²⁴⁸Cm SF decay 2004Ur05

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jean Blachot	NDS 110, 1239 (2009)	1-Feb-2008

Parent: ²⁴⁸Cm: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=3.48\times10^5$ y 6; %SF decay=?

2004Ur05: Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$, $\gamma\gamma(\ln \text{ pol})$ with the EUROGAM2 array, consisting of 52 large Ge detectors in

anti-Compton shields, including 24 four-crystal CLOVER detectors, which could act as Compton polarimeters. In addition, four LEPS detectors were used to measure X rays and low energy transitions (1997Ur02).

2003UrZZ was a preprint of 2004Ur05.

¹¹¹ Ru	Levels

E(level) [‡]	J^{π}	E(level) [‡]	J^{π}	E(level) [‡]	\mathbf{J}^{π}	E(level) [‡]	J^{π}
0.0#	5/2+	581.5 [@] 5	11/2+	1331.0 ^{&} 10	$(15/2^+)$	2561.3 [@] 10	$(23/2^+)$
9.7 <mark>a</mark> 7	$(1/2^+)$	669.0 <i>5</i>	$(9/2^{-})$	1431.8 <mark>e</mark> 6	$(17/2^{-})$	2653.9 ^b 10	$(25/2^{-})$
39.3 <mark>&</mark> 7	$(3/2^+)$	695.6 <mark>b</mark> 5	$13/2^{-}$	1456.6 [#] 8	$17/2^{+}$	2676.0 [°] 10	$27/2^{-}$
150.2 [@] 4	7/2+	705.6 ^d 5	$11/2^{-}$	1640.9 ^a 10	$(17/2^+)$	2809.2 ^{&} 12	
185.3 ^a 5	$(5/2^+)$	746.0 <mark>&</mark> 8	$(11/2^+)$	1757.6 ^d 6	19/2-	2922.1 [#] 10	
254.0 ^C 4	7/2-	750.1 ^c 6	$15/2^{-}$	1805.3 [@] 9	19/2+	3178.6 ^a 12	
279.8 5	(5/2 ⁻)	851.2 [#] 6	$13/2^{+}$	1888.4 <mark>b</mark> 8	$21/2^{-}$	3345.1 ^d 10	
306.2 <mark>&</mark> 7	$(7/2^+)$	856.4 ^e 6	$(13/2^{-})$	1915.3 ^c 8	$23/2^{-}$	3391.3? ^{†@} 11	
316.8 ^b 5	9/2-	1022.9 ^a 8	$(13/2^+)$	2029.4 <mark>&</mark> 11	$(19/2^+)$	3497.9 ^b 11	
356.0 [#] 4	$9/2^{+}$	1132.3 ^d 5	$15/2^{-}$	2133.8 ^e 8		3522.0 [°] 11	
392.5 [°] 5	$11/2^{-}$	1139.3 [@] 7	$15/2^{+}$	2152.1 [#] 9	$(21/2^+)$		
489.4 ^e 7	(9/2-)	1227.4 <mark>b</mark> 6	17/2-	2367.6 ^a 11	$(21/2^+)$		
531.3 ^a 7	$(9/2^+)$	1264.4 [°] 7	19/2-	2505.1 ^d 8	(23/2 ⁻)		

 † 3380 given in figure 2 of 2004Ur05 seems to be a misprint.

[‡] From least-squares fit to $E\gamma$'s ; $\Delta E\gamma$ =0.5 keV assumed for each γ -ray.

[#] Band(A): g.s. band, $\alpha = +1/2$.

[@] Band(a): g.s. band, $\alpha = -1/2$.

& Band(B): $(1/2^+)$ band, $\alpha = -1/2$. Assigned to ¹¹¹Ru based on the ratio of intensities of the 1180.0 keV line in ¹³⁵Te and the 1278.9 keV line in ¹³⁴Te, I_γ(1180.0)/I_γ(1278.9), as such a ratio is correlated with the mass of the gated Ru isotope.

