		Type	Auth	History hor Citation Literature Cutoff Date									
		Eull Evoluctio	Icon Di	Plachat NDS 110 1220 (2000) 1 Each 2008									
			Jean Di	flachot NDS 110,1239 (2009) 1-Feb-2008									
$Q(\beta^{-})=1036.8$ Note: Current e	$Q(\beta^{-})=1036.8 \ I5; \ S(n)=8829.8 \ 20; \ S(p)=7173.7 \ I6; \ Q(\alpha)=-3777 \ I3 \ 2012Wa38$ Note: Current evaluation has used the following Q record 1036.8 148831.5 227161 11-3782 12 2003Au03.												
				¹¹¹ Ag Levels									
				Cross Reference (XREF) Flags									
		A B C	¹⁰⁹ Ag(t,p) ¹¹⁰ Pd(³ He, ¹¹¹ Ag IT d	$\begin{array}{ccc} E & {}^{111}\text{Pd}\beta^{-}\text{decay}(5.5\text{ h}) \\ F & {}^{112}\text{Cd}(d, {}^{3}\text{He}) \\ \text{decay}(64.8\text{ s}) & G & {}^{110}\text{Pd}({}^{3}\text{He},\text{pn}\gamma) \end{array}$									
D 111 Pd β^- decay (23.4 min)													
E(level) [†]	J^{π}	T _{1/2}	XREF	Comments									
0.0 [#]	1/2-	7.45 d <i>l</i>	ABCDEFG	$\%\beta^{-}=100$									
				$\mu = -0.146 \ 2 \ (1989Ra17)$ $J^{\pi}: \text{ from atomic beam (1976Fu06), L(d,^{3}He)=1.}$ $T_{1/2}: \text{ from 7.45 d } I \ (1960Ba49), 7.450 d \ 17 \ (1974Ro18). \text{ Others: 7.48 d } I \ (1968RoZZ), 7.5 d \ I \ (1950Jo53).$									
59.82 4	7/2+	64.8 s 8	CDE G	%1T=99.3 2; % $\beta^{-}=0.7$ 2 T _{1/2} : 64.8 s 8 (1974Gr29) 4 $\pi\beta$, on-line ms. Other: 74 s 3 (1957Sc22). J ^{π} : based on E3 γ decay to g.s. Isomeric 7/2 ⁺ analogs: 39.6-s ¹⁰⁹ Ag at									
130.28 5	9/2+	1.22 ns 2	B DEFG	88 keV and 44.5-8 ¹⁰ Ag at 93 keV. $T_{1/2}$: from $\beta(ce(K) 70\gamma)(t)$ (1976Sv04). Other: 0.92 ns 4 (1972Ja01) (415 γ ,575 γ ,694 γ)(70 γ)(t).									
				Analogs: 2.6-ns 109 Ag at 133 keV, 2.8-ns 107 Ag at 126 keV.									
289.71 ^{#} 5	3/2-		AB DEFG	J^{π} : based on L=1 (³ He,d), L=1 (d, ³ He), L=2 (t,p).									
376.71 ^{&} 5	3/2+	16 ns <i>1</i>	B DEfG	T _{1/2} : from 1977Gl06 (377 γ)(t). J ^{π} : L=2 (³ He,d), γ decay to 1/2 ⁻ , RUL.									
391.28 [#] 5	5/2-		A DEfG	J^{π} : L=2 (t,p), γ decay from 9/2 ⁻ states.									
404.86 <mark>&</mark> 9	1/2+		B D fG	J^{π} : L=0 (³ He,d).									
545.72 ^{&} 6	7/2+		B DE G	J^{π} : L=4 (³ He,d) and γ decay to 3/2 ⁺ .									
568.67 19	5/2+		D G	J^{π} : E2 γ from 9/2 ⁺ and γ decay to 3/2 ⁻ .									
568.8 2	5/2+		B D FG	J^{π} : L=2 (³ He,d),(d, ³ He), γ decay to 9/2 ⁺ .									
606.87 ^c 6	5/2+		BD G	J^{n} : L=2 (³ He,d) and γ decay to 9/2 ⁺ .									
641.93* /	3/2		ABDFG	J^{A} : L=1 (³ He,d),(d, ³ He) and L=2 (t,p).									
705 42 9	$\frac{9/2}{11/2^{(+)}}$		E DE G	I^{π} : consistent with (1282 γ)(575 γ)(θ) excit in (³ He pp γ).									
710.29 7	$(5/2^+, 7/2^+)$		DG	J^{π} : based on decays to $5/2^+$ and $9/2^+$, excit in (³ He,pn γ).									
809.17 [@] 9	5/2-		A DEFG	XREF: F(790). J^{π} : L=2 (t.p).									
817			В										
824.46 8	11/2+,13/2+		B EFG	XREF: B(817). J^{π} : excit and $\gamma(\theta)$ in (³ He,pn γ), (³ He,d) excitation at 817 keV with $L=(4)$ do not correspond									
845.88 [#] 8	7/2-		AEG	J^{π} : γ decay to $3/2^{-}$ and from $11/2^{-}$ state.									
876.63 8	9/2+		B DE G	J^{π} : $\gamma(\theta)$ and excit in (³ He,pn γ). L=1+4 for E=868, assigned in (³ He,d).									
958.96 ^{&} 11	11/2+		EG	J ^{π} : log <i>ft</i> =8.1 from 11/2 ⁻ parent. γ 's to 7/2 ⁺ and 9/2 ⁺ . Excit in (³ He,pn γ).									

