⁵⁸Ni(⁵⁸Ni,4pnγ) 2000St03

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Jean Blachot	NDS 110, 1239 (2009)	1-Feb-2008			

E=250 MeV. Measured E γ , $\gamma\gamma$, I γ , $\gamma\gamma(\theta)$ (DCO) using the GAMMASPHERE array of 83 HPGe detectors coupled with the MICROBALL array of 95 CsI(Tl) charged-particle detectors.

¹¹¹Te Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	$(5/2^+)$		
117.1 <mark>&</mark> 3	$(7/2^+)$		
538.0 10	$(7/2^+)$		
768.1 ^{&} 4	$(9/2^+)$		
$824.0\ 10$	$(9/2^+)$		
839.4" 6	11/2-	32.2 ns 14	$T_{1/2}$: performed at Stony Brook Linac accelerator using prompt and delayed coincidence measurements.
882.1 ^{&} 4	$(11/2^+)$		
1378.5 [#] 6	15/2-		
1519.7° 5	$(13/2^+)$		
1757.4° 5	$(15/2^{+})$		
2061.9" 6	19/2		
2292.6° 5	$(17/2^{+})$		
2495.0 = 0	(1/2)		
2673.7 6	(19/2)		
2777.3 [#] 6	$23/2^{-}$		
3050.5 [@] 6	$(21/2^{-})$		
3382.6 [°] 6	(23/2 ⁻)		
3738.6^{a} 6	$(23/2^+)$		
3756.3° 6	$(25/2^{-})$		
3768.4" 6	27/2		
3880.6 6			
4127.1 [°] 6	$(27/2^{-})$		
4315.2 ^{<i>a</i>} 6	$(27/2^+)$		
4430.8 ⁰ 7	(29/2)		
4556.5 ⁶ 6 4707.3 7	(29/2 ⁻)		
4731.4 [#] 7	$31/2^{-}$		
4887.2° 0 5007.8 ^{<i>a</i>} 6	(31/2) $(31/2^+)$		
$5345.7^{@}6$	$(31/2^{-})$		
$53534^{b}7$	(33/2)		
5486.0 8	(33/2)		
5706.5 [#] 7	35/2-		
5796.3 ^a 7	$(35/2^+)$		
6071.2 ^b 7	(37/2)		
6356.6 8	$(30/2^{+})$		
6810.2 [#] 8	(39/2)		
0017.2 0	(37/2)		

58 Ni(58 Ni,4pn γ) 2000St03 (continued)

¹¹¹Te Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	E(level) [†]	J ^{π‡}
6990.2 ^b 8	(41/2)	7752.0 <mark>b</mark> 8	8727.5 ^a 9	$(47/2^+)$
7491.5 8		7873.9 8	9863.2 ^a 9	$(51/2^+)$
7677.0 ^a 8	$(43/2^+)$	8652.4 ^b 9	9957.8 ^b 9	

 † From least-squares fit to Ey's (by evaluator).

^{\ddagger} From γ multipolarities and band assignments.

[#] Band(A): $\Delta J=2$, band, based on $11/2^-$. [@] Band(B): $\Delta J=2$, band, based on $(17/2^-)$.

[&] Band(C): $\Delta J=1$, band, based on $(7/2^+)$.

^{*a*} Band(D): $\Delta J=2$, band, based on (23/2⁺).

^b Band(E): $\Delta J=2$, band, based on (29/2).

^c Band(F): $\Delta J=2$, band, based on (23/2⁻).