^{*a*} Band(b): $(1/2^+)$ band, $\alpha = +1/2$. See comment for the other signature partner of this band.

^b Band(C): $7/2^{-}$ band, $\alpha = +1/2$.

^c Band(c): $7/2^{-}$ band, $\alpha = -1/2$.

^{*d*} Band(D): $11/2^{-}$ band.

^{*e*} Band(E): γ -sequence based on (9/2⁻).

 $\gamma(^{111}$ Ru)

 $R(pol) = [aN_{perpendicular} - N_{parallel}] / Q[aN_{perpendicular} + N_{parallel}], where Q is the polarization sensitivity and a=0.977.$

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{†‡}	Comments
62.8	22 1	316.8	9/2-	254.0 7/2-	M1+E2	$A_2 = -0.08 4$; $A_4 = -0.04 4$; $\alpha(K) \exp = 2.7 9$
103.8	56 2 85 4	392.5 254.0	$\frac{11/2}{7/2^{-}}$	$150.8 \ 9/2$ $150.2 \ 7/2^+$	(E1)	$A_2 = -0.09 2$; $A_4 = -0.08 4$ $A_2 = +0.10 2$; $A_4 = +0.05 3$; $\alpha(K) \exp[=0.2 1]$
			,	,	× ,	Mult.: $\Delta J=0$ transition. A multipolarity of M1 cannot be ruled out

for this γ -ray. However, an M1 assignment to this transition, would

Continued on next page (footnotes at end of table)

²⁴⁸Cm SF decay 2004Ur05 (continued)

$\gamma(^{111}\text{Ru})$ (continued)