Continued on next page (footnotes at end of table)

¹¹¹Ag Levels (continued)

E(level) [†]	J^{π}	XREF	Comments				
			J^{π} : log ft=8.1 from 11/2 ⁻ parent. γ 's to 7/2 ⁺ and 9/2 ⁺ . Excit in (³ He,pn γ).				
986.82 [‡] 8	5/2-	A E G	J^{π} : L=2 (t,p). Band assignment.				
1013.06 12	9/2+	B G	J^{π} : from L=4 (³ He,d) and $\gamma(\theta)$ in (³ He,pn γ).				
1023.98 [#] 8	9/2-	A E G	J ^{π} : from γ decays to 5/2 ⁻ and from 11/2 ⁻ states. Excit in (³ He,pn γ).				
1062.27 15	3/2+	D G	J^{π} : γ decays to $1/2^+$, $7/2^+$ states, excit in (³ He,pn γ).				
1082 5	1/2-	AB	XREF: A(1085).				
			Additional information 1. I^{π} , $I = 0$ (t n)				
1085.48 8	$(7/2^+)$	DG	J^{π} : excit and $\gamma(\theta)$ in (³ He,pn γ).				
1086.64 10	$(3/2^+, 5/2^+)$	DG	J^{π} : excit and $\gamma(\theta)$ in (³ He,pn γ).				
1119.68 10	$(3/2^+)$	D G	J^{π} : excit and $\gamma(\theta)$ in (³ He,pn γ).				
1125.35 9	$11/2^{+}$	G	J^{π} : γ 's to 7/2 ⁺ , 9/2 ⁺ , and $\gamma(\theta)$ in (³ He,pn γ).				
1147 5		В	Additional information 2. F(level): doublet with $L = 0 + 2$				
1153 /1 @ 8	7/2-	FC	E(level), doublet with L=0+2. $I_{\pi}^{(2)}$ or decays to $3/2^{-}$ $0/2^{+}$ states. Excit and $\alpha(\theta)$ in $({}^{3}\text{He prov})$				
1159.78 24	1/2	EG	J . γ decays to $3/2$, $3/2$ states. Excit and $\gamma(0)$ in (Tre, pir γ).				
1170.2 4	$(3/2^+, 5/2^+)$	DG	J^{π} : excit and $\gamma(\theta)$ in (³ He,pn γ).				
1180.16 10	5/2+	B D fG	J^{π} : L=2 (³ He,d). Excit in (³ He,pn γ).				
1198.88 11	(1/2)	fG	J^{π} : γ to $3/2^-$. Excit in (³ He,pn γ).				
1201 5	3/2-,5/2-	A	Additional information 3. $M = 1 - 2$ in (t, p)				
1202 3 5	11/2 13/2	G	J. $L=2$ III (1,p). I^{π} : γ to $7/2^+ 9/2^+$ Excit in (³ He pn γ)				
1210.38 9	$3/2^+$	BD G	XREF: B(1218).				
			J^{π} : L=2 (³ He,d). Excit in (³ He,pn γ) rules out 5/2.				
1262.79 <i>21</i>		G					
1276.6 5	9/2+	G	J^{π} : γ to $7/2^+$, excit and $\gamma(\theta)$ in (³ He,pn γ).				
12/8 /	1/2 ,3/2	aB F	XKEF: F(1300). Additional information 4				
			I^{π} : L=1 (³ He.d).				
1284.6 5	$(7/2^{-}, 5/2^{-})$	a G	J^{π} : γ to $5/2^{-}$, and $\gamma(\theta)$ in (³ He,pn γ).				
1299.17 11	5/2-,7/2-	A G	J^{π} : excit and $\gamma(\theta)$ in (³ He,pn γ).				
1300 7	1/2-,3/2-	F	Additional information 5.				
1201 5 5			J^{π} : L=1 (d, ³ He).				
1301.5 5	7/2-	G	J^{π} : γ to $J/2^+$, so different from the 1300 level in (d, ³ He).				
13/6.8* 3	(11/2)	G	$J^{\prime\prime}$: excit in (³ He,pny).				
1388.0 5	(11/2) $5/2^{-}$	A C	J : γ to 11/2, excit in (He,pir γ). I^{π} : I (t n)=2. Excit and $\gamma(\theta)$ in (³ He nn γ) exclude 3/2				
1419 7	$1/2^{-}, 3/2^{-}$	F	Additional information 6.				
			J^{π} : L(d, ³ He)=1.				
1440.44 10	7/2+,9/2	G	J^{π} : excit and $\gamma(\theta)$ in (³ He,pn γ).				
1441.9 5	$(5/2^{-})$	G	J^{π} : $\gamma(\theta)$ in (³ He,pn γ).				
1443 8	1/2	В	Additional information 7. $ \overline{\mathcal{M}}_{n-1} = 0 (^{3}_{n-1} \mathbf{L}_{n-1}) $				
1448 7	$(1/2^{-})$	A	Additional information 8				
1110 /	(1)=)		J^{π} : L=(0) in (t,p).				
1451.9 5		G					
1463.62 [@] 11	$(5/2^-, 7/2^-)$	EG	J^{π} : excit and $\gamma(\theta)$ in (³ He,pn γ).				
1467.0 5	(1/2)	G	J^{n} : excit in (³ He,pn γ).				
14/1.4 <i>4</i> 1474 6 3	$(15/2^+ 13/2^+)$	G	I^{π} excit in (³ He nny)				
1476 8	$1/2^+$	В	Additional information 9.				

