		T		History	Citatian	Literature Creteff Date				
	Fu	II Evaluation	G. Gürda	I and F. G. Kondev ND	S 113,1315 (2012)	1-Aug-2011				
$Q(\beta^-) = -8392$ 15 Note: Current ev	\overline{o} ; S(n)=1 aluation h	1282 16; S(p) has used the f	=6643 <i>15</i> ; following Q	$Q(\alpha) = -1135 \ 14 \ 2012W$ record $-8394 \ 1511282$	'a38 166644 14-113	8 14 2011AuZZ.				
				¹¹⁰ Sn Level	ls					
				Cross Reference (XF	EF) Flags					
			A ¹¹⁰ S B ⁹⁴ M C ⁹⁸ M D ¹⁰⁸ C	$\begin{array}{llllllllllllllllllllllllllllllllllll$	mb excitation p,t) p,4nγ), ¹¹² Sn(p,p2n ² (³ He,3nγ), ¹⁰⁴ Pd(¹² C	(γ) $(2, \alpha 2 n \gamma)$				
E(level) [†]	J^{π}	T _{1/2} #	XREF		Comn	nents				
0.0@	0+	4.154 h <i>4</i>	ABCDEFG	$\% \varepsilon = 100$ $T_{1/2}$: Weighted average h 23 (280 γ (t) in 200 (280 γ (t) in 2009Ra1 4.145 h 6 (Au catche Other: 4.1 h (1967B	e of 4.15 h <i>12</i> (1973 5Gy02, uncertainty 7, uncertainty is star er), 4.165 h <i>9</i> (Pb ca o43).	3Ka45), 4.0 h 2 (1956Me94), 4.173 is statistical only), and 4.153 h 4 tistical only), weighted average of atcher) and 4.156 h 7 (Al catcher).				
1212.02 [@] 9	2+	0.48 ps 4	ABCDEFG	B(E2) \uparrow =0.226 <i>18</i> J ^{π} : 1212.01 γ E2 to 0 ⁺ . B(E2) \uparrow : Weighted average of 0.240 <i>32</i> from 2007Va22, measured relative to B(E2) \uparrow (3/2 ⁺ (g.s.) to 7/2 ⁺ (547 keV level))=0.449 <i>41</i> for ¹⁹⁷ Au, and 0.220 22 from 2007Ce02, measured relative to B(E2) \uparrow (0 ⁺ to 2 ⁺)=0.0695 <i>20</i> for ⁵⁸ Ni.						
2058.0 <i>4</i> 2121.04 <i>23</i>	$\binom{(0^+,2)}{2^+}$		C A FG	T _{1/2} : From adopted B(J ^{π} : 846.0 γ to 2 ⁺ . XREF: F(2123). J ^{π} : 908.9 γ to 2 ⁺ ; 2120 (J ^{π} =(3 ⁺)).	E2) \uparrow . .8 γ to 0 ⁺ ; direct pop	pulation in ¹¹⁰ Sb ε decay				
2197.05 [@] 10	4+		ABCD FG	J^{π} : L(p,t)=4; 984.6 γ E	2 to 2 ⁺ ; band struct	ure.				
$2309^{\ddagger} 3$	0^+		F	J^{π} : L(p,t)=0.	J:	110 Sh = $4 (1\pi - (2 + 1))$				
2458.42 [°] 15	4 · 3-		C F	J^{π} : 1242.3 γ E2 to 2 ⁻⁷ ; XREF: F(2462). J^{π} : 261.5 γ to 4 ⁺ ; 1246 configuration: possible	$.4\gamma$ E1 to 2 ⁺ ; L(p,t)	=3+4.				
2477.68 [@] 15	6+	5.6 ns <i>3</i>	BCD FG	configuration: possible $v(n_{11/2}, d_{5/2})$ or octupole structure. μ =0.072 <i>18</i> Q=0.34 <i>4</i> XREF: D(2480). J ^π : L(p,t)=6; 280.2 γ E2 to 4 ⁺ . T _{1/2} : Weighted average of 5.6 ns 4 (280 γ (t), slope analysis in ¹⁰⁴ Pd(¹² C, α 2n γ), by taking into account the decay of the 8 ⁻ isomer at 3765 keV), 5.2 ns 8 (280 γ (t), centroid-shift analysis in ¹¹⁰ Cd(³ He,3n)) and 5.8 ns <i>4</i> (280 γ (t), slope analysis in ¹¹⁰ Cd(³ He,3n)) in 1989An14. Others: 8.0 ns 2 (1212 γ (t)), 8.4 ns 2 (985 γ (t)) and 8.5 ns <i>4</i> (282.9 γ (t)) in 1980Va13; <7 ns 282.9 γ (t) in 1969Ya05. μ : From g=0.012 3 using $\gamma(\theta, H, t)$ in ¹⁰⁸ Cd(α ,2n) (1989Vo17).						
2545.7 5	2+		A F	J^{π} : L(p,t)=2; 1333.6 γ t decay (J^{π} =(3 ⁺)).	$2000^{+}; 2545.4\gamma \text{ to } 0^{+}$; direct population in ¹¹⁰ Sb ε				

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹¹⁰Sn Levels (continued)

