¹¹¹Pd β⁻ decay (5.5 h) 1977Kr14,1969Be11,1969Sc12

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jean Blachot	NDS 110, 1239 (2009)	1-Feb-2008

Parent: ¹¹¹Pd: E=172.2; $J^{\pi}=11/2^-$; $T_{1/2}=5.5$ h *I*; $Q(\beta^-)=2217$ *II*; $\%\beta^-$ decay=27 *3* ¹¹¹Pd- $\%\beta^-$ decay: from $I\gamma(172\gamma,^{111}\text{Pd})/I\gamma(391\gamma,^{111}\text{Ag})=6.3$ *6*; av of 6.5 *8* (1977Kr14), 6.1 *2* (1969Be11). Other: 8.7 *6* (1969Sc12).

Measured: γ , $\gamma\gamma(1977\text{Kr}14, 1969\text{Be}11, 1969\text{Sc}12)$ γ angular correlations (1988Br31).

¹¹¹Ag Levels

E(level)	J^{π}	T _{1/2}	Comments
0.0	1/2-	7.45 d <i>I</i>	
59.79 4	7/2+	64.8 s 8	E(level): $\%\beta^{-}$ feeding assumed negligible for 1U-transition $\%\beta^{-}= 0.7 \ 2$ from 23.4-min ¹¹¹ Pd decay data.
130.30 7	$9/2^{+}$		
289.64 8	3/2-		
376.70 [†] 10	3/2+		Branching: $I\gamma(377\gamma):I\gamma(317\gamma):I\gamma(87\gamma)=100:4.2:3.3$ (1977Gl06).
391.29 8	5/2-		
545.69 [†] 10	7/2+		
682.97 17	7/2+,9/2+		
705.36 11	$(11/2^+)$		
710.3 4	$(5/2^+, 7/2^+)$		
808.75 13	5/2-		
824.48 11	<i> <i> <i>i</i> 0 <i></i> <i>i</i> <i>i</i> <i> </i> <i> i</i> </i></i>		E(level): (³ He,d) excitation at 817 with $L=(4)$ probably corresponds.
845.75 10	1/2		
8/0.4 4			
959.01 3	11/2+		
986.95 23	5/2		
1023.84 11	9/2 7/2-		
1159 82 21	1/2		
1463.47 12	$(5/2^{-},7/2^{-})$		
1542 4 5	(13/2)		
1549.47 13	$9/2^{-}.11/2^{-}$		
1705.92 17	$(7/2^+, 9/2^-)$		
1748.66 11			
1781.65 15	$(9/2^+, 11/2^+)$		
1821.48 10	$(9/2^{-}, 11/2^{-})$		
1905.78 18	$(9/2^{-}, 11/2^{-})$		
1964.4 5			In $({}^{3}\text{He,pn}\gamma)$ a 1905.2 γ deexcites a 1965.8 level. It is possible that the 1905 γ assigned here to the 1964.4 level actually deexcite the higher-energy member of the 1965 doublet.
1987.87 <i>19</i> 2069.3 <i>5</i> 20872	(13/2 ⁻)		
2101.1 3	(11/2 ⁻)		

[†] Band(A): 1/2+(431) band. For J=1/2,5/2 members, see 23-min ¹¹¹Pd β^- decay.

			111 Pd β^-	decay (5.5 h)	1977Kr14,1969Be11,1969Sc12 (continued)
					β^- radiations
E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft		Comments
(288 11)	2101.1	0.8 2	5.8 3	av Eβ=74 13	
(320 11)	2069.3	0.35 12	6.3 <i>3</i>	av Eβ=84 13	
(401 11)	1987.87	1.5 3	6.03 19	av Eβ=111 14	
(425 11)	1964.4	0.39 12	6.70 21	av Eβ=119 <i>14</i>	
(483 11)	1905.78	1.2 2	6.41 16	av Eβ=139 15	
(568 11)	1821.48	6.4 8	5.94 14	av E β =170 15	
(608 11)	1781.65	1.2 2	6.77 14	av Eβ=184 15	
(683 11)	1705.92	0.89 15	7.09 13	av Eβ=213 16	
(840 11)	1549.47	2.1 4	7.04 13	av Eβ=273 16	
(847 11)	1542.4	0.30 8	7.90 15	av Eβ=276 16	
(1229 11)	1159.82	0.22 13	8.7 <i>3</i>	av Eβ=434 18	
(1365 11)	1023.84	0.5 4	8.5 4	av Eβ=493 18	
(1430 11)	959.0	1.6 5	8.05 16	av Eβ=521 18	
(1565 11)	824.48	1.2 3	8.33 13	av Eβ=580 18	
(1684 11)	705.36	0.4 5	8.96	av Eβ=633 18	
(1844 11)	545.69	1.0 7	8.7 4	av Eβ=705 18	
(2259 11)	130.30	7.4 30	8.19 19	av Eβ=894 19	

 † Absolute intensity per 100 decays.