Continued on next page (footnotes at end of table)

¹¹¹Ag Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
			J^{π} : L=0 (³ He,d).
1496.4 5 1506.0 5	(1/2)	G	J^{π} : excit in (³ He,pn γ).
1518.68 9 1540 8	5/2 ⁺ ,7/2 ⁺ 1/2 ⁻ ,3/2 ⁻	D FG F	J^{π} : γ to 9/2 ⁺ state and log <i>ft</i> =5.8 from 5/2 ⁺ parent. Additional information 10.
1542.5 <i>4</i> 1545 7	(13/2) (5/2 ⁺ ,7/2 ⁺)	E G A	Additional information 11. I^{π} : I = (3) in (t p)
1546.1 4	1/2-,3/2-	G	J^{π} : L=1 (d, ³ He).
1549.60 [‡] <i>11</i>	9/2-,11/2-	EG	J ^{π} : γ decays to 7/2 ⁻ ,9/2 ⁻ states, excit and $\gamma(\theta)$ in (³ He,pn γ).
1574.1 ^{&} 6	$(11/2^+, 13/2^+)$	G	J^{π} : excit and $\gamma(\theta)$ in (³ He,pn γ).
1588 8	$3/2^+, 5/2^+$	В	Additional information 12. $\pi_{1} = 2 \frac{3}{4} = 0$
1602.5 <i>4</i> 1611.7 <i>6</i>	5/2+	ADG G	J ^{π} : L=2 (³ He,d), excit and $\gamma(\theta)$ in (³ He,pn γ).
1621.3 4	3/2+	B D G	J ^{π} : L=2 (³ He,d). Excit in (³ He,pn γ) rules out J=5/2.
1630 8	3/2-,5/2-	Α	Additional information 13. W_{1} L = 2 in (t m)
1638.8 <i>3</i>		G	J : L=2 m (t,p).
1654 9	3/2+,5/2+	В	Additional information 14.
1665 2 5		C	J^{π} : L=2 (³ He,d).
1674 5 4	$(3/2)^{-}$	D G	I^{π} : excit and $\gamma(\theta)$ in (³ He nn γ) I (t n)=2
1682.2 5	$5/2^+, 3/2^+$	BG	XREF: B(1683).
			J^{π} : L=2 (³ He,d).
1705.11 11	$(5/2^+, 7/2^+)$	DG	J^{π} : excit and $\gamma(\theta)$ in (³ He,pn γ).
1705.86 14	(9/2) 1/2 ⁻	A E G	J [*] : γ 's to 5/2 and (11/2'); log $ft=7.3$ from 11/2. Additional information 15
1/1/0	1/2		J^{π} : L(t,p)=0.
1727 9	3/2+,5/2+	В	Additional information 16.
· - · · · · · · · · · · · · · · · · · ·			J^{π} : L=2 (³ He,d).
1748.56 [#] <i>13</i>	$11/2^{-}, 13/2^{-}$ $11/2^{+}, 13/2^{+}$	G	J^{n} : excit and $\gamma(\theta)$ in (³ He,pn γ).
1751.0 5	11/2 ,15/2	9	J^{π} : excit and $\gamma(\theta)$ in (³ He,pn γ).
1752 8	3/2-,5/2-	Α	Additional information 18.
1765 2 5	11/2+ 12/2	c	J^{π} : L=2 in (t,p).
1703.3 3	11/2 ,15/2	G	I^{π} : excit and $\gamma(\theta)$ in $({}^{3}\text{He nn}\gamma)$
1768.5 5		G	Additional information 20.
1770 9	7/2+,9/2+	В	Additional information 21.
1781 67 15	$(9/2^+ 11/2^+)$	FG	J [*] : L=4. I^{π} : γ decays to $7/2^+$ $9/2^+$ states $\gamma(\theta)$ in $({}^{3}\text{He nn}\gamma)$
1798.8 3	7/2,9/2	G	Additional information 22.
			J^{π} : excit in (³ He,pn γ).
1802.4 3	(3/2,5/2)	G	Additional information 23. I^{π} : excit in (³ He prov)
1819 8	3/2-,5/2	А	Additional information 24.
			J^{π} : L=2 in (t,p).
1821.59 9	$(9/2^{-}, 11/2^{-})$	EG	J^{π} : γ decays to 7/2,11/2 states. Excit in (³ He,pn γ).
1832 9	3/2',5/2'	В	Additional information 25. I^{π} : I =2 (³ He d)
1862 9	3/2-,5/2-	A	Additional information 26.