E(level) [†]	\mathbf{J}^{π}	XR	EF	Comments
2573 3	0+		F	I^{π} : I (n t)-0
2694 5 4	0 4 ⁺	۸	F	I^{π} : L(p,t)-0. I^{π} : L(p,t)-4: 1482.52 to 2 ⁺ : direct population in ¹¹⁰ Sh c decay (I^{π} -(3 ⁺))
2742.1 8	0^{+}	° C	F	J^{π} : L(p,t)=0; 1530.1 γ to 2 ⁺ .
2753.67 16	6+	BCD	FG	XREF: D(2756). J^{π} : L(p,t)=6; 276.08 γ M1(+E2) to 6 ⁺ .
2800.27 ^{&} 13	(6 ⁺)	CD		XREF: D(2804.6). J^{π} : 323.1 γ to 6 ⁺ , 603.4 γ to 4 ⁺ .
2821.5 <i>4</i> 2833.6 <i>3</i>	$_{2^{+},3,4^{+})}^{(2^{+},3,4^{+})}$	A C A	G F	J ^{π} : 624.4 γ to 4 ⁺ ; 1609.5 γ to 2 ⁺ ; direct population in ¹¹⁰ Sb ε decay (J ^{π} =(3 ⁺)). XREF: F(2834).
				J ^π : L(p,t)=2; 636.5γ to 4 ⁺ ; 2834.3γ to 0 ⁺ ; direct population in ¹¹⁰ Sb ε decay $(J^{\pi}=(3^+))$.
2857 [‡] 3	2^{+}		F	J^{π} : L(p,t)=2.
2914.8 10	2+	Α	F	XREF: F(2919).
				J ^π : L(p,t)=2; 1702.5γ to 2 ⁺ ; 2915.1γ to 0 ⁺ ; direct population in ¹¹⁰ Sb ε decay $(J^{\pi}=(3^+))$.
2948.2 3	(3,4+)	A	G	J ^{π} : 751.5 γ to 4 ⁺ ; 1735.9 γ 2 ⁺ ; direct population in ¹¹⁰ Sb ε decay (J ^{π} =(3 ⁺)); the absence of γ to 0 ⁺ .
2963.82 14	5-	CD	G	XREF: D(2967.1). J^{π} : 486.0 γ E1 to 6 ⁺ ; 505.8 γ to 3 ⁻ .
2965 [‡] 3	2^{+}		F	J^{π} : L(p,t)=2.
2977.2 5	$(2,3,4^+)$	Α		J ^{π} : 1765.3 γ to 2 ⁺ ; direct population in ¹¹⁰ Sb ε decay (J ^{π} =(3 ⁺)).
2983	4+		F	$J^{\pi}: L(p,t)=4.$
2997 [‡]	(2^{+})		F	J^{π} : L(p,t)=(2).
3059 [‡] 3	4+		F	J^{π} : L(p,t)=4.
3083 [‡] <i>3</i>	2+		F	J^{π} : L(p,t)=2.
3153 [‡]	2+		F	J^{π} : L(p,t)=2.
3182.9 6	$(2,3,4^{+})$	Α		J^{π} : 1970.9 γ to 2 ⁺ ; direct population in ¹¹⁰ Sb ε decay ($J^{\pi}=(3^+)$).
3183 [‡] <i>3</i>	0+		F	J^{π} : L(p,t)=0.
3210.9 4	(3,4,5)	С	f	XREF: $f(3216)$. J ^{π} : 1013.8 γ to 4 ⁺ .
3222.6 3	(3,4 ⁺)	A	fG	XREF: f(3216). J^{π} : 1025.8 γ to 4 ⁺ ; 2010.1 γ to 2 ⁺ ; direct population in ¹¹⁰ Sb ε decay (J^{π} =(3 ⁺)); the absence of γ to 0 ⁺
3249.2 8	(6)-	С		J^{π} : 285.4 γ M1+E2 to 5 ⁻ .
3252‡	4+		F	$J^{\pi}: L(p,t)=4.$
3320‡	2+		F	I^{π} : L(n t)=2
3321.16 ^{<i>a</i>} 18	(6^+)	с		J^{π} : 843.5 γ (M1) to 6 ⁺ : 865.0 γ to 4 ⁺ : band member.
3335.2 5	(6+)	C		J^{π} : 857.5 γ to 6 ⁺ .
3355.20 ^c 25	5-	C	F	XREF: F(3357). J^{π} : L(p,t)=5; 602.1 γ to 6 ⁺ ; 896.2 γ to 3 ⁻ ; band member.
3416.92 15	5-	С		J^{π} : 453.4 γ M1+E2 to 5 ⁻ ; 938.3 γ to 6 ⁺ ; 1219.3 γ to 4 ⁺ .
3421 [‡] 3	2^{+}		F	J^{π} : L(p,t)=2.
3446.8 5	$(2,3,4^+)$	Α		J ^{π} : 2234.9 γ to 2 ⁺ ; direct population in ¹¹⁰ Sb ε decay (J ^{π} =(3 ⁺)).
3472 [‡]			F	
3540.5 7	4+	Α	F	J ^{π} : L(p,t)=4; 2328.4 γ to 2 ⁺ ; direct population in ¹¹⁰ Sb ε decay (J ^{π} =(3 ⁺)).
3577			F	
3594 [‡]			F	
3609 [‡] <i>3</i>	4+		F	J^{π} : L(p,t)=4.
3629.8 4	(3,4 ⁺)	A		J ^{π} : 796.2 γ to 2 ⁺ ; 1432.6 γ to 4 ⁺ ; direct population in ¹¹⁰ Sb ε decay (J ^{π} =(3 ⁺)); the absence of γ to 0 ⁺ .

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹¹⁰Sn Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2} #	XREF	Comments
3643 [‡]			F	
3687.52 [°] 17	7-		BCD G	XREF: D(3689.3). J^{π} : 1208.8 γ E1 to 6 ⁺ , 332.0 γ to 5 ⁻ ; band member.
3751 [‡] 3	2+		F	J^{π} : L(p,t)=2.
3765.77 [°] 17	8-	1.16 ns 10	BCD G	J^{π} : 78.3 γ M1+E2 7 ⁻ ; 1012.3 γ M2 to 6 ⁺ .
3807 [‡]			F	
3812 [‡] 3	2+		F	J^{π} : L(p,t)=2.
3813.09 [@] 22	8+		BCD	XREF: B(3810.4)D(3814.8).
				J^{π} : 1334.8 γ E2 to 6 ⁺ .
				configuration: possible $v(g_{7/2}^2, d_{5/2}^2)$.
3844 [‡] <i>3</i>	5-		F	J^{π} : L(p,t)=5.
3885.0 7	3-		A F	J ^{π} : L(p,t)=3; 2673.2 γ to 2 ⁺ ; direct population in ¹¹⁰ Sb ε decay $(J^{\pi}=(3^+))$.
3933.57 [°] 18	9-	121 ps 19	BCD	XREF: D(3935.3).
				J^{π} : 167.5 γ M1+E2 to 8 ⁻ ; band member.
.1.				configuration: possible $\nu(h_{11/2}, g_{7/2})$.
3971+			F	
3991.7 ^{&} 3	(8^{+})		С	J^{π} : 1191.1 γ to (6 ⁺); band member.
1000 55 0 1				Member of $\nu[g_{7/2}^2h_{11/2}^2]$ or $\nu[d_{5/2}^2h_{11/2}^2]$ multiplets.
4003.77.24	(/)'		C	J^{A} : 1249.9 γ M1+E2 to 6'.
4132+ 3	3^{-} & 5^{-}		F	$J^{\pi}: L(p,t)=3+5.$
4137.86 20	(81)		C	J^{\prime} : 816. γ to (6 ⁺); band member.
4158*	(9^+)		F C	1π , 0.45 Au to (6 ⁺)
4280.0 7	(8)		C	configuration: possible member of $v(g_{7/2}^2, h_{11/2}^2)$ or $v(d_{5/2}^2, h_{11/2}^2)$ multiplets
4315.7 <i>3</i>	$(8)^{+}$		С	J^{π} : 311.7 γ M1+E2 to (7) ⁺ , 382.7 γ to 9 ⁻ .
				configuration: possible member of $v(h_{11/2}^2)$ multiplet.
4317 [‡] <i>3</i>	4+		F	J^{π} : L(p,t)=4.
4317.3 4	(10)		D	J^{π} : 383.7 γ D(+Q) to (9) ⁻ .
4465 [‡]			F	
4501 [‡]			F	
4600 [‡]			F	
4625.6?			В	E(level): From 94 Mo(19 F,p2n γ). No γ ray were observed to depopulate this level.
4644 [‡]			F	
4780.44 ^C 20	9-		BC	J^{π} : 1092.9 γ E2 to 7 ⁻ ; band member.
4881.07 ^{<i>a</i>} 23	(10^{+})		С	J^{π} : 743.2 γ to (8 ⁺).
4895.20 [°] 20	10-	<21 ps	BCD G	XREF: D(4897.2).
500616	$(2, 2, 4^{+})$			J^{π} : 1129.5 γ E2 to 8 ⁻ ; band member.
5006.1 0	(2,3,4)		A	J^{π} : 21/2.3 γ to 2 ⁺ ; direct population in ¹¹⁰ Sb ε decay (J^{π} =(3 ⁺)).
5017.40° 23	(10')		C	J [*] : 1203./ γ to (8 ⁺); band member. configuration: possible $\nu(g_{7/2}^2 d_{5/2}^2)$.
5108.15° 23	11-	52 ps 16	BCD	XREF: D(5111.0). J^{π} : 1175.3 γ E2 to 9 ⁻ ; band member.
5219.7 ^{&} 4	(10^{+})		С	J^{π} : 1227.4 γ to (8 ⁺); band member.
				configuration: possibly a competition between the $v(g_{7/2}^2, d_{5/2}^2)$ and $v(h_{11/2}^2)$ multiplets.
5228.98 ^b 19	10+		BC	J^{π} : 211.0 γ M1+E2 to (10 ⁺); 447.7 γ E1 to 9 ⁻ ; band member.