2

 $\gamma(^{111}\text{Ag})$

Iy normalization: per 100 (it+ β^-) decays of parent, if no direct β^- feeding to ¹¹¹Ag g.s. or 59.8 level.

ω

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult.	δ	α &	$I_{(\gamma+ce)}^{(a)}$	Comments
59.77 4	4.8 3	59.79	7/2+	0.0	1/2-	E3		186	903 60	$\begin{aligned} \alpha(\text{K}) &= 43.0; \ \alpha(\text{L}) = 115.2; \ \alpha(\text{M}) = 23.68; \\ \alpha(\text{N}+) &= 4.26 \\ \text{E}_{\gamma}: \text{ from 1978Sh08 (ce). Others: 59.9 } 1 \\ (1969Be11), \ 59.8 \ 1 \ (1969Sc12), \ 59.8 \ 3 \\ (1977\text{K}r14). \end{aligned}$
										$I_{(\gamma+ce)}: calc to achieve intensity balance about 59.8level.Iγ: from I(γ+ce) and α. Measured Iγ= 35.8(1969Be11,1977Kr14) for equilibrium 5.5-h +23-min source.$
										Mult.: from L1:L2:L3=7.0 <i>15</i> :100:130 2, K/L=0.64 20 (1978Sb08)
70.44 7	378 27	130.30	9/2+	59.79	7/2+	M1+E2	≤0.12	1.18	3	$\alpha(K) = 1.030; \ \alpha(L) = 0.1409; \ \alpha(M) = 0.0268; \ \alpha(N+) = 0.00530$
										E_{γ} : from 1976Sv04. Other: 70.4 3 (1977Kr14). I _γ : from 1969Be11. Others: 414 60 (1977Kr14), 486 100 (1969Sc12).
87.0	1.45	376.70	3/2+	289.64	3/2-	[E1]		0.22		Mult., δ : from L1:L2:L3= 100 8: 11 8: <8 (1976Sv04). α (K)= 0.2078; α (L)= 0.0255; α (M)=0.00479; α (N+)=0.00091
										E_{γ} : E_{γ} from 197/Gl06. I_{γ} : branching: $I_{\gamma}(377\gamma)$: $I_{\gamma}(317\gamma)$: $I_{\gamma}(87\gamma)$ =100:4.2: 3.3 (1977Gl06).
101.8 <i>1</i>	14 2	391.29	5/2-	289.64	3/2-	[M1]		0.41		$\alpha(K)=0.349; \ \alpha(L)=0.0433; \ \alpha(M)=0.00819; \ \alpha(N+)=0.00164$
118.7 6	53	824.48		705.36	$(11/2^+)$					
166 <i>1</i>	53	876.4		710.3	(5/2+,7/2+)					E _γ : assigned by 1977Kr14 to the 1987 level. Reassigned by the evaluator to the 876 level, on the basis of branching in 23-min β^- decay and in (³ He pnγ).
169.1 5	22 7	545.69	7/2+	376.70	3/2+	[E2]		0.22		$\alpha(K) = 0.1845; \ \alpha(L) = 0.0325; \ \alpha(M) = 0.00625; \ \alpha(N+) = 0.00117$
272.0 2	8.3 8	1821.48	(9/2-,11/2-)	1549.47	9/2-,11/2-					
289.8 1	52 5	289.64	3/2-	0.0	$1/2^{-}$	[M1]		0.024		$\alpha(K)=0.02076; \alpha(L)=0.00250; \alpha(M)=0.00047$
308.1 4 316.9 7	1.85	376.70	7/2 3/2+	845.75 59.79	7/2 ⁺	[E2]		0.026		α (K)=0.02213; α (L)=0.00312; α (M)=0.00059; α (N+)=0.00012 I _{γ} : from I γ branching (1977Gl06). Others: 2 <i>I</i>
357.9 1	21.2	1821.48	$(9/2^{-},11/2^{-})$	1463.47	$(5/2^{-},7/2^{-})$					(1977Kr14), 0.3 1 (1969Be11).
551.71		1021.10	(-/= ,11/2)	100.17	(0,2,,,,2)					