Continued on next page (footnotes at end of table)

¹¹¹Ag Levels (continued)

E(level) [†]	J^{π}	XI	REF	Comments
				$J^{\pi}: L(t,p)=2.$
1905.87 16	$(9/2^{-}, 11/2^{-})$		EG	J^{π} : γ decays to $7/2^-$, $(11/2^+)$ states.
1934 9	7/2-,9/2-	A		Additional information 27. T^{π}
1041.0	1/2+	Ъ		$J^{\prime\prime}$: L=4 in (t,p).
1941 9	1/2	В		Additional information 28. $\pi_{-1} = 0.311 \pm 0.311$
1056.0	(5/2 + 7/2 +)	^		J [*] : L=0 ([°] He,0).
1950 9	(3/2 ,7/2)	A		Additional information 29. I^{π} : I = (3) in (t n)
1959.8 6			G	Additional information 30.
1964.7 4			Е	
1965.8 6			G	
1985 9	5/2+	AB		Additional information 31.
				J^{π} : L=2 (³ He,d) and L=3 (t,p).
1987.90 <i>18</i>	$(13/2^{-})$		EG	J^{π} : consistent with $(1282\gamma)(575\gamma)(\theta)$ (1976Be34). Excit in (³ He,pn γ).
				E(level): a 166 γ is placed deexciting this level in ¹¹¹ Pd decay, but in (³ He,pn γ) this
				transition is from a 876-keV level.
2068 10	5/2+,7/2+	A		Additional information 32.
20(0.4.5				J^{n} : L=3 in (t,p).
2069.4 5			E	
2087.04	7/2+	AR	ĽĠ	Additional information 33
2000 10	1/2	nD		I^{π} : I = 4 (³ He d) and I = 3 (t p)
2101.05 25	(11/2)		ΕG	J^{π} : consistent with (1971 γ)(70 γ)(θ) (1976Be34), γ 's to 9/2 ⁺ .11/2 ⁺ .
2125 10	7/2-,9/2-	Α		Additional information 34.
				J^{π} : L=4 in (t,p).
2130.8 4	11/2,13/2		G	J^{π} : excit in (³ He,pn γ).
2136 10		В		Additional information 35.
				J^{π} : L=0+2+4 multiplet.
2165 10	5/2+,7/2+	Α		Additional information 36. \mathbf{J}^{T}
2188 10	+	D		J [*] : L=3 III (I,p).
2100 10		Б		$I^{\pi} \cdot I = 0 \pm 4$
2197 10	$(7/2^{-}.9/2^{-})$	Α		Additional information 38.
	(.1- ,.1-)			J^{π} : L=(4) in (t,p).
2222 10	$(7/2^{-}, 9/2^{-})$	Α		Additional information 39.
				J^{π} : L=(4) in (t,p).
2223 10	+	В		Additional information 40.
2250 10				J^{n} : L=0+4 in (³ He,d).
2258 10	9/2+,11/2+	A		Additional information 41. I_{π} , I_{π} , f_{π}
2282 10	$7/2^{-} 0/2^{-}$	٨		J [*] : L=5 in (t,p).
2282 10	1/2 ,9/2	A		$I^{\pi} \cdot I = 4$ in (t n)
2298-10	$(3/2^+, 5/2^+)$	В		Additional information 43
	(=1= ;=1=)			J^{π} : L=(2) (³ He.d).
2308 10	$(7/2^{-}, 9/2^{-})$	Α		Additional information 44.
				J^{π} : L=(4) in (t,p).
2342 10	$(1/2^{-}, 3/2^{-})$	В		Additional information 45.
				J^{π} : L=(1) (³ He,d).
2352.7 7	(15/2,17/2)		G	Additional information 46.
0075 10		_		J^{n} : excit in ('He,pn γ).
2375 10	(1/2')	В		Additional information $4/$.
				J': L=(0) in (³ He,d).