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^{†‡}	Comments
							imply that the admixture of an E2 component would be rather small, considering the obtained $\alpha_{\rm K}$ value. Also, the pure M1 transition of such an energy should usually be faster than the rate which was observed
138.6	9.9 6	392.5	11/2-	254.0	7/2-	E2	A_2 =+0.08 2; A_4 =-0.06 4 Mult.: An M2 multipolarity for this transition is ruled, as
146.0	21.2	105.0	(5.10+)	20.2	(2)(2+)	141.50	it imply a long half-life for this level.
146.0	3.1 3	185.3	$(5/2^+)$ $7/2^+$	39.3	$(3/2^+)$ $5/2^+$	M1+E2 M1+F2	$A_2 = -0.12$ 3; $A_4 = -0.09$ 3 $A_2 = -0.10$ 2: $A_4 = +0.03$ 2: $\alpha(K) \exp[-1.2, 3]$
150.2	100 5	150.2	112	0.0	5/2	1011 122	Mult.: $\Delta J=1$ transition.
166.6	25 1	316.8	9/2-	150.2	7/2+	E1	A_2 =-0.09 2; A_4 =+0.00 3 Mult.: ΔJ=1 transition.
172.6	3.0 6	489.4	$(9/2^{-})$	316.8	9/2-		
175.6	5.0 3	185.3	$(5/2^+)$	9.7	$(1/2^+)$		A ₂ =+0.09 2; A ₄ =-0.08 4 Mult.: Δ J=2 transition.
185.3	2.4 3	185.3	$(5/2^+)$	0.0	$5/2^{+}$	M1+E2	$A_2 = -0.06\ 2;\ A_4 = +0.04\ 3$
205.9	10.2 6	356.0	9/2+	150.2	7/2+		$A_2 = -0.12 \ 3; \ A_4 = +0.01 \ 5$
225.1	0.6 2	531.3	$(9/2^+)$	306.2	$(7/2^+)$		$A_2 = +0.01 2; A_4 = -0.08 5$
225.5	1.9 4	581.5	$11/2^+$	356.0	9/2+		
254.0	3.7 4	254.0	7/2-	0.0	5/2+		Mult.: $\Delta J = 1$ transition.
267.0	/.6 4	306.2	$(1/2^{+})$	39.3	$(3/2^{+})$		$A_2 = +0.09 2$; $A_4 = -0.02 3$ Mult.: $\Delta J = 2$ transition.
269.8 <mark>#</mark>	0.9.3	851.2	$13/2^{+}$	581.5	$11/2^{+}$		
275.6	4.6 3	1132.3	$15/2^{-}$	856.4	$(13/2^{-})$		
277 #	0.3 1	1022.9	$(13/2^+)$	746.0	$(11/2^+)$		
279.8	2.7 4	279.8	$(5/2^{-})$	0.0	5/2+		
303.3	12.8 5	695.6	$13/2^{-1}$	392.5	$11/2^{-}$		$A_2 = -0.12 4$; $A_4 = +0.08 6$
325.9	2.3 4	1757.6	$19/2^{-}$	1431.8	$(17/2^{-})$		2 / .
346.0	7.2 5	531.3	$(9/2^+)$	185.3	$(5/2^+)$		$A_2 = +0.05 \ l; A_4 = +0.01 \ 3$
356.0	19 2	356.0	9/2+	0.0	$5/2^{+}$		$A_2 = +0.07 2; A_4 = -0.04 2$
357.8	62 <i>3</i>	750.1	15/2-	392.5	11/2-	E2	$A_2 = +0.09 2; A_4 = +0.08 4$ POL = +0.14 6
378.7	13.5 6	695.6	$13/2^{-}$	316.8	9/2-		$A_2 = +0.08 2; A_4 = +0.01 3$
382.9	1.2 4	1132.3	$15/2^{-}$	750.1	$15/2^{-}$		
388.8	3.0 7	705.6	$11/2^{-}$	316.8	9/2-		$A_2 = -0.13 4$; $A_4 = -0.04 6$
389.2	1.5 5	669.0	$(9/2^{-})$	279.8	$(5/2^{-})$		
415.0	1.6 4	669.0	$(9/2^{-})$	254.0	7/2-		
426.6	4.6 5	1132.3	15/2-	705.6	$11/2^{-}$		$A_2 = +0.11 \ 3; \ A_4 = -0.07 \ 4$
431.3	10.0 5	581.5	11/2+	150.2	7/2+		$A_2 = +0.12 \ 3; \ A_4 = -0.05 \ 3$
436.6	5.3 6	1132.3	$15/2^{-1}$	695.6	$13/2^{-}$		
439.8	5.4 5	746.0 705.6	$(11/2^{+})$ $11/2^{-}$	306.2	$(1/2^{+})$		$A_2 = +0.09 2; A_4 = -0.02 3$
431.0	4.5 5	703.0	$\frac{11/2}{(12/2^{-})}$	202.5	1/2		$A_2 = -0.08 \ S, \ A_4 = +0.03 \ S$
405.8	656	1227 4	(15/2) $17/2^{-}$	750.1	11/2 $15/2^{-}$		$A_2 = -0.02 \ I, A_4 = -0.00 \ J$
491.5	7.0.4	1022.9	$(13/2^+)$	531.3	$(9/2^+)$		$A_2 = +0.05 I: A_4 = +0.01 3$
493 0 [#]	084	1757.6	$19/2^{-}$	1264.4	$19/2^{-1}$		
495.1	8.7 6	851.2	$13/2^+$	356.0	$9/2^+$		$A_2 = +0.07$ 2; $A_4 = -0.04$ 2
514.1	52 4	1264.4	$19/2^{-}$	750.1	$15/2^{-}$		$A_2 = +0.09 2; A_4 = +0.08 4$
					,-		POL=+0.09 3.
532.0	12.6 8	1227.4	17/2-	695.6	13/2-		$A_2 = +0.08\ 2;\ A_4 = +0.01\ 3$
557.8	7.2.5	1139.3	$15/2^+$	581.5	$11/2^{+}$		$A_2 = +0.123; A_4 = -0.053$
5/5.7	1.8 3	1451.8	$(1/2^{-})$	856.4	$(13/2^{-})$		
383.U	5.8 5	1351.0	$(15/2^+)$	/46.0	$(11/2^{+})$ $12/2^{+}$		$A_2 = +0.08 2; A_4 = -0.03 2$
618.0	5.9 / 5 7 6	1400.0	$\frac{1}{172^+}$	001.2	$(12/2^+)$		$A_2 = \pm 0.14 J; A_4 = -0.06 /$
010.0	3.70	1040.9	$(1/2^{-})$	1022.9	$(13/2^{\circ})$		$A_2 - \pm 0.4 I, A_4 = -0.04 J$

