### <sup>98</sup>Mo(<sup>16</sup>O,4nγ) 2005Wo03

|                 | His                        | story                |                        |
|-----------------|----------------------------|----------------------|------------------------|
| Туре            | Author                     | Citation             | Literature Cutoff Date |
| Full Evaluation | G. Gürdal and F. G. Kondev | NDS 113, 1315 (2012) | 1-Aug-2011             |

Beam: E(<sup>16</sup>O)=60, 70, 75 and 80 MeV. Target: 3-5.6 mg/cm<sup>2</sup> enriched <sup>98</sup>Mo target. The experiment was performed at the Heavy Ion Laboratory cyclotron of the Warsaw University.  $\gamma$ -rays were detected using OSIRIS-II array consisting of 10 Compton-suppressed HPGe detectors combined with a 48-element BGO sum-energy and multiplicity filter. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ ,  $\gamma(\theta)$ ,  $\gamma\gamma(\theta)$ .

Other: 2003Wo15, 2003Wo16, 1988Ha20, 1987HaZE, 1986KaZS, 1986KaZS, 1986KaZY, 1985HaZD.

### <sup>110</sup>Sn Levels

| E(level) <sup>†</sup>        | $J^{\pi \ddagger}$                  | $T_{1/2}^{\#}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------|-------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0 <sup>@</sup>             | 0+                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1211.8 <sup>@</sup> 4        | 2+                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2057.8 6                     | (0,2)                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2196.8 <sup>@</sup> 5        | 4+                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2455.4 6                     | (4)                                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2458.1 <sup>c</sup> 5        | 3-                                  |                | configuration: possible $\nu(h_{11/2}, d_{5/2})$ or octupole structure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2477.3 <sup>@</sup> 5        | 6+                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2741.9 9                     | (0,1,2,3)                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2752.6 5                     | 6+                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2800.1 <sup>&amp;</sup> 5    | $(6^{+})$                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2821.4 7                     | (3,4)                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2963.5 5                     | $5^{(-)}$                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3210.6 6                     | (3,5)                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3248.9 9                     | 6 <sup>(-)</sup>                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3320.84 5                    | $(6^+)$                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3334.80<br>3254.50           | $(0^{-})$                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3334.5 5                     | $(5) = 6^{(-)}$                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3686 7 <sup>°</sup> 5        | 0<br>7-                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3764.9 <sup>°</sup> 5        | 8-                                  | 1.16 ns 10     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3812 4 @ 5                   | $(8^+)$                             | 1110 115 110   | configuration: possible $v(q^2 d^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3932.3° 5                    | (0 <sup>-</sup> )<br>9 <sup>-</sup> | 121 ps 79      | configuration: possible $v(g_{7/2}, g_{7/2})$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3991 3 <sup>&amp;</sup> 6    | $(8^+)$                             | 121 po 19      | Member of $v[\sigma^2 h^2]$ or $v[d^2 h^2]$ multiplets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4002.7.5                     | $(7^+)$                             |                | $\frac{1}{12} \frac{1}{12} \frac$ |
| 4137.5 <sup><i>a</i></sup> 5 | $(8^+)$                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4280.2 8                     | (8 <sup>+</sup> )                   |                | configuration: possible member of $v(g_{7/2}^2, h_{11/2}^2)$ or $v(d_{5/2}^2, h_{11/2}^2)$ multiplets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4314.6 6                     | (8 <sup>+</sup> )                   |                | configuration: possible member of $v(h_{11/2}^2)$ multiplet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4779.6 <sup>°</sup> 5        | 9-                                  |                | 11/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4880.7 <sup><i>a</i></sup> 5 | $(10^{+})$                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4894.3 <sup>°</sup> 5        | 10-                                 | <21 ps         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5016.5 <sup>@</sup> 5        | $(10^{+})$                          |                | configuration: possible $v(g_{7/2}^2 d_{5/2}^2)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5107.0 <sup>°</sup> 5        | $(11^{-})$                          | 52 ps 16       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5218.9 <sup>&amp;</sup> 6    | $(10^{+})$                          |                | configuration: possible competition between the $\nu(g_{7/2}^2, d_{5/2}^2)$ and $\nu(h_{11/2}^2)$ multiplets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5227.9 <sup>6</sup> 5        | $10^{+}$                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5330.1 <sup>°</sup> 5        | $(11^{-})$                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5730.4 <sup>a</sup> 6        | $(12^{+})$                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5938.3 <sup>d</sup> 6        | (9)                                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6036.0 <sup>b</sup> 5        | $(12^{+})$                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6065.4 <sup>d</sup> 6        | (10)                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              |                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### 98**Mo**( $^{16}$ **O**,4n $\gamma$ ) 2005Wo03 (continued)