$\gamma(^{111}\text{Te})$

E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	Comments
(16)		839.4	$11/2^{-}$	824.0	$(9/2^+)$	(E1)	seen In delayed spectrum.
117.1 3	23.0 3	117.1	$(7/2^+)$	0.0	$(5/2^+)$	M1.E2	Mult.: $DCO= 0.5 2$.
273.2 3	1.8 4	3050.5	$(21/2^{-})$	2777.3	$23/2^{-1}$	D	Mult.: DCO= 0.5 4.
342.4 3	1.4 <i>3</i>	2635.3	$(19/2^+)$	2292.6	$(17/2^+)$	M1,E2	
358.4 <i>3</i>	1.0 3	4127.1	$(27/2^{-})$	3768.4	$27/2^{-1}$	E2	
364.7 <i>3</i>	2.0 3	6071.2	(37/2)	5706.5	$35/2^{-}$	D	Mult.: DCO= 0.5 2.
373.3 <i>3</i>	1.8 4	3756.3	$(25/2^{-})$	3382.6	$(23/2^{-})$	M1,E2	
376.7 <i>3</i>	1.8 4	3050.5	$(21/2^{-})$	2673.7		M1,E2	
415.0 <i>3</i>	4.9 7	3050.5	$(21/2^{-})$	2635.3	$(19/2^+)$	E1	Mult.: DCO= 0.6 2.
429.0 <i>3</i>	1.3 <i>3</i>	4556.5	$(29/2^{-})$	4127.1	$(27/2^{-})$	D	Mult.: DCO= 0.5 2.
433.3 <i>3</i>	1.4 4	2495.6	$(17/2^{-})$	2061.9	$19/2^{-}$	E2	
434.6 <i>3</i>	1.8 <i>3</i>	4315.2	$(27/2^+)$	3880.6		E2	
451.3 <i>3</i>	2.5 6	5007.8	$(31/2^+)$	4556.5	$(29/2^{-})$	E1	
458.8 <i>3</i>	1.6 3	5345.7	$(33/2^{-})$	4887.2	$(31/2^{-})$	M1,E2	Mult.: $DCO = 0.4 2$.
534.7 <i>3</i>	0.7 3	2292.6	$(17/2^+)$	1757.4	$(15/2^+)$	M1,E2	
538		538.0	$(7/2^+)$	0.0	$(5/2^+)$		E_{γ} : only given in the level scheme figure.
539.1 <i>3</i>	100 4	1378.5	$15/2^{-}$	839.4	$11/2^{-}$	E2	Mult.: $DCO = 1.1 l$.
555.1 <i>3</i>	1.8 <i>3</i>	3050.5	$(21/2^{-})$	2495.6	$(17/2^{-})$	E2	
558.8 <i>3</i>	5.6 7	4315.2	$(27/2^+)$	3756.3	$(25/2^{-})$	E1	Mult.: $DCO = 0.4 2$.
576.6 3	5.3 7	4315.2	$(27/2^+)$	3738.6	$(23/2^+)$	E2	Mult.: $DCO = 1.3 3$.
605.0 <i>3</i>	5.5 7	3382.6	$(23/2^{-})$	2777.3	23/2-	M1,E2	Mult.: $DCO = 1.2 2$.
622.1 3	3.7 5	5353.4	(33/2)	4731.4	31/2-	D	Mult.: $DCO = 0.43 \ 13$.
637.8 <i>3</i>	1.5 3	1519.7	$(13/2^+)$	882.1	$(11/2^+)$	M1,E2	
650.9 3	6.9 8	768.1	$(9/2^+)$	117.1	$(7/2^+)$	M1,E2	
662.3 3	16.4 11	4430.8	(29/2)	3768.4	$27/2^{-}$	D	Mult.: DCO= 0.50 8.
682.9 3	95.0 4	2061.9	19/2-	1378.5	$15/2^{-}$	E2	Mult.: $DCO = 1.1$ <i>I</i> .
692.7 3	10.9 6	5007.8	$(31/2^{+})$	4315.2	$(27/2^{+})$	E2	Mult.: $DCO = 1.0 3$.
706.0 3	10.3 6	3756.3	$(25/2^{-})$	3050.5	$(21/2^{-})$	E2	
715.0 3	79.0 3	2777.3	$\frac{23}{2^{-}}$	2061.9	19/2-		Mult.: $DCO= 1.0 I$.
717.8 3	15.4 16	6071.2	(37/2)	5353.4	(33/2)	1.62	Mult.: $DCO= 1.0 I$.
723		839.4	11/2-	117.1	$(1/2^{+})$	M2	E_{γ} : weak γ seen in delayed spectrum. Mult.: E3 admixture, if any, is weak.
744.6 <i>3</i>	5.3 7	4127.1	$(27/2^{-})$	3382.6	$(23/2^{-})$	E2	Mult.: DCO= 1.0 3.
751.6 <i>3</i>	6.0 7	1519.7	$(13/2^+)$	768.1	(9/2+)	E2	

⁵⁸Ni(⁵⁸Ni,4pnγ) **2000St03** (continued)

$\gamma(^{111}\text{Te})$ (continued)

