Adopted Levels

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh	ENSDF	10-Jun-2015	

 $Q(\beta^{-})=11320 SY; S(n)=2750 SY; S(p)=17220 CA; Q(\alpha)=-11090 SY 2012Wa38,1997Mo25$

 $Q(\beta^{-}n)=6510\ 730$, $S(2n)=7510\ 860\ (syst, 2012Wa38)$. $S(2p)=33120\ (theory, 1997Mo25)$.

2010Oh02: ¹¹¹Zr nuclide identified in Be(²³⁸U,F) and Pb(²³⁸U,F) reactions with a ²³⁸U⁸⁶⁺ beam energy of 345 MeV/nucleon produced by the cascade operation of the RBIF accelerator complex of the linear accelerator RILAC and four cyclotrons RRC, fRC, IRC and SRC. Identification of ¹¹¹Zr nuclei was made on the basis of magnetic rigidity, time-of-flight and energy loss of the fragments using BigRIPS fragment separator. Experiments performed at RIKEN facility. Based on A/Q spectrum and Z versus A/Q plot, 26 counts were assigned to ¹¹¹Zr isotope. (Q=charge state). Measured σ =20 pb (2010Oh02), systematic uncertainty≈40%.

2015Lo04: ¹¹¹Zr nuclide produced at RIBF-RIKEN facility in ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon with an average intensity of 6×10^{10} ions/s. Identification of ¹¹¹Zr was made by determining atomic Z and mass-to-charge ratio A/Q, where Q=charge state of the ions. The selectivity of ions was based on magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted at a rate of 50 ions/s in a stack of eight double-sided silicon-strip detector (WAS3ABi), surrounded by EURICA array of 84 HPGe detectors. Correlations were recorded between the implanted ions and β rays. The half-life of ¹¹¹Zr isotope was measured from the correlated ion- β decay curves and maximum likelihood analysis technique as described in 2014Xu07. Comparison of measured half-lives with FRDM+QRPA, KTUY+GT2 and DF3+CQRPA theoretical calculations. Additional information 1.

¹¹¹Zr Levels

E(level)	T _{1/2}	Comments	
0	24.0 ms 50	$\%\beta^{-}=100; \ \%\beta^{-}n=?; \ \%\beta^{-}2n=?$	
		Theoretical $\%\beta^{-}n=14.7$, $\%\beta^{-}2n=1.0$ (2003Mo09).	
		E(level): it is assumed that the measured half-life corresponds to the g.s. of ¹¹¹ Zr.	
		J^{π} : $1/2^{-}$ in theoretical considerations (1997Mo25).	
		$T_{1/2}$: from 2015Lo04 from analysis of the (ion) β -correlated decay curve; and maximum likelihood	
		method. Note that the 2015Lo04 list 24.0 ms 5 but judging from the value plotted in their Fig. 2, as	
		well as from the uncertainties quoted for other isotopes, it seems to be 5 ms.	

S(p) from 1997Mo25; all other values from 2012Wa38.

Estimated uncertainties (2012Wa38): 760 for Q(β^-), 920 for S(n), 900 for Q(α).