¹¹¹Ag Levels (continued)

[†] From least-squares fit to $E\gamma$'s (by evaluator).

- ^{\pm} Band(A): negative parity rotational band $3/2^{-}$ [301].
- [#] Band(B): negative parity rotational band $1/2^{-}$ [301].
- ^(a) Band(C): negative party rotational band 5/2⁻ [303].
 ^(b) Band(C): negative parity rotational band 5/2⁻ [303].
 ^(c) Band(D): Positive parity rotational band 1/2⁺ [431], K^π=1/2⁺ [431] band in analogy with ¹⁰⁷In-¹¹⁹In based on strongly retarded E1 and E2 transitions from 3/2⁺ bandhead. Parameters A=18.7, a=-1.5 derived from low-lying 1/2,3/2,7/2 states.

$\gamma(^{111}Ag)$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	α [#]	Comments
59.82	7/2+	59.78 4	100	0.0 1/2-	E3		181	B(E3)(W.u.)=0.046 /
130.28	9/2+	70.44 5	100	59.82 7/2+	M1+E2	≤0.12	1.18 3	B(M1)(W.u.)=0.024 I
289.71	3/2-	289.77 6	100	0.0 1/2-				
376.71	3/2+	87.0	3.4	289.71 3/2-	(E1)		0.22	$B(E1)(W.u.) = 7.3 \times 10^{-9} 7$
	,	316.90 9	3.41 14	59.82 7/2+	(E2)		0.026	B(E2)(W.u.)=0.0109 14
		376.71 6	100.0 11	0.0 1/2-	(E1)			$B(E1)(W.u.)=3.2\times10^{-7}$ 3
391.28	5/2-	101.71 7	3.6 1	289.71 3/2-			0.41	I_{γ} : weighted average of values of 1969Be11, 1977Kr14 and 1987Ze04.
		391.28 6	100	0.0 1/2-				
404.86	$1/2^{+}$	404.88 9	100	$0.0 1/2^{-}$				
545.72	7/2+	169.00 9	33.9 14	376.71 3/2+			0.22	
		415.49 9	100.0 14	130.28 9/2+				
		485.86 7	30.4 6	59.82 7/2+				
568.67	$5/2^{+}$	279.0 2	5.0 13	289.71 3/2-				
		508.6 <i>5</i>	100 33	59.82 7/2+				
568.8	5/2+	438.5 1	25.0 23	130.28 9/2+				
		509.0 5	100 25	59.82 7/2+				
606.87	5/2+	202.1 3	3.6 6	404.86 1/2+				
		230.3 2	6.9 7	3/6./1 3/2+				
		476.68 9	20.1 3	130.28 9/2				
(41.02	2/2-	547.00 8	100.0 16	59.82 //2 ⁺				
641.93	3/2	250.6 5	4.8 9	391.28 5/2				
		552.21 10	30 3	$269.71 \ 5/2$				
692.05	0/2+	041.92 <i>10</i>	5.9.0	0.0 1/2				$L = f_{1} + \frac{1}{2} + $
085.05	9/2	552.0 Z	5.8 9 100 6	130.28 9/2				I_{γ} : from β - decay. $I_{\gamma}/I_{\gamma}(62.5\gamma)=0.115$ 12 in (°He,pn γ).
705 42	11/2(+)	025.20 /	100.0	39.82 1/2 120.29 0/2 ⁺				
/05.42	$11/2^{(1)}$	5/5.10 10	100.0 14	130.28 9/2				
710.20	(5/2+7/2+)	043.3 3	0.0 0	59.82 1/2 569.9 5/0+				$L = f_{1} + \frac{1}{2} + $
/10.29	$(3/2^{+}, 1/2^{+})$	141.0 3	0.05 2	$308.8 3/2^{+}$				I_{γ} : from β - decay. $I_{\gamma}/I_{\gamma}(580\gamma)=0.042$ / in (*He,pn γ).
		580.02 0	62 5	$130.28 \ 9/2$ 50.82 $7/2^+$				
800.17	5/2-	417.03.10	100 1	$39.02 \ 1/2$ 301.28 $5/2^{-1}$				
009.17	5/2	510 31 11	71.6	$391.20 \ 3/2$ 280 71 $3/2^{-1}$				
		809.6.3	13.6	$209.71 \ 3/2$ 0.0 $1/2^{-}$				
824.46	11/2+ 13/2+	118.0 /	5017	$705.42 11/2^{(+)}$				
024.40	11/2 ,13/2	694 19 7	100.0.17	130.28 9/2+				
845 88	7/2-	454.6.5	100.0 17	$391.28 5/2^{-1}$	M1+F2			δ : from 1988Br31 $\delta = -0.014.46$ or $+8.1.+4.9-2.3$
015.00	,,2	556.16.7	20.9 10	$289.71 \ 3/2^{-1}$	11111122			0. nom 17002151. 0- 0.011 10 01 10.1 11.7 2.5.
876.63	$9/2^{+}$	166.2 4	41.3	$710.29 (5/2^+, 7/2^+)$				
2. 5.00	~ / =	746.28 10	100.0 14	130.28 9/2+				
		816.82 10	68 3	59.82 7/2+				