Adopted Levels, Gammas (continued)

¹¹⁰Sn Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
5331.27 ^c 20	11-	CD	configuration: Possible $\nu(h_{11/2}^2)$. XREF: D(5332.4). J^{π} : 1397.0 ν E2 to 9 ⁻ .
5730.8 ^a 3	(12^{+})	С	J^{π} : 849.7 γ to (10 ⁺); band member.
5939.4 <mark>d</mark> 3	(9-)	С	J^{π} : 604.5 γ to 11 ⁻ ;
6037.14 ^b 21	(12^{+})	BC	J^{π} : 808.2 γ (E2) to 10 ⁺ ; band member.
6066.5 ^d 3	(10 ⁻)	С	J^{π} : 127.0 γ to (9 ⁻); band member.
6207.13 ^d 21	(11^{-})	С	J^{π} : 978.2 γ to 10 ⁺ ; 1099.0 γ D to 11 ⁻ .
6354.9 <mark>d</mark> 4	(12 ⁻)	С	J^{π} : 147.7 γ to (11 ⁻); 318.0 γ to (12 ⁺); band member.
6370.9 ^c 11	(12)	С	J^{π} : 1041.0 γ to 11 ⁻ ; band member.
6545.2 [°] 5	(13)	С	J^{π} : 1215.3 γ to 11 ⁻ ; band member.
6598.3 ^a 4	(14^{+})	С	J^{π} : 867.5 γ to (12 ⁺); band member.
6613.2? ^d 8	(13)	С	J^{π} : 259.6 γ to (12); band member.
6778.04 ^b 23	(14^{+})	BC G	J^{π} : 740.9 γ E2 to (12 ⁺); band member.
6974.4? ^d 13	(14)	С	J^{π} : 361.2 γ to (13); band member.
7541.1 ^a 5	(16^{+})	С	J^{π} : 942.8 γ to (14 ⁺); band member.
7587.9 <mark>b</mark> 3	(16 ⁺)	BC	J^{π} : 809.9 γ (E2) to (14 ⁺); band member.
8491.8 <mark>b</mark> 3	(18^{+})	BC	J^{π} : 903.9 γ E2 to (16 ⁺); band member.
9495.2 <mark>b</mark> 3	(20^{+})	BC	J^{π} : 1003.3 γ to (18 ⁺); band member.
10501.5? ^b 6	(22^{+})	С	J^{π} : 1007.6 γ to (20 ⁺); band member.
11516.0? ^b 6	(24 ⁺)	С	

[†] From a least-squares fit to Eγ's, unless otherwise stated.
[‡] From ¹¹²Sn(p,t).
[#] From recoil-distance method in 1986Ka25, unless otherwise stated.
[@] Band(A): g.s. band.

- & Band(B): band based on the 2800.27 keV level.
- ^{*a*} Band(C): band based on the 3321.16 keV level.
- ^b Band(D): band based on the 5228.98 keV level.
- ^c Band(E): band based on the 2458.42 keV level.
- ^d Band(F): band based on the 5939.4 keV level.