Continued on next page (footnotes at end of table)

²⁴⁸Cm SF decay 2004Ur05 (continued)

$\gamma(^{111}\text{Ru})$ (continued)

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_j^{\pi}$	Comments
625.3	14 2	1757.6	$19/2^{-}$	1132.3 15/2	$A_2 = +0.09 \ 3; A_4 = +0.07 \ 4$
650.9	33 <i>3</i>	1915.3	$23/2^{-}$	1264.4 19/2	$A_2 = +0.11 \ 3; \ A_4 = -0.05 \ 3$
					POL=+0.07 3.
661.0	8.0 7	1888.4	$21/2^{-}$	1227.4 17/2	-
666.0	4.2 5	1805.3	$19/2^{+}$	1139.3 15/2	⁺ $A_2 = +0.12 \ 3; \ A_4 = -0.04 \ 5$
681.6	3.5 6	1431.8	$(17/2^{-})$	750.1 15/2	$A_2 = -0.10 \ 3; \ A_4 = -0.12 \ 7$
695.5	3.0 6	2152.1	$(21/2^+)$	1456.6 17/2	+
698.4	1.8 <i>3</i>	2029.4	$(19/2^+)$	1331.0 (15/2	$A_2 = +0.08 2; A_4 = -0.03 3$
702 #	1.2 5	2133.8		1431.8 (17/2	
726.7	2.9 7	2367.6	$(21/2^+)$	1640.9 (17/2	2+)
747.5	7.06	2505.1	$(23/2^{-})$	1757.6 19/2	-
756.0	2.6 5	2561.3	$(23/2^+)$	1805.3 19/2	÷
760.7	23 2	2676.0	$27/2^{-}$	1915.3 23/2	$A_2 = +0.11 \ 3; \ A_4 = +0.03 \ 2$
765.5	6.4 9	2653.9	$(25/2^{-})$	1888.4 21/2	-
770.0	2.4 5	2922.1		2152.1 (21/2	(2^+)
779.8	1.5 3	2809.2		2029.4 (19/2	(2^+)
811 [#]	0.9 4	3178.6		2367.6 (21/2	2+)
830 [#]	1.8 6	3391.3?		2561.3 (23/2	2 ⁺)
840 [#]	5.0 7	3345.1		2505.1 (23/2	
844.0	3.4 7	3497.9		2653.9 (25/2	
846.0	16 2	3522.0		2676.0 27/2	-

[†] For stretched transitions, $A_2=0.10$ and $A_4=0.01$ for a $\Delta J=2-\Delta J=2$ cascade; $A_2=-0.07$ and $A_4=0$ for a $\Delta J=2-\Delta J=1$ cascade; and $A_2=0.05$ and $A_4=0$ for a $\Delta J=1-\Delta J=1$ cascade ($a_0=1$). All stretched $\Delta J=2$ transitions with energies lower than 750 keV are assigned E2 multipolarity based on the observation of no half-lives longer than 10 ns for any of the $\Delta J=2$ transitions.

[‡] Clover detectors were used to extract linear polarization from direction-polarization correlations where linear polarization was induced by observing a reference γ-ray. Please refer to table 1 of 2004Ur05 for specific reference γ-rays used.

[#] Placement of transition in the level scheme is uncertain.

¹¹¹₄₄Ru₆₇

¹¹¹₄₄Ru₆₇

²⁴⁸Cm SF decay 2004Ur05

¹¹¹₄₄Ru₆₇

²⁴⁸Cm SF decay 2004Ur05 (continued)

¹¹¹₄₄Ru₆₇