From ENSDF

$\gamma(^{111}\text{Ag})$ (continued)

E_i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	Iγ	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
958.96	$11/2^{+}$	413.25 10	100.0 16	545.72	7/2+	E2	
	,	828.7 5	3.2 11	130.28	9/2+		
986.82	$5/2^{-}$	344.87 10	26 5	641.93	3/2-		
		595.7 4	100 4	391.28	5/2-		
		697.08 10	83 5	289.71	$3/2^{-}$		
1013.06	9/2+	406.8 5	59 7	606.87	5/2+		
		444.30 10	100 <i>3</i>	568.8	$5/2^{+}$		
		467.0 5	26 7	545.72	7/2+		
1023.98	9/2-	632.76 10	100.0 15	391.28	$5/2^{-}$	[E2]	
		893.9 5	1.9 15	130.28	$9/2^{+}$		
1062.27	3/2+	494.1 4	15 8	568.8	5/2+		
		657.3 4	39 4	404.86	$1/2^{+}$		
		685.5 2	87.9 22	376.71	$3/2^{+}$		
		773 1	73	289.71	3/2-		
		1002.3 3	100 7	59.82	7/2+		
1085.48	$(7/2^+)$	478.63 10	35 8	606.87	$5/2^{+}$		
		516.73 10	65 2	568.8	5/2+		
		955.18 <i>10</i>	100 4	130.28	9/2+		
1086.64	$(3/2^+, 5/2^+)$	540.7 5	16 <i>3</i>	545.72	7/2+		
		709.95 9	100.0 22	376.71	3/2+		
		1026.6 5	7.9 12	59.82	7/2+		
1119.68	$(3/2^+)$	742.8 <i>3</i>	43 16	376.71	3/2+		
		830.3 5	30 11	289.71	3/2-		
		1059.86 10	100 5	59.82	7/2+		
1125.35	$11/2^+$	248.67 10	30 6	876.63	9/2+		
	= 10-	442.35 10	100 3	683.05	9/2+		
1153.41	7/2-	307.8 4	14.4 19	845.88	7/2-		
		762.16 7	100.0 19	391.28	5/2-		
		863.2 4	8.1 19	289.71	3/2-		
		1022.74	11.0 10	130.28	$9/2^{+}$		
1159.78		454.4 5	100 4	705.42	$11/2^{(+)}$		
1150.0		1029.7 5	17.9 20	130.28	9/2+		
1170.2	$(3/2^+, 5/2^+)$	624.4 5	19.9	545.72	1/2*		
1100.15	5 /0±	793.6 4	100 12	376.71	3/2		
1180.16	5/2+	611.3 4	16.6 17	568.8	5/2*		
		635 1	16 13	545.72	1/2*		I_{γ} : seen only in β - decay.
		775.4 3	18 7	404.86	1/2+		I_{γ} : from (³ He,pn γ). $I\gamma=31$ 3 in β - decay.
		803.7 <i>3</i>	12 5	376.71	$3/2^{+}$		I_{γ} : from (³ He,pn γ). $I\gamma$ =26 4 in β - decay.
		890 1	12 5	289.71	3/2-		I_{γ} : seen only in β - decay.
		1120.30 10	100 3	59.82	7/2+		
1198.88	(1/2)	909.16 10	100	289.71	3/2-		