	Adopted Levels, Gammas (continued)												
							$\gamma(^{110}\text{Sn})$						
E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	I _γ ‡	\mathbf{E}_f J ²	\int_{f}^{π} Mult. [@]	δ ^{&}	α^{\dagger}	Comments					
1212.02	2+	1212.01 9	100	0.0 0	+ E2		0.000859 12	$\alpha(K)=0.000740 \ 11; \ \alpha(L)=8.95\times10^{-5} \ 13; \ \alpha(M)=1.746\times10^{-5} \ 25; \\ \alpha(N+)=1.203\times10^{-5} \\ \alpha(N)=3.28\times10^{-6} \ 5; \ \alpha(O)=2.83\times10^{-7} \ 4; \ \alpha(IPF)=8.47\times10^{-6} \ 12 \\ B(E2)(W.u)=14.4 \ 12 \\ E_{\gamma}: \ From \ ^{108}Cd(\alpha,2n\gamma). \\ Mult.: \ DCO=1.00 \ 9; \ A_{2}=+0.20 \ 7, \ A_{4}=-0.07 \ 4 \ (2005Wo03). \end{cases}$					
2058.0	$(0^+, 2)$	846.0 4	100	1212.02 2	+								
2121.04	2+	908.9 [#] 3	100 [#] 8	1212.02 2	+								
		2120.8 [#] 6	94 [#] 5	0.0 0	+								
2197.05	4+	985.03 <i>3</i>	100	1212.02 2	+ E2		0.001330 <i>19</i>	$\alpha(K)=0.001155 \ 17; \ \alpha(L)=0.0001421 \ 20; \ \alpha(M)=2.78\times10^{-5} \ 4; \ \alpha(N+)=5.65\times10^{-6} \ \alpha(N)=5.21\times10^{-6} \ 8; \ \alpha(O)=4.43\times10^{-7} \ 7 \ E_{\gamma}: \ From \ ^{108}Cd(\alpha,2n\gamma).$ Mult.: DCO=0.96 $8; \ A_2=+0.29 \ 7, \ A_4=-0.01 \ 1 \ (2005Wo03); \ \alpha(K)\exp=1.16\times10^{-3}; \ A_2=0.314 \ 13, \ A_4=-0.06 \ 2 \ (1980Va13).$					
2455.6	4+	1243.3 [#] 3	100#	1212.02 2	+ E2		0.000820 12	$\begin{aligned} &\alpha(\mathrm{K}) = 0.000702 \ 10; \ \alpha(\mathrm{L}) = 8.48 \times 10^{-5} \ 12; \ \alpha(\mathrm{M}) = 1.653 \times 10^{-5} \ 24; \\ &\alpha(\mathrm{N}+) = 1.644 \times 10^{-5} \\ &\alpha(\mathrm{N}) = 3.11 \times 10^{-6} \ 5; \ \alpha(\mathrm{O}) = 2.68 \times 10^{-7} \ 4; \ \alpha(\mathrm{IPF}) = 1.306 \times 10^{-5} \ 19 \\ &\mathrm{Mult.:} \ \alpha(\mathrm{K}) \exp = 0.67 \times 10^{-3} \ 12; \ \mathrm{A}_2 = 0.31 \ 2, \ \mathrm{A}_4 = -0.06 \ 4 \ (1980 \mathrm{Val3}). \end{aligned}$					
2458.42	3-	261.5 2	40 4	2197.05 4	+		0.000.424.6						
		1246.4 2	100 13	1212.02 2	⁺ EI		0.000424 6	$\alpha(K)=0.000319 \text{ 5}; \alpha(L)=3.72\times10^{-5} \text{ 6}; \alpha(M)=7.23\times10^{-6} \text{ 11}; \alpha(N+)=6.04\times10^{-5} \text{ 9}$ Mult: A ₂ =-0.16 5 A ₄ =+0.01 2 (2005Wo03)					
2477.68	6+	280.2 3	100	2197.05 4	+ E2		0.0444	$\begin{aligned} \alpha(\mathbf{K}) = 0.0372 \ 6; \ \alpha(\mathbf{L}) = 0.00584 \ 9; \ \alpha(\mathbf{M}) = 0.001160 \ 17; \\ \alpha(\mathbf{N}+) = 0.000227 \ 4 \\ \alpha(\mathbf{N}) = 0.000213 \ 3; \ \alpha(\mathbf{O}) = 1.473 \times 10^{-5} \ 22 \\ \mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}) = 1.79 \ 10 \\ \mathbf{M}\mathbf{u}\mathbf{l}: \ \mathbf{D}\mathbf{C}\mathbf{O} = 1.20 \ 13; \ \mathbf{A}_2 = +0.11 \ I, \ \mathbf{A}_4 = -0.14 \ 9; \ \alpha(\mathbf{K})\mathbf{exp} = 0.030 \ 12; \\ \mathbf{A}_2 = 0.32 \ 3, \ \mathbf{A}_4 = -0.07 \ 10 \ (1980 \text{Val}3). \end{aligned}$					
2545.7	2^{+}	1333.6 [#] 5	100 [#] 12	1212.02 2	+								
		2545.4 [#] 15	35 [#] 12	0.0 0	+								
2694.5	4+	1482.5 [#] 4	100#	1212.02 2	+								
2742.1	0^{+}	1530.1 8	100	1212.02 2	+								
2753.67	6+	276.08 6	100	2477.68 6	+ M1(+E2)	0.0 2	0.0354 7	α (K)=0.0307 <i>6</i> ; α (L)=0.00381 <i>11</i> ; α (M)=0.000747 <i>22</i> ; α (N+)=0.000153 <i>4</i> E _y : From ¹⁰⁸ Cd(α ,2n γ). Mult.: DCO=1.18 <i>25</i> ; A ₂ =+0.35 <i>9</i> , A ₄ =-0.01 <i>2</i> ; α (K)exp=0.038 <i>8</i> ; A ₂ =0.382 <i>11</i> , A ₄ =0.01 <i>2</i> (1980Va13).					

S

From ENSDF

 $^{110}_{50}{\rm Sn}_{60}$ -5

 $^{110}_{50}{
m Sn}_{60}$ -5

L

Adopted Levels, Gammas (continued)

$\gamma(^{110}$ Sn) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	$lpha^\dagger$	Comments
2800.27	(6^{+})	323.1.2	48 4	$2477.68 6^+$			$E_{\rm ev}$: 324.6 keV 2 in ¹⁰⁸ Cd(α .2n γ).
2000127	(0)	603.4 1	100 8	2197.05 4+			
2821.5	$(2^+, 3, 4^+)$	624.4 [#] 5	44 ^{#} 4	2197.05 4+			
		1609.5 [#] 5	100 [#] 8	1212.02 2+			
2833.6	2^{+}	636.5 [#] 4	100 [#] 9	2197.05 4+			
200010	-	$1621.4^{\#}$ 5	38 [#] 6	1212.02 2 ⁺			
		$2834.3^{\#}.15$	8 [#] 4	$0.0 0^+$			
2914.8	2+	$17025^{\#}12$	100 [#] 36	$1212 02 2^+$			
291110	-	$2915.1^{\#}.15$	86 [#] 36	$0.0 0^+$			
2048.2	(3.4^{+})	$751.5^{\#}$	ΔΔ [#] Δ	$2107.05.4^+$			
2940.2	(3,4)	807 1 [#] 3	$100^{\pm 7}$	2197.03 + 2121.04 + 2121			
		$327.1 \ 5$ $1725.0 \ 5$	75 [#] /	2121.04 2			
2963 82	5-	1755.9 5	73 4 69 8	2800.27 (6+	.)		
2905.02	5	486.0 1	100.8	$2477.68 6^+$	E1	0.00255 4	$\alpha(K) = 0.00222.4$; $\alpha(L) = 0.000266.4$; $\alpha(M) = 5.18 \times 10^{-5}.8$;
							$\alpha(N+)=1.053\times10^{-5}$ 15
							$\alpha(N) = 9.71 \times 10^{-6} 14; \ \alpha(O) = 8.22 \times 10^{-7} 12$
							Mult.: DCO=0.56 22; A ₂ =-0.44 14, A ₄ =+0.01 2.
		505.8 2	85 8	2458.42 3-			
2977.2	$(2,3,4^+)$	1765.3 [#] 5	100 7	1212.02 2+			
3182.9	$(2,3,4^{+})$	19/0.9 6	100	$1212.02 \ 2^+$			
3210.9	(3,4,3)	1015.85	200 ± 12	2197.03 4			
3222.6	$(3,4^{+})$	/66.8" 0	36" 12	2455.6 4			
		1025.8" 4	100" 12	2197.05 4			
		1101.2" 6	33" 8	2121.04 2+			
2240.2	$\langle \ell \rangle^{-}$	2010.1^{m} 12	18" 6	$1212.02\ 2^+$	M1 · E2	0.027.5	$(W) = 0.022 \ A_{1,2}(V) = 0.0045 \ A_{2,2}(M) = 0.00090 \ 24_{2,2}(M_{2,2}) = 0.00019 \ A_{2,2}(V)$
3249.2	(6)	285.4 /	100	2963.82 5	MI+E2	0.037 5	$\alpha(\mathbf{K}) = 0.0024$; $\alpha(\mathbf{L}) = 0.0045$ <i>IU</i> ; $\alpha(\mathbf{M}) = 0.00089$ <i>21</i> ; $\alpha(\mathbf{N}+) = 0.00018$ <i>4</i>
							$u(1)=0.00104, u(0)=1.20\times10-14$ Mult : DCO=1.03.17: A ₂ =-0.13.19 A ₄ =+0.04.7
3321.16	(6^{+})	843.5 1	100.9	2477.68 6+	(M1)	0.00230.4	$\alpha(K) = 0.00200 \ 3: \ \alpha(L) = 0.000240 \ 4: \ \alpha(M) = 4.68 \times 10^{-5} \ 7:$
0021110	(0)	010101	100 /	2111100 0	(111)	0.002007	$\alpha(N+)=9.61\times10^{-6}$ 14
							$\alpha(N) = 8.83 \times 10^{-6} \ 13; \ \alpha(O) = 7.79 \times 10^{-7} \ 11$
							Mult.: DCO=0.53 13.
	(6 1)	865.0 5	26 4	2455.6 4+			
3335.2	(6^+)	857.5 4	100	2477.68 6+			
3355.20	3	002.1 <i>3</i> 806 2 3	65 4 100 13	2/53.6/ 6'			
3416.92	5-	453.4 1	23.5	2963.82 5	M1+E2	0.00994 20	$\alpha(K) = 0.00856, 23; \alpha(L) = 0.00111, 5; \alpha(M) = 0.000218, 10;$
5.10.72	-			_/00.02 0			