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	Comments
760.1 3	3.8 5	4887.2	$(31/2^{-})$	4127.1	$(27/2^{-})$	E2	
761.8 <i>3</i>	3.1 5	7752.0		6990.2	(41/2)		
765.0 <i>3</i>	21.0 3	882.1	$(11/2^+)$	117.1	$(7/2^+)$	E2	Mult.: DCO= 0.9 2.
773.0 <i>3</i>	3.7 4	2292.6	$(17/2^+)$	1519.7	$(13/2^+)$	E2	
778.7 <i>3</i>	1.8 2	5486.0		4707.3			
788.5 <i>3</i>	11.1 7	5796.3	$(35/2^+)$	5007.8	$(31/2^+)$	E2	Mult.: DCO= 1.0 3.
788.9 <i>3</i>	2.0 7	5345.7	$(33/2^{-})$	4556.5	$(29/2^{-})$	E2	
800.1 <i>3</i>	7.09	4556.5	$(29/2^{-})$	3756.3	$(25/2^{-})$	E2	
824		824.0	$(9/2^+)$	0.0	$(5/2^+)$		E_{γ} : only given in the level scheme figure.
838.1 <i>3</i>	1.8 5	7491.5		6653.4	$(39/2^+)$		
857.1 <i>3</i>	7.79	6653.4	$(39/2^+)$	5796.3	$(35/2^+)$	E2	Mult.: DCO= 1.1 3.
870.6 <i>3</i>	1.1 3	6356.6		5486.0			
875.1 <i>3</i>	17.3 12	1757.4	$(15/2^+)$	882.1	$(11/2^+)$		Mult.: DCO= 1.1 2.
878.2 <i>3</i>	12.8 13	2635.3	$(19/2^+)$	1757.4	$(15/2^+)$		Mult.: DCO= 1.1 2.
883.7 <i>3</i>	1.8 <i>3</i>	7873.9		6990.2	(41/2)		
900.4 <i>3</i>	1.3 3	8652.4		7752.0			
919.0 <i>3</i>	6.0 8	6990.2	(41/2)	6071.2	(37/2)		Mult.: $DCO = 0.9 l$.
922.4 <i>3</i>	13.5 15	5353.4	(33/2)	4430.8	(29/2)		Mult.: $DCO = 0.9 l$.
938.9 <i>3</i>	2.1 4	4707.3		3768.4	$27/2^{-}$		
963.1 <i>3</i>	15.5 16	4731.4	$31/2^{-}$	3768.4	$27/2^{-}$	E2	Mult.: $DCO = 1.0 l$.
975.1 <i>3</i>	5.8 8	5706.5	35/2-	4731.4	$31/2^{-}$	E2	Mult.: $DCO = 1.0 2$.
989.0 <i>3</i>	3.5 7	3050.5	$(21/2^{-})$	2061.9	19/2-	M1,E2	
991.1 <i>3</i>	51.0 20	3768.4	27/2-	2777.3	$23/2^{-}$	E2	Mult.: $DCO = 1.1 I$.
1023.6 3	3.8 5	7677.0	$(43/2^+)$	6653.4	$(39/2^+)$	E2	
1046.2 3	1.1 3	3823.5		2777.3	23/2-		
1050.5 3	2.1 5	8727.5	$(47/2^+)$	7677.0	$(43/2^+)$	E2	
1103.3 3	5.8 8	3738.6	$(23/2^+)$	2635.3	$(19/2^+)$	E2	Mult.: $DCO = 1.0 3$.
1112.7 3	1.4 4	6819.2	$(39/2^{-})$	5706.5	35/2-	E2	
1117.8 3	1.8 4	2495.6	$(1^{7}/2^{-})$	1378.5	$15/2^{-}$	M1,E2	
1119.1 3	3.5 7	4887.2	$(31/2^{-})$	3768.4	$2'/2^{-}$	E2	Mult.: $DCO = 1.1 3$.
1135.7 3	1.1 3	9863.2	$(51/2^+)$	8/27.5	$(4^{\prime}/2^{+})$	E2	
1245.4 3	1.8 4	3880.6		2635.3	$(19/2^{+})$	E2	
1295.1 3	2.1 4	26/3.7		1378.5	$15/2^{-}$	E2	
1305.4 3	1.4 3	9957.8	(00)0=>	8652.4	10/2-	50	
1320.7 3	2.3 5	3382.6	$(23/2^{-})$	2061.9	19/2-	E2	

[†] From DCO ratios, E2 assignments are based on DCO ratios consistent with stretched Q. D are stretched dipole.

⁵⁸Ni(⁵⁸Ni,4pnγ) 2000St03

¹¹¹₅₂Te₅₉

¹¹¹₅₂Te₅₉