 $^{111}_{47}\mathrm{Ag}_{64}\text{-}3$

				¹¹¹ Pd β^- de	cay (5.5	h) 1977	Kr14,19	69Be11,1969Sc12 (continued)			
$\gamma^{(111}$ Ag) (continued)											
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	α &	Comments			
376.7 <i>I</i> 391.3 <i>I</i> 413.5 <i>3</i> 415.5 <i>3</i> 418 [‡] <i>I</i> 439.3 2 ×444 2 2	44 6 270 22 89 21 81 18 2.7 [‡] 13 12.1 20 6 3 7	376.70 391.29 959.0 545.69 808.75 1463.47	3/2 ⁺ 5/2 ⁻ 11/2 ⁺ 7/2 ⁺ 5/2 ⁻ (5/2 ⁻ ,7/2 ⁻)	0.0 0.0 545.69 130.30 391.29 1023.84	1/2 ⁻ 1/2 ⁻ 7/2 ⁺ 9/2 ⁺ 5/2 ⁻ 9/2 ⁻	[E2]	0.004 0.013	$\alpha(K)=0.00354; \ \alpha(L)=0.00041$ $\alpha(K)=0.01134; \ \alpha(L)=0.00152; \ \alpha(M)=0.00029$			
$454.5^{b} 2$ $454.5^{b} 2$	$56^{b} 9$	845.75 1159.82	7/2-	391.29 5 705.36 ($5/2^{-}$	M1+E2		 δ: from 1988Br31. δ=- 0.014 46 or +8.1 +4.9-2.3. The measured γ(θ) gives a strong preference for the larger value. I_γ: 69 6 doublet resolved via γγ. 			
477 <i>I</i> 485.9 <i>I</i> ^x 519.3 ^b 2	≤2 26 4 5.6 ^b 11	1463.47 545.69	(5/2 ⁻ ,7/2 ⁻) 7/2 ⁺	986.95 59.79	5/2 ⁻ 7/2 ⁺			I _{γ} : from I γ =7.5 8 for observed γ and I γ =1.9 8 deduced for placement from the 809 level. Note that in (³ He,pn γ) there is a 519 γ placed also from a 1202 level.			
519.3 ^b 2 525.6 1	1.9 ^b 8 65 7	808.75 1549.47	5/2 ⁻ 9/2 ⁻ ,11/2 ⁻	289.64 3 1023.84 9	3/2 ⁻ 9/2 ⁻	M1+E2		I _γ : Iγ from Iγ/Iγ(417γ)=0.71 6 in (³ He,pnγ). δ: 1988Br31 have not been able to discriminate among three choices of δ for J(1550)=9/2 or 11/2.			
552.2 2 552.6 2	14 <i>3</i> 1.2 <i>4</i>	1705.92 682.97	(7/2 ⁺ ,9/2 ⁻) 7/2 ⁺ ,9/2 ⁺	1153.39 130.30	7/2 ⁻ 9/2 ⁺			I_{γ} : Iγ from Iγ(552.6γ)/Iγ(623γ)= 0.058 10 (¹¹¹ Pd g.s. decay). E_{γ} : Eγ from 23-min decay.			
556.1 <i>1</i> 575.0 <i>1</i> 580.00 8 583.4 4	14 2 159 <i>15</i> 100 13 3	845.75 705.36 710.3 1542.4	$7/2^{-}$ (11/2 ⁺) (5/2 ⁺ ,7/2 ⁺) (13/2)	289.64 3 130.30 9 130.30 9	3/2 ⁻ 9/2 ⁺ 9/2 ⁺ 11/2 ⁺			E : weighted average: 583.2.5 (1077 $Kr14$) 583.5.5 (1060 $Sc12$); other:			
595.4 5 617.5 3 623.2 3 632.8 2 645.6 [‡] 5	6.3 6 3.5 20 20 6 178 15 5 [‡] 3	986.95 1463.47 682.97 1023.84 705.36	$5/2^{-}$ $(5/2^{-},7/2^{-})$ $7/2^{+},9/2^{+}$ $9/2^{-}$ $(11/2^{+})$ $(5/2^{-},7/2^{-})$	391.29 5 845.75 7 391.29 5 59.79 7	5/2 ⁻ 7/2 ⁻ 7/2 ⁺ 5/2 ⁻ 7/2 ⁺			584.0 (1969Be11).			
654.7 2 668.5 2	7.5 8 49 5	1463.47 1821.48 824.48	$(5/2^{-},1/2^{-})$ $(9/2^{-},11/2^{-})$	808.75 1153.39 130.30	7/2 ⁻ 7/2 ⁻	M1+E2		δ: 1988Br31 have not been able to discriminate among three choices of $δ$ for J(1821)=9/2 or 11/2.			
697 l 703.8 2 $x716^{\ddagger} l$	7 4 33 4 $2^{\ddagger} 1$	986.95 1549.47	5/2 ⁻ 9/2 ⁻ ,11/2 ⁻	289.64 3 845.75 7	3/2 ⁻ 7/2 ⁻			I_{γ} : other: 2.7 13 (1969Be11).			
718.9 <i>2</i> 724.82 <i>2</i>	9 <i>3</i> 14.0 <i>13</i>	1705.92 1748.66	(7/2 ⁺ ,9/2 ⁻)	986.95 1023.84	5/2 ⁻ 9/2 ⁻			E_{γ} : assigned to 1549.5 by 1974Bu15 and 1969Sc12; however, a 724.52 in			