### <sup>110</sup>Sn Levels (continued)

 $\gamma(^{110}\text{Sn})$ 

| E(level) <sup>†</sup>   | J <sup>π‡</sup> | E(level) <sup>†</sup>   | $J^{\pi \ddagger}$ | E(level) <sup>†</sup>   | Jπ‡                | E(level) <sup>†</sup>   | Jπ‡                |
|-------------------------|-----------------|-------------------------|--------------------|-------------------------|--------------------|-------------------------|--------------------|
| 6206.0 <sup>d</sup> 5   | (11)            | 6597.9 <sup>a</sup> 6   | (14+)              | 7540.7 <sup>a</sup> 6   | (16 <sup>+</sup> ) | 10501.5? <sup>b</sup> 6 | (22+)              |
| 6353.7 <mark>d</mark> 6 | (12)            | 6613.2? <sup>d</sup> 8  | (13)               | 7586.8 <mark>b</mark> 5 | (16 <sup>+</sup> ) | 11516.0? <sup>b</sup> 6 | (24 <sup>+</sup> ) |
| 6370.9 <sup>c</sup> 11  | (12)            | 6776.9 <sup>b</sup> 5   | $(14^{+})$         | 8490.8 <mark>b</mark> 6 | (18 <sup>+</sup> ) |                         |                    |
| 6545.2 <sup>°</sup> 5   | (13)            | 6974.4? <sup>d</sup> 13 | (14)               | 9494.1 <mark>b</mark> 6 | $(20^{+})$         |                         |                    |

 $^{\dagger}$  From least-squares fit to Ey's.  $^{\ddagger}$  From 2005Wo03, based on deduced transition multipolarities.

<sup>#</sup> From recoil-distance method in 1986Ka25.

<sup>@</sup> Band(A): g.s. band.

& Band(B): band based on the 2800.1 keV level.

<sup>a</sup> Band(C): band based on the 3320.8 keV level.

<sup>b</sup> Band(D): band based on the 5227.9 keV level.

<sup>*c*</sup> Band(E): band based on the 2458.1 keV level. <sup>*d*</sup> Band(F): band based on the 5938.3 keV level.

