¹¹¹Sb ε decay (75 s) **1976Wi10**

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jean Blachot	NDS 110, 1239 (2009)	1-Feb-2008					

Parent: ¹¹¹Sb: E=0.0; $J^{\pi}=(5/2^+)$; $T_{1/2}=75$ s *1*; $Q(\varepsilon)=5.06\times10^3$ *3*; $\%\varepsilon+\%\beta^+$ decay=100.0

1976Wi10: measured: γ , $\gamma\gamma$, semi; source via ¹¹²Sn(p,2n) E=28 MeV.

1972Si28: measured: E β (magnetic s), $\beta\gamma$ -coin (semi).

Others: 1972Si28, 1974De34.

 $Q(\varepsilon)=5100\ 50\ (1993Au05)\ mass adjustment,\ 4470\ 50\ (1972Si28)\ from E\beta\ max=3290\ 50\ to\ 154\ level.$

¹¹¹Sn Levels

E(level)	J^{π}	T _{1/2}	Comments
0.0	7/2+	35.3 min 8	T _{1/2} : unweighted av: 1949Hi10, 1951Mc11, 1967Da11, 1969Sh11.
154.48 <i>3</i>	5/2+		
254.72 5	$1/2^{+}$	12.5 µs 10	$T_{1/2}$: from 1978Ho06, $\gamma(t)$ pulsed beam via ¹¹⁰ Cd(22-MeV ³ He).
643.58 11	$3/2^{+}$		
755.40 10	$5/2^{+}$		
1032.60 10	3/2+		
1151.8 6	$3/2^+, 5/2^+$		
1276.6 7	7/2+		
1302.0 7	5/2+		
1477.3 7	9/2+		
1693.0 <i>10</i>	$(3/2^+, 5/2^+)$		
1823.0 8	7/2+		
1995.8 <i>10</i>	$(3/2^+, 5/2^+)$		

 ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
$(3.06 \times 10^3 \ 3)$	1995.8	0.28 2	0.19 2	6.03 4	0.47 4	av Eβ=933.94; εK=0.3486; εL=0.04501; εM+=0.01155
$(3.24 \times 10^3 \ 3)$	1823.0	0.63 5	0.34 2	5.83 4	0.97 7	av Eβ=1013.20; εK=0.2989; εL=0.03857; εM+=0.009899
$(3.37 \times 10^3 \ 3)$	1693.0	0.13 1	0.059 3	6.619 24	0.19 1	av Eβ=1073.04; εK=0.2663; εL=0.03434; εM+=0.008812
$(3.58 \times 10^3 \ 3)$	1477.3	0.25 1	0.087 5	6.50 3	0.34 2	av Eβ=1172.79; εK=0.2203; εL=0.02838; εM+=0.007284
$(3.76 \times 10^3 \ 3)$	1302.0	3.2 2	0.90 7	5.53 4	4.1 3	av E β =1254.21; ε K=0.1895; ε L=0.02440; ε M+=0.006260
$(3.78 \times 10^3 \ 3)$	1276.6	0.29 3	0.12 9	6.007 14	0.41 4	av E β =1266.04; ε K=0.1855; ε L=0.02388; ε M+=0.006126
$(3.91 \times 10^3 \ 3)$	1151.8	2.9 2	0.70 6	5.67 4	3.6 3	av Eβ=1324.26; εK=0.1670; εL=0.02149; εM+=0.005515
$(4.03 \times 10^3 \ 3)$	1032.60	10.4 10	2.22 21	5.20 5	12.6 12	av Eβ=1379.92; εK=0.1515; εL=0.01948; εM+=0.004999
$(4.30 \times 10^3 \ 3)$	755.40	4 4	0.7 7	5.7 5	5.2 52	av E β =1509.94; ε K=0.1216; ε L=0.01563; ε M+=0.004009
$(4.42 \times 10^3 \ 3)$	643.58	38 <i>3</i>	5.7 4	4.87 <i>3</i>	44 <i>3</i>	av E β =1562.55; ε K=0.1116; ε L=0.01434; ε M+=0.003679
$(4.91 \times 10^3 \ 3)$	154.48	20 4	2.0 4	5.41 8	22 4	av E β =1793.72; ε K=0.07848; ε L=0.01007; ε M+=0.002584
$(5.06 \times 10^3 \ 3)$	0.0	55	0.4 4	6.1 5	55	av E β =1867.06; ε K=0.07070; ε L=0.009072; ε M+=0.002327
						$I(\varepsilon + \beta^+)$: from $I_{\nu \pm}/I_{\nu}(489\nu) = 4.84$ one gets

 $I(\varepsilon + \beta^+) < 10\%$ to g.s..