6

					Adopte	d Levels, G	ammas (conti	nued)
						$\gamma(^{110}\text{Sn})$ ((continued)	
E _i (level)	J_i^π	${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{\ddagger}	$E_f J_f^{\pi}$	Mult. [@]	δ ^{&}	α^{\dagger}	Comments
								α (N+)=4.42×10 ⁻⁵ 15 α (N)=4.08×10 ⁻⁵ 16; α (O)=3.36×10 ⁻⁶ 11
								Mult.: DCO=1.04 <i>16</i> ; A_2 =+0.36 <i>20</i> , A_4 =+0.06 <i>9</i> .
3416.92	5-	938.3 <i>3</i> 1219 3 2	30 5 100 8	$2477.68 6^+$ $2197.05 4^+$				
3446.8	(2.34^{+})	1219.52 $13256^{\#}6$	$22^{\#} 4$	2121.03 1 2121.04 2 ⁺				
5110.0	(2,3,1)	2234.9 [#] 8	$100^{\#} 12$	$1212.02 \ 2^+$				
3540.5	4+	1419.6 [#] 9	28 [#] 8	2121.04 2+				
		2328.4 [#] 8	100 [#] 17	1212.02 2+				
3629.8	(3,4+)	796.2 [#] 7	32 # 7	2833.6 2+				
		1432.6 [#] 5	100 [#] 14	2197.05 4+				
		2417.8 [#] 12	56 [#] 14	1212.02 2+				
3687.52	7-	270.8 2	5.8 3	3416.92 5-				
		332.0^{a} 1 437.2^{a} 3	0.73 233	3355.205 $3249.2(6)^{-1}$				
		933.9 2	5.5 3	2753.67 6+	(E1)		0.000623 9	$\alpha(K)=0.000544\ 8;\ \alpha(L)=6.40\times10^{-5}\ 9;\ \alpha(M)=1.244\times10^{-5}\ 18;$
								α (N+)=2.54×10 ⁻⁶ 4
								$\alpha(N)=2.34\times10^{-6}$ 4; $\alpha(O)=2.03\times10^{-7}$ 3
		1208.8.5	100.3	2177 68 6+	F 1		0.000424.6	Mult.: $A_2 = -0.22$ 9, $A_4 = +0.01$ 1. $\alpha(K) = 0.000337$ 5: $\alpha(L) = 3.03 \times 10^{-5}$ 6: $\alpha(M) = 7.64 \times 10^{-6}$ 11:
		1208.8 5	100 5	2477.08 0	EI		0.000424 0	$\alpha(\mathbf{N}) = 0.000337.5, \alpha(\mathbf{L}) = 5.95 \times 10^{-5}.7$
								$\alpha(N)=1.438\times10^{-6} 21; \ \alpha(O)=1.252\times10^{-7} 18; \ \alpha(IPF)=3.89\times10^{-5} 6$
								Mult.: DCO=0.72 09; A_2 =-0.29 9, A_4 =+0.01 1;
								α (K)exp=0.67×10 ⁻³ 8 for unresolved 1209.4-1212.0 doublet in
3765.77	8-	78.3 /	100 4	3687.52 7-	M1+E2	+0.05 3	1.136 20	$\alpha(K)=0.979$ 16; $\alpha(L)=0.127$ 4; $\alpha(M)=0.0250$ 9; $\alpha(N+)=0.00509$
								15
								$\alpha(N)=0.00469 \ 15; \ \alpha(O)=0.000400 \ 7$ $P(M1)(W_{T}) = 0.0152 \ 16 \ P(D2)(W_{T}) = 5 + 7 \ 5$
								$B(M1)(W.u.)=0.0153 \ 10; \ B(E2)(W.u.)=5 + 7 - 3$ Mult : DCO=1 3 3: $A_2=+0.075 \ A_4=+0.063: 0.07 < \alpha < 1.5$
								deduced from intensity balance by the authors in 1980Va13.
								$\alpha = 1.5 2$ by the evaluators.
		1012.3 1	37.7 22	2753.67 6*	M2		0.003/0 6	$\alpha(\mathbf{K})=0.00320 5; \ \alpha(\mathbf{L})=0.000398 6; \ \alpha(\mathbf{M})=7.81\times10^{-5} 11;$
								$\alpha(N+)=1.001\times10^{-5} 21$ $\alpha(\Omega)=1.292\times10^{-6} 18$
								$B(M2)(W.u.)=0.160 \ 18$
								Mult.: DCO= $0.90\ 15$; A ₂ =+ $0.30\ 12$, A ₄ =- $0.06\ 7$;
		1287 50 5	657	2177 69 6+	[MO]		0.00202.3	$\alpha(K) \exp = 3.8 \times 10^{-5}$ <i>I2</i> (1980Va13). $\alpha(K) = 0.001752$ 25: $\alpha(L) = 0.000214$ 3: $\alpha(M) = 4.10 \times 10^{-5}$ 6:
		1201.3 3	0.3 /	24/7.08 0	[1V12]		0.00202 3	$\alpha(\mathbf{N}) = 0.00175225; \alpha(\mathbf{L}) = 0.0002145; \alpha(\mathbf{M}) = 4.19\times10^{-5} 0; \alpha(\mathbf{N} +) = 1.344\times10^{-5} 19$
I								w(x, , , , , , , , , , , , , , , , , , ,