| E <sub>γ</sub> ‡     | $I_{\gamma}$ ‡ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_f = \mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup> | δ      | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                  |
|----------------------|----------------|------------------------|----------------------|-------------------------------------|--------------------|--------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 78.3 1               | 13.8 5         | 3764.9                 | 8-                   | 3686.7 7-                           | M1+E2              |        | 2.5 14             | DCO=1.3 3; A <sub>2</sub> =+0.07 5; A <sub>4</sub> =+0.06 3<br>$\alpha$ (K)=1.7 8; $\alpha$ (L)=0.6 5; $\alpha$ (M)=0.12 10;<br>$\alpha$ (N+)=0.022 17<br>$\alpha$ (N)=0.021 17; $\alpha$ (O)=0.0009 5                                                    |
| 127.0 <i>1</i>       | 0.3 2          | 6065.4                 | (10)                 | 5938.3 (9)                          |                    |        |                    |                                                                                                                                                                                                                                                           |
| 140.2 2              | 0.2 1          | 6206.0                 | (11)                 | 6065.4 (10)                         |                    |        |                    |                                                                                                                                                                                                                                                           |
| 147.7 <i>3</i>       | 0.3 1          | 6353.7                 | (12)                 | 6206.0 (11)                         |                    |        |                    |                                                                                                                                                                                                                                                           |
| 163.9 <i>1</i>       | 0.9 1          | 2963.5                 | $5^{(-)}$            | 2800.1 (6+)                         |                    |        |                    |                                                                                                                                                                                                                                                           |
| 167.5 <i>1</i>       | 12.7 4         | 3932.3                 | 9-                   | 3764.9 8-                           | M1+E2              | 0.06 3 | 0.1345 20          | DCO=1.13 23<br>$\alpha$ (K)=0.1163 17; $\alpha$ (L)=0.01472 24;<br>$\alpha$ (M)=0.00289 5; $\alpha$ (N+)=0.000590 10<br>$\alpha$ (N)=0.000543 9; $\alpha$ (O)=4.70×10 <sup>-5</sup> 7<br>B(M1)(W.u.)=0.034 6; B(E2)(W.u.)=4 4<br>$\delta$ : From 1986Ka25 |
| 211.0 2              | 0.8            | 5227.9                 | $10^{+}$             | $5016.5 (10^+)$                     | M1+E2              |        |                    | DCO=1.07 15: A <sub>2</sub> =-0.15 1: A <sub>4</sub> =-0.20 22                                                                                                                                                                                            |
| 259.6 <sup>a</sup> 5 | 0.3 1          | 6613.2?                | (13)                 | 6353.7 (12)                         |                    |        |                    | ·····, 2 ····, <del>·</del> ····                                                                                                                                                                                                                          |
| 261.5 2              | 1.9 2          | 2458.1                 | 3-                   | 2196.8 4+                           |                    |        |                    |                                                                                                                                                                                                                                                           |
| 270.8 2              | 1.8 <i>1</i>   | 3686.7                 | 7-                   | 3416.5 6 <sup>(-)</sup>             |                    |        |                    |                                                                                                                                                                                                                                                           |
| 275.3 4              | 10.3 3         | 2752.6                 | 6+                   | 2477.3 6+                           | M1+E2              |        | 0.041 6            | DCO=1.18 25; A <sub>2</sub> =+0.35 9; A <sub>4</sub> =-0.01 2<br>$\alpha$ (K)=0.035 5; $\alpha$ (L)=0.0050 12;<br>$\alpha$ (M)=0.00099 25; $\alpha$ (N+)=0.00020 5<br>$\alpha$ (N)=0.00018 5: $\alpha$ (O)=1.40×10 <sup>-5</sup> 17                       |
| 280.2 3              | 57 2           | 2477.3                 | 6+                   | 2196.8 4+                           | E2                 |        | 0.0444             | $\begin{array}{l} DCO=1.20 \ 13; \ A_2=+0.11 \ 1; \ A_4=-0.14 \ 9 \\ \alpha(K)=0.0372 \ 6; \ \alpha(L)=0.00584 \ 9; \\ \alpha(M)=0.001160 \ 17; \ \alpha(N+)=0.000227 \\ 4 \end{array}$                                                                   |
|                      |                |                        |                      |                                     |                    |        |                    | $\alpha$ (N)=0.000213 3; $\alpha$ (O)=1.473×10 <sup>-5</sup> 22<br>B(E2)(W.u.)=1.79 13                                                                                                                                                                    |
| 285.4 7              | 2.0 3          | 3248.9                 | 6(-)                 | 2963.5 5 <sup>(-)</sup>             | M1+E2              |        |                    | DCO=1.03 17; A <sub>2</sub> =-0.13 19; A <sub>4</sub> =+0.04 7                                                                                                                                                                                            |
| 311.7 2              | 1.1 <i>1</i>   | 4314.6                 | (8 <sup>+</sup> )    | 4002.7 (7 <sup>+</sup> )            | M1+E2              |        | 0.029 3            | $A_2 = +0.25 \ 21; \ A_4 = +0.02 \ 2$                                                                                                                                                                                                                     |