7

$\gamma(^{111}\text{Ag})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Comments
1202.3	11/2.13/2	519.2.5	100 4	683.05 9/2+	
1210.38	3/2+	603.3.4	29.7	$606.87 \ 5/2^+$	
1210100	0/=	641 7 2	100 16	568.8 5/2+	
		833.5.5	26.19	$376.71 \ 3/2^+$	
		920.70 10	77.3	$289.71 \ 3/2^{-1}$	
1262.79		552.5 2	100	$710.29 (5/2^+, 7/2^+)$	
1276.6	$9/2^{+}$	730.9 5	100	545.72 7/2+	
1284.6	$(7/2^{-}, 5/2^{-})$	893.3 5	100	391.28 5/2-	
1299.17	5/2-,7/2-	1009.45 10	100	289.71 3/2-	
1301.5	-1) 1	755.8 5	100	545.72 7/2+	
1376.8	7/2-	530.8 5	67 7	845.88 7/2-	
	,	735.2 5	27 13	641.93 3/2-	
		985.2 5	100 13	391.28 5/2-	
1388.0	(11/2)	262.6 5	100	1125.35 11/2+	
1417.91	5/2-	1128.19 10	100	289.71 3/2-	
1440.44	$7/2^+, 9/2$	735.3 2	37 11	705.42 11/2 ⁽⁺⁾	
		1310.08 10	100 11	130.28 9/2+	E_{γ}, I_{γ} : placed from 1602 level in β^{-} decay.
1441.9	$(5/2^{-})$	800.0 5	100	641.93 3/2-	
1451.9		768.8 5	100	683.05 9/2+	
1463.62	$(5/2^{-},7/2^{-})$	439.3 2	100 20	1023.98 9/2-	
		477 1	≤17	986.82 5/2-	
		617.5 <i>3</i>	36 11	845.88 7/2-	
		654.6 2	79 9	809.17 5/2-	
1467.0	(1/2)	1062.1 5	100	404.86 1/2+	
1471.4		1079.9 5	100 83	391.28 5/2-	
		1094.8 5	83 <i>33</i>	376.71 3/2+	
1474.6	$(15/2^+, 13/2^+)$	314.9 5	13 <i>3</i>	1159.78	
		650.5 5	100 11	824.46 11/2+,13/2+	
		768.8 5	34 11	705.42 11/2 ⁽⁺⁾	
1496.4	(1/2)	1091.5 5	100	404.86 1/2+	
1506.0		937.2 5	100 50	568.8 5/2+	
		1506 <i>1</i>	12 12	$0.0 1/2^{-}$	
1518.68	5/2+,7/2+	308.4 2	1.64 15	1210.38 3/2+	
		808.5	3.7 11	710.29 $(5/2^+, 7/2^+)$	
		835.6 2	48 <i>3</i>	683.05 9/2+	
		950.0 10	1.5 6	568.8 5/2+	
		1388.36 9	96 7	130.28 9/2+	
		1458.9 <i>3</i>	100 7	59.82 7/2+	
1542.5	(13/2)	583.5 <i>3</i>	100	958.96 11/2+	
1546.1	$1/2^{-}, 3/2^{-}$	903.8 5	100 8	641.93 3/2-	
		1256.7 5	42 25	289.71 3/2-	

$\gamma(^{111}\text{Ag})$ (continued)