 $^{111}_{47}\mathrm{Ag}_{64}\text{-}4$

From ENSDF

 $^{111}_{47}\mathrm{Ag}_{64}$ -4

I

			¹¹¹ Pe	d β^- decay	(5.5 h)	1977Kr14,	1969Be11,1	1969Sc12 (continued)
					<u> </u>	(¹¹¹ Ag) (cor	ntinued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	${ m J}^{\pi}_i$	E_f	${ m J}_f^\pi$	Mult.	δ	Comments
E_{γ}^{\dagger} 745.6 5 753.0 4 762.2 1 797.8 1 x808.5 ^b 2 808.5 ^{‡b} 2 808.5 ^{‡b} 2 817 1 828.3 ^b 5 828.3 ^b 5 862.8 5 882.1 ^a 3 894 2 916.2 7 944.7 5 975.2 5 996.3 4 1001.2 5 1029.0 ^b 15 1029.0 ^b 15 1029.0 ^b 15 1045.2 7 1063.4 ^c 7 x1076 [‡] 1 1088.0 5 1098.5 [‡] 10 1115.9 2	$I_{\gamma}^{\dagger \#}$ $\begin{array}{c} 6.3 & 11 \\ 6.0 & 20 \\ 63 & 5 \\ 51 & 3 \\ 3.0^{b} & 5 \\ \end{array}$ $\begin{array}{c} 0.35^{\ddagger b} & 17 \\ 5 & 3 \\ 2.8^{b} & 12 \\ 5.9^{b} & 20 \\ \end{array}$ $\begin{array}{c} 7.5 & 20 \\ 10.7^{a} & 10 \\ 10.7^{a} & 10 \\ \approx^{3} \\ 5 & 3 \\ 6.5 & 20 \\ 8 & 2 \\ 13 & 3 \\ 5 & 2 \\ 7 & 4 \\ 2.3^{b} & 9 \\ <2.9^{b} \\ 5 & 2 \\ 7 & 4 \\ 2^{\ddagger} & 1 \\ 10 & 3 \\ 6^{\ddagger} & 3 \\ 55 & 5 \\ \end{array}$	$E_i(level)$ 876.4 1905.78 1153.39 1821.48 808.75 876.4 959.0 1987.87 1153.39 1705.92 1905.78 1023.84 2069.3 1821.48 1821.48 1821.48 1821.48 1821.48 1821.48 1821.48 1821.48 1705.92 1153.39 1159.82 1987.87 2069.3 2087? 1964.4 1781.65 1821.48	$\begin{array}{c} J_i^{\pi} \\ (9/2^-,11/2^-) \\ 7/2^- \\ (9/2^-,11/2^-) \\ 5/2^- \\ 11/2^+ \\ (13/2^-) \\ 7/2^- \\ (7/2^+,9/2^-) \\ (9/2^-,11/2^-) \\ (9/2^-,11/2^-) \\ (9/2^-,11/2^-) \\ (9/2^-,11/2^-) \\ (7/2^+,9/2^-) \\ 7/2^- \\ (13/2^-) \\ \end{array}$	$\frac{E_f}{130.30}$ 1153.39 391.29 1023.84 0.0 59.79 130.30 1159.82 289.64 824.48 1023.84 130.30 153.39 876.4 845.75 824.48 705.36 130.30 959.0 1023.84 1023.84 876.4 876.4 876.4	$\begin{array}{c} J_{f}^{\pi} \\ \hline \\ 9/2^{+} \\ 7/2^{-} \\ 5/2^{-} \\ 9/2^{-} \\ 9/2^{+} \\ 9/2^{+} \\ 3/2^{-} \\ 9/2^{+} \\ 7/2^{-} \\ 7/2^{-} \\ 7/2^{-} \\ 7/2^{-} \\ 9/2^{+} \\ 11/2^{+} \\ 9/2^{-} \\ 9/2^{-} \\ 7/2^{+} , 9/2^{+} \\ (11/2^{+}) \\ \end{array}$	Mult. M1+E2 M1+E2	<u>δ</u> -0.20 3	<list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item>
1076* 1 1088.0 5 1098.5 [‡] 10 1115.9 2 1139.6 7 1142.4 7 1163.3 3 1200.1 3 1222.5 5 *1270 1	$2^{+} 1$ 10 3 6 [‡] 3 55 5 3 2 6 3 17 2 16 2 4.5 30 ≤ 2	1964.4 1781.65 1821.48 1964.4 2101.1 1987.87 1905.78 1905.78	$(9/2^+,11/2^+) (9/2^-,11/2^-) (11/2^-) (13/2^-) (9/2^-,11/2^-) (9/2^-,11/2^-) (9/2^-,11/2^-)$	876.4 682.97 705.36 824.48 959.0 824.48 705.36 682.97	7/2 ⁺ ,9/2 ⁺ (11/2 ⁺) 11/2 ⁺ (11/2 ⁺) 7/2 ⁺ ,9/2 ⁺			

