¹¹⁰Mo β^- decay 1994Lh02,2004Wa03

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	G. Gürdal and F. G. Kondev	NDS 113, 1315 (2012)	1-Aug-2011				

Parent: ¹¹⁰Mo: E=0; $J^{\pi}=0^+$; $T_{1/2}=0.296$ s *17*; $Q(\beta^-)=6480 \ 30$; $\%\beta^-$ decay=100.0

1994Lh02: Source produced via 232 Th(p,F) reaction. Detection system : IGISOL on-line mass separator, collecting tape, one plastic scintillator, one γ -x Ge and one large Ge detectors. Production rate of ¹¹⁰Mo was around 4 atoms/s (quoted by 2004Wa03). Measured: $\beta\gamma$, $\gamma\gamma$, $\beta\gamma$ (t), T_{1/2}, ce.

2004Wa03: Source produced via ²³⁸U(p,F) reaction. Detection system : IGISOL on-line mass separator, collecting tape, two plastic scintillators and three Ge detectors. Production rate of ¹¹⁰Mo was 42 atoms/s. Measured: $\beta\gamma$, $\gamma\gamma$, $\beta\gamma$ (t).

¹¹⁰Tc Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments		
0.0	$(2,3^+)$	0.900 s 13	J^{π} , $T_{1/2}$: From Adopted Levels.		
39.50 9					
53.30 10	(1^{+})		J^{π} : From Adopted Levels.		
142.05 11	(1^+)	<10 ns	T _{1/2} : From 1994Lh02.		
185.00 15	(1^{+})				
263.00 10	(1^{+})		J^{π} : From Adopted Levels.		
467.58 12	(1^{+})				
589.6 4					
740.65 11	(1^{+})		J^{π} : From Adopted Levels.		
908.75 15	(1^{+})				

[†] From a least-square fit to E_{γ} .

[‡] From 2004Wa03 and 1994Lh02, unless otherwise noted. However, since the decay scheme is incomplete such assignments should be considered as tentative.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger \#}$	$\log ft^{\ddagger}$	Comments	
$(5.57 \times 10^3 \ 3)$	908.75	3.3 4	5.35 6	av E β =2485 15	
$(5.74 \times 10^3 \ 3)$	740.65	38 <i>3</i>	4.35 5	av E β =2566 15	
$(5.89 \times 10^3 \ 3)$	589.6	1.15 22	5.92 9	av E β =2638 15	
$(6.01 \times 10^3 \ 3)$	467.58	2.3 5	5.65 10	av E β =2697 15	
$(6.22 \times 10^3 \ 3)$	263.00	24.9 21	4.69 5	av E β =2795 15	
$(6.30 \times 10^3 \ 3)$	185.00	9.4 7	5.13 5	av E β =2832 15	
$(6.34 \times 10^3 \ 3)$	142.05	4.2 12	5.50 13	av E <i>β</i> =2853 <i>15</i>	
				I β^- : Quoted as 13% in the text, but listed as 2.5% 12 in Table 2 in 2004Wa03.	
$(6.43 \times 10^3 \ 3)$	53.30	17.2 17	4.91 6	av E β =2895 15	

[†] From intensity balances and the adopted level scheme by the evaluators. However, the decay scheme suffers from pandemonium, thus the quoted values should be considered as tentative.

[‡] Since the decay scheme is incomplete, due to pandemonium, the values are tentative.

[#] Absolute intensity per 100 decays.

$^{110}{\rm Mo}\,\beta^-$ decay 1994Lh02,2004Wa03 (continued)

 $\gamma(^{110}\text{Tc})$

I γ normalization: From Σ Ti(g.s.)=100. Direct β^- feeding to g.s. is assumed to be negligible.

E _γ ‡	$I_{\gamma}^{\ddagger \#}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
39.4 1	<8	39.50	_	0.0	(2,3+)	(M1)	4.05	$\alpha(K)=3.53 6; \alpha(L)=0.430 7; \alpha(M)=0.0781 13; \alpha(N+)=0.01316 21 \alpha(N)=0.01236 20; \alpha(O)=0.000800 13 Mult - Fram \alpha(V)=0.020 18 (10041 h02) Hawayar$
53.3 1	19.8 <i>9</i>	53.30	(1+)	0.0	(2,3+)	(M1)	1.68	Mult.: From $\alpha(K) \exp[=2.978 (1994 Ln02)]$. However, E1 assignment is also possible. $\alpha(K)=1.464\ 22;\ \alpha(L)=0.177\ 3;\ \alpha(M)=0.0322\ 5;\ \alpha(N+)=0.00544\ 9\ \alpha(N)=0.00511\ 8;\ \alpha(O)=0.000332\ 5$
								Mult.: From $\alpha(K)$ exp=1.4 / (1994Lh02). However, E1 assignment is also possible.
121.0 <i>1</i>	41.3 6	263.00	(1 ⁺)	142.05	(1^{+})	[M1]	0.1644	$\alpha(K)=0.1436\ 21;\ \alpha(L)=0.01714\ 25;\ \alpha(M)=0.00311\ 5;$ $\alpha(N+)=0.000527\ 8$
								$\alpha(N)=0.000494\ 7;\ \alpha(O)=3.25\times10^{-5}\ 5$
131.7 1	16.6 5	185.00	(1^{+})	53.30	(1 ⁺)	[M1]	0.1302	$\alpha(\mathbf{K})=0.1138\ 17;\ \alpha(\mathbf{L})=0.01355\ 20;\ \alpha(\mathbf{M})=0.00246\ 4;$
								$\alpha(N=0.000391\ 6;\ \alpha(O)=2.58\times10^{-5}\ 4$
142.1 2	100	142.05	(1 ⁺)	0.0	(2,3 ⁺)	[M1]	0.1059	$\alpha(K)=0.0925 \ 14; \ \alpha(L)=0.01099 \ 16; \ \alpha(M)=0.00200 \ 3; \ \alpha(N+)=0.000338 \ 5$
								$\alpha(N)=0.000317 5; \alpha(O)=2.09\times10^{-5} 3$
203.6 2	2.0 4	467.58	(1^{+})	263.00	(1^{+})			E_{γ} : The least-square fit gives 204.57 keV 9.
223.4 1	21.1 21	263.00	(1^{+})	39.50				
262.9 2	8.2 9	263.00	(1^{+})	0.0	$(2,3^{+})$			
273.0 1	2.9 8	740.65	(1^{+})	467.58	(1^{+})			
325.7 1	5.4 <i>3</i>	467.58	(1^{+})	142.05	(1^{+})			
447.6 <i>3</i>	2.3 4	589.6		142.05	(1^{+})			
477.8 <i>1</i>	25.6 15	740.65	(1^{+})	263.00	(1^{+})			
598.4 <i>1</i>	39.9 20	740.65	(1^{+})	142.05	(1^{+})			
741.1 2	8.2 10	740.65	(1^{+})	0.0	$(2,3^{+})$			
766.7 <i>1</i>	6.5 6	908.75	(1^{+})	142.05	(1^{+})			

[†] Additional information 1.
[‡] From 2004Wa03.
[#] For absolute intensity per 100 decays, multiply by 0.50 *3*.

¹¹⁰₄₃Tc₆₇