### <sup>98</sup>Mo(<sup>16</sup>O,4nγ) 2005Wo03 (continued)

# $\gamma(^{110}\text{Sn})$ (continued)

| E <sub>γ</sub> ‡                                     | $I_{\gamma}$ ‡               | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                | $\mathbf{E}_{f}$  | $\mathbf{J}_f^{\pi}$                 | Mult. <sup>#</sup> | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------|------------------------------|------------------------|-------------------------------------|-------------------|--------------------------------------|--------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      |                              |                        |                                     |                   | <u> </u>                             |                    |                    | $\alpha(\mathbf{K})=0.0244\ 20;\ \alpha(\mathbf{L})=0.0034\ 7;\alpha(\mathbf{M})=0.00067\ 13;\ \alpha(\mathbf{N}+)=0.000134\ 23\alpha(\mathbf{N})=0.000124\ 22;\ \alpha(\mathbf{O})=9\ 7\times10^{-6}\ 8$                                                                                                                                                                                     |
| 318.0 8                                              | 0.1 <i>1</i>                 | 6353.7                 | (12)                                | 6036.0            | (12 <sup>+</sup> )                   |                    |                    | $E_{\gamma}$ : 318.0(8.0) in table 2 of 2005Wo03 seems a misprint.                                                                                                                                                                                                                                                                                                                            |
| 323.1 <i>I</i><br>332 0 <sup><i>a</i></sup> <i>I</i> | $2.8\ 2$                     | 2800.1<br>3686 7       | (6 <sup>+</sup> )<br>7 <sup>-</sup> | 2477.3<br>3354 5  | $6^+$<br>(5 <sup>-</sup> )           |                    |                    | 1                                                                                                                                                                                                                                                                                                                                                                                             |
| 334.5 3                                              | 0.5 1                        | 5227.9                 | $10^{+}$                            | 4894.3            | 10-                                  |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                               |
| 361.2 <sup><i>u</i></sup> 10                         | 0.1 I                        | 6974.4?<br>4314.6      | (14)<br>$(8^+)$                     | 6613.2?<br>3032.3 | (13)<br>o <sup>-</sup>               |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                               |
| $437.2^{a}$ 3                                        | 0.7 1                        | 3686.7                 | (8)<br>7 <sup>-</sup>               | 3248.9            | 6 <sup>(-)</sup>                     |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                               |
| 447.7 8                                              | 3.4 1                        | 5227.9                 | 10+                                 | 4779.6            | 9-                                   | E1                 |                    | DCO=0.55 10; A <sub>2</sub> =-0.35 16; A <sub>4</sub> =+0.001 3                                                                                                                                                                                                                                                                                                                               |
| 453.4 1                                              | 1.4 3                        | 3416.5                 | $6^{(-)}$                           | 2963.5            | 5 <sup>(-)</sup>                     | M1+E2              | 0.00055.4          | DCO=1.04 16; $A_2$ =+0.36 20; $A_4$ =+0.06 9                                                                                                                                                                                                                                                                                                                                                  |
| 486.0 <i>I</i>                                       | 1.3 1                        | 2963.5                 | 2()                                 | 2477.3            | 6'                                   | EI                 | 0.00255 4          | DCO=0.56 22; $A_2$ =-0.44 14; $A_4$ =+0.01 2<br>$\alpha$ =0.00255 4; $\alpha$ (K)=0.00222 4; $\alpha$ (L)=0.000266<br>4; $\alpha$ (M)=5.18×10 <sup>-5</sup> 8; $\alpha$ (N+)=1.053×10 <sup>-5</sup><br>15                                                                                                                                                                                     |
| 505.0.2                                              | 1 1 7                        | 2062 5                 | $\overline{r}(-)$                   | 0450 1            | 2-                                   |                    |                    | $\alpha(N)=9.71\times10^{-6}$ 14; $\alpha(O)=8.22\times10^{-7}$ 12                                                                                                                                                                                                                                                                                                                            |
| 505.8 <i>2</i><br>602.1 <i>3</i>                     | 1.1 I<br>1.5 I               | 2965.5<br>3354.5       | $(5^{-})$                           | 2458.1<br>2752.6  | 3<br>6 <sup>+</sup>                  |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                               |
| 603.4 1                                              | 5.9 5                        | 2800.1                 | (6+)                                | 2196.8            | 4+                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                               |
| 604.5 6                                              | $\leq 0.1$                   | 5938.3                 | (9)                                 | 5330.1            | $(11^{-})$                           |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                               |