7

From ENSDF

 ${}^{110}_{50}{
m Sn}_{60}$ -7

 $^{110}_{50}\mathrm{Sn}_{60}$ -7

	Adopted Levels, Gammas (continued)												
						$\gamma(^{110}S)$	Sn) (continued)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f J	\int_{f}^{π} Mult. [@]	δ ^{&}	α^{\dagger}	Comments					
3813.09	8+	1334.8 2	100	2477.68 6+	E2		0.000729 11	$\begin{aligned} &\alpha(\mathrm{K})=0.001752\ 25;\ \alpha(\mathrm{L})=0.000214\ 3;\ \alpha(\mathrm{M})=4.19\times10^{-5}\ 6;\\ &\alpha(\mathrm{N}+)=1.344\times10^{-5}\ 19\\ &\alpha(\mathrm{N})=7.91\times10^{-6}\ 11;\ \alpha(\mathrm{O})=6.97\times10^{-7}\ 10;\ \alpha(\mathrm{IPF})=4.83\times10^{-6}\ 8\\ &\mathrm{B}(\mathrm{M2})(\mathrm{W.u.})=0.0083\ 12\\ &\alpha(\mathrm{K})=0.000608\ 9;\ \alpha(\mathrm{L})=7.30\times10^{-5}\ 11;\ \alpha(\mathrm{M})=1.423\times10^{-5}\ 20;\\ &\alpha(\mathrm{N}+)=3.37\times10^{-5}\ 5\\ &\alpha(\mathrm{N})=2.68\times10^{-6}\ 4;\ \alpha(\mathrm{O})=2.32\times10^{-7}\ 4;\ \alpha(\mathrm{IPF})=3.08\times10^{-5}\ 5\\ &\mathrm{Mult.:}\ \mathrm{A_2}=+0.36\ 15;\ \mathrm{A_4}=-0.03\ 4;\ \alpha(\mathrm{K})\mathrm{exp}=0.59\times10^{-3}\ 10; \end{aligned}$					
3885.0	3-	1339.2 [#] 7	23 [#] 4	2545.7 2+				$A_2=0.35$ 2, $A_4=-0.01$ 5 in 1980Va13.					
3933.57	9-	2673.2 [#] 10 167.84 6	100 [#] <i>17</i> 100	1212.02 2 ⁺ 3765.77 8 ⁻	M1+E2	0.08 3	0.1341 20	B(M1)(W.u.)=0.034 6; B(E2)(W.u.)=6 5 α (K)=0.1159 17; α (L)=0.0147 3; α (M)=0.00289 5; α (N+)=0.000589 10 E _y : From ¹⁰⁸ Cd(α ,2n γ). What is DCO=1.12,23; α (K) exp=0.15 2; A = 0.000, 10, A = 0.01,2)					
2001 7	(0+)	1101 1 2	100	2900 27 ((+ \			(1980Va13). δ : Other: 0.06 3 (1986Ka25).					
4003.77	(8^+) $(7)^+$	1191.1 3 1249.9 2	100	2800.27 (6 2753.67 6 ⁺	M1+E2		0.00089 8	α (K)=0.00076 7; α (L)=9.1×10 ⁻⁵ 8; α (M)=1.78×10 ⁻⁵ 15; α (N+)=1.69×10 ⁻⁵ 6					
4137.86	(8+)	81671	100	3321.16 (6	+)			α (N)=3.4×10 ⁻⁶ 3; α (O)=2.9×10 ⁻⁷ 3; α (IPF)=1.33×10 ⁻⁵ 9 Mult.: DCO=0.8 3; A ₂ =+0.5 4, A ₄ =+0.13 10.					
4280.6 4315.7	(8^+) $(8)^+$	945.4 <i>5</i> 311.7 <i>2</i>	100 100 100 9	3335.2 (6 4003.77 (7) ⁺)) ⁺ M1+E2		0.029 3	α (K)=0.0244 20; α (L)=0.0034 7; α (M)=0.00067 13; α (N+)=0.000134 23					
		29274	45 0	2022 57 0-				α (N)=0.000124 22; α (O)=9.7×10 ⁻⁶ 8 Mult.: A ₂ =+0.25 21, A ₄ =+0.02 2.					
4317.3	(10)	382.7 4 383.7 3	45 9 100	3933.57 9 3933.57 9 ⁻	M1(+E2)	0.0 2	0.01527	$\alpha(\mathbf{K})=0.01326 \ 19; \ \alpha(\mathbf{L})=0.00163 \ 3; \ \alpha(\mathbf{M})=0.000319 \ 6; \\ \alpha(\mathbf{N}+)=6.53\times10^{-5} \ 11 \\ \alpha(\mathbf{N})=6.00\times10^{-5} \ 10; \ \alpha(\mathbf{O})=5.25\times10^{-6} \ 8 \\ \mathbf{E}_{\gamma}, \mathbf{I}_{\gamma}: \ \mathrm{From}^{-108} \mathrm{Cd}(\alpha, 2n\gamma). \\ \mathrm{Mult}: \ \Delta \alpha = -0.16 \ 2, \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.16 \ 2, \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.16 \ 2, \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.16 \ 2, \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.16 \ 2, \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.16 \ 2, \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.16 \ 2, \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.16 \ 2, \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.16 \ 2, \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.16 \ 2, \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.16 \ 2, \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.16 \ 2, \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.01 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.01 \ 3 \ 3 \\ \mathrm{Mult}: \ \Delta \alpha = -0.01 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ $					
4780.44	9-	848.5 ^{<i>a</i>} 9 967.4 4 1092.9 1	63 83 1008	3933.57 9 ⁻ 3813.09 8 ⁺ 3687.52 7 ⁻	E2		0.001060 15	$\alpha(K)=0.000921 \ 13; \ \alpha(L)=0.0001122 \ 16; \ \alpha(M)=2.19\times10^{-5} \ 3; \ \alpha(N+)=4.47\times10^{-6}$					