 $^{111}_{47}\mathrm{Ag}_{64}$ -5

From ENSDF

 $^{111}_{47}\mathrm{Ag}_{64}$ -5

L

			1	¹¹ Pd β^- o	decay (5.5 h)) 197 ′	7Kr14,1969Be11,1969Sc12 (continued)
						$\gamma(^{111}A)$	Ag) (continued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	Comments
1282.5 2	52 5	1987.87	$(13/2^{-})$	705.36	$(11/2^+)$		
^x 1309 1	≤3						
1381 ^c 1	2 1	2087?		705.36	$(11/2^+)$		
1418 <i>1</i>	31	2101.1	$(11/2^{-})$	682.97	7/2+,9/2+		
1651.3 2	36 4	1781.65	$(9/2^+, 11/2^+)$	130.30	9/2+		
1691.1 2	64 5	1821.48	$(9/2^{-}, 11/2^{-})$	130.30	9/2+		
1721.9 2	17 2	1781.65	$(9/2^+, 11/2^+)$	59.79	7/2+		
1775.2 5	23 <i>3</i>	1905.78	$(9/2^{-}, 11/2^{-})$	130.30	9/2+		
1905 <i>1</i>	43	1964.4		59.79	7/2+		E_{γ} : see comment on 1964.4 level.
1939 <i>1</i>	53	2069.3		130.30	9/2+		
1970.8 <i>3</i>	31 3	2101.1	$(11/2^{-})$	130.30	9/2+	D	Mult.: $\delta < 0.2$ from $(1971\gamma)(70\gamma)(\theta)$ (1976Be34).
^x 2064.1 [‡] 10	1.4 [‡] 8						
^x 2086 1	≤2						

6

[†] Eγ,Iγ are from 1977Kr14, except as noted.
[‡] From 1969Be11.
[#] For absolute intensity per 100 decays, multiply by 0.021 2.
[@] For absolute intensity per 100 decays, multiply by 0.27 3.
[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^a Multiply placed with undivided intensity.
^b Multiply placed with intensity suitably divided.

^c Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹¹¹Pd β^- decay (5.5 h) 1977Kr14,1969Be11,1969Sc12

Decay Scheme

¹¹¹Pd β⁻ decay (5.5 h) 1977Kr14,1969Be11,1969Sc12

Decay Scheme (continued)

¹¹¹Pd β^- decay (5.5 h) 1977Kr14,1969Be11,1969Sc12

Decay Scheme (continued)

¹¹¹Pd β⁻ decay (5.5 h) 1977Kr14,1969Be11,1969Sc12

 $^{111}_{47}\text{Ag}_{64}$