[†] Absolute intensity per 100 decays.

¹¹¹Sb ε decay (75 s) **1976Wi10** (continued)

$\gamma(^{111}\text{Sn})$

I γ normalization: from I(γ^{\pm})=158 *13* relative to I γ (489 γ)=33, and thus I β^{+} /I γ (489)=2.40 20.

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	α^{\ddagger}	Comments
100.24 3	2.74 23	254.72	1/2+	154.48	5/2+	E2		1.60	α(K) = 1.162; α(L) = 0.352; α(M) = 0.0712; α(N+) = 0.01485 Mult.: from intensity balance at the 254 level mult=E2(+M1), with δ>1.2. From level scheme, ΔJ=2.
154.48 <i>3</i>	56.1 26	154.48	5/2+	0.0	7/2+	[M1+E2]		0.17	Analogous g7/2 to d5/2 transition in ¹¹¹ Cd: $\delta(171\gamma) = -0.144$.
388.83	2.9	643.58	3/2+	254.72	1/2+	M1+E2	-0.08 6	0.0152 4	$I_{\gamma}: \text{ branching:} \\ I_{\gamma}(389\gamma):I_{\gamma}(489\gamma): \\ I_{\gamma}(644\gamma)=8.8:100:4.5 \\ (1976Wi10), 6.2 \ 17:100:2.5 \\ 10 \ (1972Si28). \end{cases}$
396.2 <i>3</i> 489.1 <i>1</i>	0.12 33	1151.8 643.58	3/2 ⁺ ,5/2 ⁺ 3/2 ⁺	755.40 154.48	5/2 ⁺ 5/2 ⁺	M1(+E2)	0.15 18	0.0084	α (K)=0.00731; α (L)=0.00089; α (M)=0.00017
546.7 600.8 <i>3</i>	0.11 0.6	1302.0 755.40	5/2+ 5/2+	755.40 154.48	5/2 ⁺ 5/2 ⁺				I_{γ} : branching: $I_{\gamma}(601\gamma)/I_{\gamma}(755\gamma)=0.15$ (1976Wi10), 0.18 5 (1976Ma09).
643.6 <i>3</i>	1.5	643.58 755.40	$3/2^+$ $5/2^+$	0.0	$\frac{7}{2^+}$				
777.8 3	2.2	1032.60	$3/2^+$	254.72	$1/2^+$				
877.8 <i>3</i>	0.43	1032.60	3/2+	154.48	5/2+				
897.4 3	1.6	1151.8	$3/2^+, 5/2^+$	254.72	$1/2^+$				
997.3 3	1.3	1151.8	$3/2^+, 5/2^+$	154.48	5/2+ 7/2+				
1052.0 1	0.11	1823.0	$\frac{5}{2}$	755.40	$5/2^+$				
1122.3	0.22	1276.6	7/2+	154.48	$5/2^+$				
1147.5	3.3	1302.0	5/2+	154.48	$5/2^{+}$				
1150 [#] 1		1151.8	3/2+,5/2+	0.0	7/2+				E _γ : from 1972Si28; unobserved by 1976Wi10. I _γ : I _γ (1150γ)/I _γ (154γ)= 0.040 5 (1972Si28), 0.082 <i>18</i> (1974De34).
1179.5	0.7	1823.0	7/2+	643.58	3/2+				
1276.5	0.12	1276.6	7/2+	0.0	$7/2^+$				
1323.7	0.15	14/7.3	$9/2^{+}$	154.48	3/2 ' 7/2+				
1538.5	0.15	1693.0	$(3/2^+, 5/2^+)$	154.48	$5/2^+$				
1841.3	0.39	1995.8	$(3/2^+, 5/2^+)$	154.48	$5/2^+$				

[†] For absolute intensity per 100 decays, multiply by 1.20 8.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[#] Placement of transition in the level scheme is uncertain.

 ${}^{111}_{50}$ Sn₆₁-3

¹¹¹Sb ε decay (75 s) 1976Wi10