 ∞

L

					A	dopted Lev	els, Gammas (c	ontinued)			
γ ⁽¹¹⁰ Sn) (continued)											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	J_f^{π}	Mult. [@]	α^{\dagger}	Comments			
4991.07	(10 ⁺)	742.0.1	100	4127.96	(0+)			$\begin{aligned} \alpha(\mathrm{K}) = 0.000921 \ 13; \ \alpha(\mathrm{L}) = 0.0001122 \ 16; \ \alpha(\mathrm{M}) = 2.19 \times 10^{-5} \ 3; \\ \alpha(\mathrm{N}+) = 4.47 \times 10^{-6} \\ \alpha(\mathrm{N}) = 4.12 \times 10^{-6} \ 6; \ \alpha(\mathrm{O}) = 3.53 \times 10^{-7} \ 5 \\ \mathrm{Mult.:} \ \mathrm{A}_2 = +0.24 \ 11, \ \mathrm{A}_4 = -0.09 \ 5. \end{aligned}$			
4895.20	10-	143.2 <i>I</i> 1129.5 <i>I</i>	100	3765.77	(8) 8-	E2	0.000989 14	$\begin{aligned} &\alpha(\mathrm{K}) = 0.000858 \ 12; \ \alpha(\mathrm{L}) = 0.0001043 \ 15; \ \alpha(\mathrm{M}) = 2.04 \times 10^{-5} \ 3; \\ &\alpha(\mathrm{N}+) = 5.44 \times 10^{-6} \\ &\alpha(\mathrm{N}) = 3.83 \times 10^{-6} \ 6; \ \alpha(\mathrm{O}) = 3.28 \times 10^{-7} \ 5; \ \alpha(\mathrm{IPF}) = 1.280 \times 10^{-6} \ 19 \\ &\mathrm{B(E2)(W.u.)} > 0.47 \\ &\mathrm{Mult.: \ DCO} = 0.64 \ 14; \ \mathrm{A_2} = +0.26 \ 11, \ \mathrm{A_4} = -0.08 \ 7; \\ &\alpha(\mathrm{K}) \exp = 0.57 \times 10^{-3} \ 12; \ \mathrm{A_2} = 0.42 \ 7, \ \mathrm{A_4} = -0.18 \ 8 \ (1980 \text{Val}3). \end{aligned}$			
5006.1	(2,3,4+)	1375.8 [#] 9 2029.1 [#] 6 2172.3 [#] 15	$6.0^{\#} 25$ $100^{\#} 8$ $3.0^{\#} 12$	3629.8 2977.2 2833.6	(3,4 ⁺) (2,3,4 ⁺) 2 ⁺						
5017.40 5108.15	(10 ⁺) 11 ⁻	1203.7 2 1175.3 5	100 100	3813.09 3933.57	8+ 9-	E2	0.000912 13	$\alpha(K)=0.000790 \ 11; \ \alpha(L)=9.57\times10^{-5} \ 14; \ \alpha(M)=1.87\times10^{-5} \ 3; \ \alpha(N+)=8.05\times10^{-6} \ 12 \ \alpha(N)=3.51\times10^{-6} \ 5; \ \alpha(O)=3.02\times10^{-7} \ 5; \ \alpha(IPF)=4.24\times10^{-6} \ 8 \ B(E2)(W.u.)=0.16 \ 5 \ Mult.: \ DCO=0.94 \ 18; \ A_2=+0.33 \ 8, \ A_4=-0.05 \ 2; \ \alpha(K)\exp=0.75\times10^{-3} \ 15; \ A_2=0.36 \ 2, \ A_4=-0.11 \ 5 \ (1980Va13).$			
5219.7 5228.98	(10 ⁺) 10 ⁺	1227.4 <i>4</i> 211.0 2	100 23.5	3991.7 5017.40	(8 ⁺) (10 ⁺)	M1+E2	0.094 22	α (K)=0.079 <i>17</i> ; α (L)=0.012 <i>5</i> ; α (M)=0.0024 <i>9</i> ; α (N+)=0.00048 <i>17</i> α (N)=0.00045 <i>16</i> ; α (O)=3.2×10 ⁻⁵ <i>7</i> Mult.: DCO=1.07 <i>15</i> ; A ₂ =-0.15 <i>1</i> , A ₄ =-0.20 <i>22</i> .			
		334.5 <i>3</i> 447.7 <i>8</i>	15 <i>3</i> 100 <i>3</i>	4895.20 4780.44	10 ⁻ 9 ⁻	E1	0.00310 5	$\alpha(K)=0.00270 \ 4; \ \alpha(L)=0.000324 \ 5; \ \alpha(M)=6.32\times10^{-5} \ 10; \ \alpha(N+)=1.284\times10^{-5} \ 19 \ \alpha(N)=1.184\times10^{-5} \ 18; \ \alpha(O)=9.99\times10^{-7} \ 15 \ Mult.: DCO=0.55 \ 10; \ A_2=-0.35 \ 16, \ A_4=+0.001 \ 3.$			
		600.8 <i>5</i> 912.8 <i>7</i>	75 <i>13</i> 8.8	4625.6? 4315.7	(8) ⁺			E_{γ} , I_{γ} : From ⁹⁴ Mo(¹⁹ F,p2n γ).			
5331.27	11-	1295.6 <i>1</i> 1397.6 <i>1</i>	56 <i>3</i> 100	3933.57 3933.57	9- 9-	D E2	0.000684 <i>10</i>	Mult.: DCO=0.60 <i>18</i> ; A ₂ =+0.4 <i>4</i> , A ₄ =+0.16 <i>18</i> . $\alpha(K)=0.000554 \ 8$; $\alpha(L)=6.64\times10^{-5} \ 10$; $\alpha(M)=1.293\times10^{-5} \ 19$; $\alpha(N+)=5.03\times10^{-5} \ 7$ $\alpha(N)=2.43\times10^{-6} \ 4$; $\alpha(O)=2.11\times10^{-7} \ 3$; $\alpha(IPF)=4.77\times10^{-5} \ 7$ Mult.: DCO=0.9 <i>3</i> ; A ₂ =+0.19 <i>8</i> , A ₄ =-0.11 <i>6</i> ; $\alpha(K)\exp=0.56\times10^{-3}$			
5730.8	(12 ⁺)	849.7 2	100	4881.07	(10 ⁺)			14; $A_2=0.38$ 3, $A_4=-0.08$ 4 (1980Va13).			