E_i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}	E_f	J_f^π	Mult. [‡]	Comments
1549.60	$9/2^{-},11/2^{-}$	525.6 1	100 11	1023.98	9/2-	M1+E2	
	, , ,	703.8 2	48 6	845.88	7/2-		
1574.1	$(11/2^+, 13/2^+)$	615.1 5	100 10	958.96	$11/2^+$		
1602.5	5/2+	1311.2 10	35 9	289.71	3/2-		E_{γ}, I_{γ} : placed from 1440 in (³ He, pn γ).
	,	1542.9 <i>4</i>	100 8	59.82	7/2+		
1611.7		598.6 <i>5</i>	100	1013.06	9/2+		
1621.3	3/2+	1014.3 5	100 15	606.87	5/2+		
		1052.7 5	54 15	568.8	5/2+		
1638.8		829.6 5	38 25	809.17	5/2-		
		1247.4 5	75 50	391.28	5/2-		
		1262.3 5	100 50	376.71	$3/2^{+}$		
1665.3		840.8 5	100	824.46	11/2+,13/2+		
1674.5	$(3/2)^{-}$	1067.1 5	100 33	606.87	5/2+		I_{γ} : reported only in β - decay.
		1269.9 4	67 20	404.86	$1/2^{+}$		
1682.2	$5/2^+, 3/2^+$	1290.9 5	100	391.28	5/2-		
1705.11	$(5/2^+, 7/2^+)$	1022 <i>1</i>	22 11	683.05	9/2+		I_{γ} : reported only by 1969Be11 in 23.4-min β - decay.
		1098. <i>1</i>	22 11	606.87	5/2+		I_{γ} : reported only by 1969Be11 in 23.4-min β - decay.
		1574.3 4	100 11	130.28	9/2+		
		1644.4 5	69 <i>5</i>	59.82	7/2+		
1705.86	$(9/2^{-})$	552.2 2	100 21	1153.41	7/2-		
		718.9 2	64 21	986.82	5/2-		
		882.1 [@] 3	≤84 [@]	824.46	$11/2^+, 13/2^+$		
		1000.7 4	36 14	705.42	$11/2^{(+)}$		
1748.56	11/2-,13/2-	724.58 10	100	1023.98	9/2-		
1751.6	$11/2^+, 13/2^+$	1068.7 5	65 24	683.05	9/2+		
		1621.1 5	100 12	130.28	9/2+		
1765.3	11/2+,13/2	940.9 5	100	824.46	11/2+,13/2+		
1768.5		809.5 5	100	958.96	$11/2^{+}$		
1781.67	$(9/2^+, 11/2^+)$	1098.5 10	17 7	683.05	9/2+		
		1651.3 2	100 11	130.28	9/2+		
		1721.9 2	47 6	59.82	7/2+		
1798.8	7/2,9/2	774.8 5	100	1023.98	9/2-		
1802.4	(3/2, 5/2)	1256.7 5	100	545.72	7/2+		
1821.59	$(9/2^{-},11/2^{-})$	272.0 2	13.0 12	1549.60	9/2-,11/2-		
		357.9 1	33 3	1463.62	$(5/2^-, 7/2^-)$		
		668.5 2	77 8	1153.41	7/2-	M1+E2	
		797.8 1	80 5	1023.98	9/2-	M1+E2	
		944.7 5	10 3	876.63	9/2*		
		975.2.5	12 3	845.88	1/2		
		996.3 4	20 3	824.46	$11/2^+, 13/2^+$		
		1115.9 2	86 8	705.42	$11/2^{(+)}$		

9

$^{111}_{47}\mathrm{Ag}_{64}\text{-}9$

From ENSDF

γ (¹¹¹Ag) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	${ m J}_f^\pi$
1821.59	(9/2-,11/2-)	1691.1 2	100 8	130.28	9/2+	1987.90	$(13/2^{-})$	1163.3 <i>3</i>	33 4	824.46	11/2+,13/2+
1905.87	(9/2-,11/2-)	752.8 <i>3</i>	26 9	1153.41	$7/2^{-}$			1282.5 2	100 10	705.42	$11/2^{(+)}$
		882.1 [@] 3	≤51 [@]	1023.98	9/2-	2069.4		916.2 7	100 60	1153.41	7/2-
		1200.1 3	70 9	705.42	$11/2^{(+)}$			1045.2 7	100 40	1023.98	9/2-
		1222.5 5	20 13	683.05	9/2+			1939 <i>1</i>	100 60	130.28	9/2+
		1775.4 4	100 13	130.28	9/2+	2087.0		1063.1 4	100 57	1023.98	9/2-
1959.8		800.0 5	100	1159.78				1381 <i>I</i>	29 14	705.42	$11/2^{(+)}$
1964.7		1088.0 5	100 30	876.63	9/2+	2101.05	(11/2)	1142.4 7	19 <i>10</i>	958.96	$11/2^{+}$
		1139.6 7	30 20	824.46	$11/2^+, 13/2^+$			1417.7 5	10 3	683.05	9/2+
		1905.2 5	40 30	59.82	7/2+			1970.8 <i>3</i>	100 10	130.28	9/2+
1965.8		941.0 5	38 25	1023.98	9/2-	2130.8	11/2,13/2	1306.4 5	100	824.46	$11/2^+, 13/2^+$
		1905.2 5	100 25	59.82	7/2+	2352.7	(15/2, 17/2)	221.9 5	100	2130.8	11/2,13/2
1987.90	$(13/2^{-})$	828.3 5	11 4	1159.78							

[†] From weighted av of ¹¹¹Pd β^- decay and (³He,pn γ). [‡] From 5.5-h ¹¹¹Pd β^- decay.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Multiply placed with undivided intensity.

10

Level Scheme (continued)

$\begin{array}{l} \bullet \quad I_{\gamma} < \ 2\% \times I_{\gamma}^{max} \\ \bullet \quad I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \bullet \quad I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$

Legend

Level Scheme (continued)

Intensities: Type not specified & Multiply placed: undivided intensity given

Legend

 $^{111}_{\ 47} Ag_{64}$

 $^{111}_{47}\mathrm{Ag}_{64}$

¹¹¹₄₇Ag₆₄