alpha(O)=2.96\times10^{-7} 5$ I _{γ} : from the adopted I γ branching ratio and I $\gamma(1504.04\gamma)=0.95 9$.

4

From ENSDF

L

¹¹² In ε decay (14.88 min) 1983Ry03,1962Ru05,1972Ka34 (continued)											
γ ⁽¹¹² Cd) (continued)											
${\rm E_{\gamma}}^{\dagger}$	Ι _γ ‡&	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α [@]	$I_{(\gamma+ce)}$ [†] &	Comments	
1224.341 7		1224.345	0^{+}	0.0	0^{+}	E0			0.00356 17	$I_{(\gamma+ce)}$: From Adopted Levels Ti(1224 γ)/Ti(607 γ) and Iy(606 γ)=23.9 4.	
1253.56 12	4.7 3	1871.17	0+	617.519	2+	E2		7.16×10 ⁻⁴		$\alpha(K)=0.000612 \ 9; \ \alpha(L)=7.25\times10^{-5} \ 11; \\ \alpha(M)=1.386\times10^{-5} \ 20 \\ \alpha(N)=2 \ 47\times10^{-6} \ 4; \ \alpha(O)=1 \ 430\times10^{-7} \ 20; $	
										$\alpha(\text{IPF})=1.517 \times 10^{-5} 22$ $\alpha(\text{IPF})=1.517 \times 10^{-5} 22$ Mult: $\Delta_{2}=0.218 42$; $\Delta_{2}=0.990 51 (1972 \text{ k}_{2}34)$	
1312.36 4	0.10 9	1312.394	2+	0.0	0+	E2		6.64×10^{-4}		$\alpha(K) = 0.000557 \ 8; \ \alpha(L) = 6.58 \times 10^{-5} \ 10; \\ \alpha(M) = 1.258 \times 10^{-5} \ 18$	
										α (N)=2.24×10 ⁻⁶ 4; α (O)=1.302×10 ⁻⁷ 19; α (IPF)=2.64×10 ⁻⁵ 4	
1433.27 <i>3</i> 1468.84 <i>10</i>	1.7 2	1433.282 1468.811	$0^+ 2^+$	$0.0 \\ 0.0$	$0^+ 0^+$	E0 E2		5.79×10^{-4}	≤0.031	$\alpha(K)=0.000444$ 7; $\alpha(L)=5.21\times10^{-5}$ 8;	
										$\alpha(M) = 9.96 \times 10^{-6} \ 14$	
										$\alpha(N)=1.77\times10^{-2} 23; \alpha(O)=1.039\times10^{-1} 13; \alpha(IPF)=7.09\times10^{-5} 10$	
1504.04 10	0.95 9	2121.48	2+	617.519	2+	M1+E2	+1.36 7	5.88×10^{-4}		$\alpha(K)=0.000444$ 7; $\alpha(L)=5.19\times10^{-5}$ 8; $\alpha(M)=9.92\times10^{-6}$ 15	
										$\alpha(N)=1.77\times10^{-6}$ 3; $\alpha(O)=1.045\times10^{-7}$ 15; $\alpha(IPF)=8.01\times10^{-5}$ 12	
								<pre></pre>		E_{γ} : 1507.3 keV 3 in 1972Ka34.	
1538.68 10	0.27 12	2156.22	2+	617.519	2+	M1+E2	+0.085 +25-22	6.11×10 ⁻⁴		$\alpha(\mathbf{K})=0.000459 \ 7; \ \alpha(\mathbf{L})=5.33\times10^{-5} \ 8; \ \alpha(\mathbf{M})=1.019\times10^{-5} \ 15$	
										α (N)=1.82×10 ⁻⁶ 3; α (O)=1.089×10 ⁻⁷ 16; α (IPF)=8.67×10 ⁻⁵ 13	
1683.22 10	0.37 14	2300.66	0+	617.519	2+	E2		5.45×10^{-4}		α (K)=0.000341 5; α (L)=3.98×10 ⁻⁵ 6; α (M)=7.60×10 ⁻⁶ 11	
										α (N)=1.356×10 ⁻⁶ <i>19</i> ; α (O)=7.98×10 ⁻⁸ <i>12</i> ; α (IPF)=0.0001551 <i>22</i>	
2121.49 <i>13</i>	0.027 3	2121.48	2+	0.0	0^{+}	E2		6.14×10^{-4}		$\alpha(\mathbf{K})=0.000222 \ 4; \ \alpha(\mathbf{L})=2.57\times10^{-5} \ 4; \ \alpha(\mathbf{M})=4.90\times10^{-6} \ 7$	
										$\alpha(N) = 8.75 \times 10^{-7} I3; \ \alpha(O) = 5.19 \times 10^{-8} 8; \ \alpha(PF) = 0.000360.5$	
										I _{γ} : from the adopted I γ branching ratio and I γ (1504.04 γ)=0.95 9.	
2156.20 10	0.024 11	2156.22	2+	0.0	0^+	E2		6.23×10^{-4}		α (K)=0.000216 3; α (L)=2.49×10 ⁻⁵ 4; α (M)=4.75×10 ⁻⁶ 7	
										$\alpha(N) = 8.49 \times 10^{-7}$ <i>12</i> ; $\alpha(O) = 5.04 \times 10^{-8}$ <i>7</i> ; $\alpha(IPF) = 0.000377$ <i>6</i>	
										I _{γ} : from the adopted I γ branching ratio and I γ (1538.68 γ)=0.27 <i>1</i> 2.	

S

 $^{112}_{48}\text{Cd}_{64}\text{--}5$

L

¹¹²In ε decay (14.88 min) 1983Ry03,1962Ru05,1972Ka34 (continued)

 $\gamma(^{112}Cd)$ (continued)

 † From the adopted gammas, unless otherwise noted.

6

[‡] From 1972Ka34, unless otherwise noted.
[#] Only observed by 1975GaZB.
[@] Additional information 1.
[&] For absolute intensity per 100 decays, multiply by 0.067 25.

¹¹²₄₈Cd₆₄-7

¹¹²In ε decay (14.88 min) 1983Ry03,1962Ru05,1972Ka34