9

L

					Adopted	l Levels, Gamm	as (continued)
						$\gamma(^{110}\text{Sn})$ (contin	nued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.@	α^{\dagger}	Comments
5939.4	(9-)	604.5 6	100	5331.27 11-			5
6037.14	(12 ⁺)	808.2 1	100 6	5228.98 10+	(E2)	0.00210 3	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00182 \ 3; \ \alpha(\mathbf{L}) = 0.000229 \ 4; \ \alpha(\mathbf{M}) = 4.47 \times 10^{-5} \ 7; \\ &\alpha(\mathbf{N}+) = 9.08 \times 10^{-6} \ 13 \\ &\alpha(\mathbf{N}) = 8.38 \times 10^{-6} \ 12; \ \alpha(\mathbf{O}) = 7.02 \times 10^{-7} \ 10 \\ &\text{Mult.: DCO=1.11 } \ 13; \ \mathbf{A}_2 = +0.43 \ 11, \ \mathbf{A}_4 = -0.01 \ 1 \ \text{for } 808 + 810. \end{aligned}$
		816.9 4	8.2 10	5219.7 (10 ⁺)			
6066 5	(10^{-})	1019.1 9	4.1 10	$5017.40 (10^{-})$			
6207.13	(10^{-})	140.2.2	8 4	$6066.5 (10^{-})$			
0207110	(11)	876.0 4	32 4	5331.27 11-			
		978.2 1	52 16	5228.98 10+			
		1099.0 <i>1</i>	100 4	5108.15 11-	D		Mult.: DCO=0.90 15.
6354.9	(12^{-})	147.7 3	100 33	6207.13 (11 ⁻)			
(250.0	(1.2)	318.0 8	33 33	$6037.14 (12^+)$			
6370.9	(12)	1041.0^{α} 10	100	5331.27 11			
6508.3	(15) (14^+)	1213.3 1 867.5.2	100	5551.27 11 5730.8 (12 ⁺)			
6613.22	(14)	$259.6^{a}.5$	100	$6354.9 (12^{-})$			
6778.04	(13) (14^+)	740.9 1	100	6037.14 (12 ⁺)	E2	0.00260 4	$\alpha(K)=0.00224 4; \alpha(L)=0.000285 4; \alpha(M)=5.58\times 10^{-5} 8; \alpha(N+)=1.131\times 10^{-5} 16$
							$\alpha(N)=1.044\times10^{-5}$ 15: $\alpha(O)=8.67\times10^{-7}$ 13
							Mult.: DCO=1.02 <i>10</i> ; A_2 =+0.29 <i>9</i> ; A_4 =-0.06 7.
6974.4?	(14)	361.2 ^a 10	100	6613.2? (13)			
7541.1	(16^{+})	942.8 2	100	6598.3 (14 ⁺)			<i>,</i>
7587.9	(16 ⁺)	809.9 1	100	6778.04 (14 ⁺)	(E2)	0.00209 3	$\alpha(K)=0.00181 \ 3; \ \alpha(L)=0.000227 \ 4; \ \alpha(M)=4.45\times10^{-5} \ 7; \ \alpha(N+)=9.03\times10^{-6} \ 13$
							$\alpha(N) = 8.33 \times 10^{-6} \ 12; \ \alpha(O) = 6.98 \times 10^{-7} \ 10$
							Mult.: DCO=1.11 13; A_2 =+0.43 11, A_4 =-0.01 1 for 808 γ +810 γ .
8491.8	(18 ⁺)	903.9 1	100	7587.9 (16 ⁺)	E2	0.001616 23	$\alpha(K)=0.001401\ 20;\ \alpha(L)=0.0001739\ 25;\ \alpha(M)=3.40\times10^{-5}\ 5;\ \alpha(N+)=6.91\times10^{-6}$
							$\alpha(N) = 6.37 \times 10^{-0} \ 9; \ \alpha(O) = 5.39 \times 10^{-7} \ 8$
0.405.0	(20+)	1002.2.1	100	0401.0 (10)	0		Mult.: $A_2 = +0.17/17$; $A_4 = -0.10/16$ and γ -ray decay pattern.
9495.2	(20^{+})	1003.3 I	100	8491.8 (18 ⁺)	Q		Mult.: $A_2=0.19 \ I0$, $A_4=-0.08 \ I0$ in $\gamma^{4}Mo(\gamma^{4}F,p2n\gamma)$.
10501.5?	(22^{+})	$1007.6^{\circ} 2$	100	9495.2 (20)			
11510.0?	(24.)	1014.5 2	100	10501.5? (22*)			

[†] Additional information 1. [‡] From ${}^{98}Mo({}^{16}O,4n\gamma)$, unless otherwise stated.

10

From ENSDF

 $^{110}_{50}{
m Sn}_{60}$ -10

$\gamma(^{110}$ Sn) (continued)

- [#] From ¹¹⁰Sb ε decay. [@] From DCO ratios, $\gamma(\theta)$ and γ -decay pattern in ⁹⁸Mo(¹⁶O,4n γ), unless otherwise stated. [&] From $\gamma(\theta)$ in ¹⁰⁸Cd(α ,2n γ).
- ^{*a*} Placement of transition in the level scheme is uncertain.

 $^{110}_{50}{
m Sn}_{60}$

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level $--- \rightarrow \gamma$ Decay (Uncertain) 001 €3 9.687 + 1295.0 D36 5331.27 11-5228.98 10^{+} Ð. 112,31 (10^{+}) Ś 5219.7 1503.71 1001 - F 2023 30 1375 10 $\frac{11^{-}}{(10^{+})}$ -00-5108.15 52 ps 16 5017.40 $(2,3,4^+)$ 0217 8 5006.1 .8 $\frac{10^{-}}{(10^{+})}$ 4895.20 <21 ps 4881.07 - 00/ (23×1/14 - 100/ (23×1/14 - 100/ (23×1)/14 $[\Box]_{3,1/2}^{3} \xrightarrow{\beta_{1/2}} x_{2}$ 9-4780.44 _4<u>6</u>2<u>5</u>.<u>6</u> (10) 4317.3 4315.7 $(8)^+$ 1 1234;14 6;427 + 1 001 232 100 1 (8^+) 4280.6 + ⁸/6,>1 90j (8^+) 4137.86 1.611 $\frac{(7)^+}{(8^+)}$ I 4003.77 3991.7 1 8 6°; 9-121 ps 19 + + + 3933.57 Ð 8 $\frac{3^{-}}{8^{+}}$ 3885.0 3813.09 ŝ 8-3765.77 1.16 ns 10 $\frac{7^{-}}{(3,4^{+})}$ 3687.52 3629.8 3416.92 5 $\frac{5^{-}}{(6^{+})}$ 3355.20 T 3335.2 ¥. L (6^{+}) 3321.16 (6) 3249.2 T (2,3,4+) ī. 2977.2 I $\frac{2^+}{(6^+)}$ 2833.6 2800.27 ŧ 6^+ 2753.67 2545.7 2^{+} <u>2477.68</u> 5.6 ns 3 6^+ 2+ <u>1212.02</u> 0.48 ps 4 0^+ 0.0 4.154 h 4

 $^{110}_{50}{\rm Sn}_{60}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{110}_{50}{
m Sn}_{60}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{110}_{50}{\rm Sn}_{60}$