| 740.9 <i>I</i>                                       | 0.8 4<br>9.7 4               | 6776.9                 | (3,4)<br>(14 <sup>+</sup> )         | 6036.0            | 4<br>(12 <sup>+</sup> )              | E2                 | 0.00260 4          | DCO=1.02 <i>10</i> ; A <sub>2</sub> =+0.29 <i>9</i> ; A <sub>4</sub> =-0.06 7<br>$\alpha$ =0.00260 <i>4</i> ; $\alpha$ (K)=0.00224 <i>4</i> ; $\alpha$ (L)=0.000285<br><i>4</i> ; $\alpha$ (M)=5.58×10 <sup>-5</sup> <i>8</i> ; $\alpha$ (N+)=1.131×10 <sup>-5</sup><br><i>16</i>                                                                                                             |
| 0                                                    |                              |                        |                                     |                   |                                      |                    |                    | $\alpha(N)=1.044\times10^{-5}$ 15; $\alpha(O)=8.67\times10^{-7}$ 13                                                                                                                                                                                                                                                                                                                           |
| 743.2 1                                              | 3.2 3                        | 4880.7                 | $(10^+)$                            | 4137.5            | $(8^+)$                              | (E2)               | 0.00210.2          | ~_0.00210_2; ~(W)=0.00182_2; ~(U)=0.000220                                                                                                                                                                                                                                                                                                                                                    |
| 808.2 1                                              | 9.8 0                        | 0030.0                 | (12)                                | 5221.9            | 10                                   | (E2)               | 0.00210 5          | $\alpha = 0.00210 \text{ s}; \ \alpha(\text{K}) = 0.00182 \text{ s}; \ \alpha(\text{L}) = 0.000229 $<br>$4; \ \alpha(\text{M}) = 4.47 \times 10^{-5} \text{ 7}; \ \alpha(\text{N}+) = 9.08 \times 10^{-6}  13 $<br>$\alpha(\text{N}) = 8.38 \times 10^{-6}  12; \ \alpha(\text{O}) = 7.02 \times 10^{-7}  10 $<br>DCO=1.11 13, A <sub>2</sub> =+0.43 11, A <sub>4</sub> =-0.01 1 for 808+810. |
| 809.9 1                                              | 10.4 5                       | 7586.8                 | (16 <sup>+</sup> )                  | 6776.9            | (14 <sup>+</sup> )                   | (E2)               | 0.00209 3          | $\alpha$ =0.00209 3; $\alpha$ (K)=0.00181 3; $\alpha$ (L)=0.000227<br>4; $\alpha$ (M)=4.45×10 <sup>-5</sup> 7; $\alpha$ (N+)=9.03×10 <sup>-6</sup> 13                                                                                                                                                                                                                                         |
|                                                      |                              |                        |                                     |                   |                                      |                    |                    | $\alpha$ (N)=8.33×10 <sup>-6</sup> <i>12</i> ; $\alpha$ (O)=6.98×10 <sup>-7</sup> <i>10</i><br>DCO=1.11 <i>13</i> , A <sub>2</sub> =+0.43 <i>11</i> , A <sub>4</sub> =-0.01 <i>1</i> for<br>808+810.                                                                                                                                                                                          |
| 816.7 <sup>&amp;</sup> 1                             | 4.4 3                        | 4137.5                 | $(8^+)$                             | 3320.8            | $(6^+)$                              |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                               |
| 816.9 <i>4</i><br>843.5 <i>1</i>                     | 0.8 <i>1</i><br>4.7 <i>4</i> | 6036.0<br>3320.8       | $(12^{+})$<br>$(6^{+})$             | 5218.9<br>2477.3  | $(10^{+})$<br>$6^{+}$                | (M1)               |                    | DCO=0.53.13                                                                                                                                                                                                                                                                                                                                                                                   |
| 846.0 4                                              | 4.6 1                        | 2057.8                 | (0,2)                               | 1211.8            | $2^{+}$                              | (1111)             |                    |                                                                                                                                                                                                                                                                                                                                                                                               |
| 848.5 <sup><i>a</i></sup> 9                          | 0.2 1                        | 4779.6                 | 9-                                  | 3932.3            | 9-                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                               |
| 849.7 <sup><b>x</b></sup> 2<br>857.5 4               | 1.4 2<br>1.2 <i>3</i>        | 5730.4<br>3334.8       | $(12^+)$<br>(6 <sup>+</sup> )       | 4880.7<br>2477.3  | (10 <sup>+</sup> )<br>6 <sup>+</sup> |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                               |
| 865.0 <sup>&amp;</sup> 5                             | 1.2 2                        | 3320.8                 | (6 <sup>+</sup> )                   | 2455.4            | (4)                                  |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                               |
| 867.5 <sup>&amp;</sup> 2                             | 1.3 <i>I</i>                 | 6597.9                 | $(14^{+})$                          | 5730.4            | (12 <sup>+</sup> )                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                               |
| 876.0 4                                              | 0.8 1                        | 6206.0                 | (11)                                | 5330.1            | $(11^{-})$                           |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                               |
| 903.9 <i>1</i>                                       | 2.3 3<br>4.2 <i>1</i>        | 5554.5<br>8490.8       | (3)<br>$(18^+)$                     | 2438.1<br>7586.8  | 5<br>(16 <sup>+</sup> )              | E2                 |                    | Mult.: From $\gamma$ -ray decay pattern; A <sub>2</sub> =+0.17 <i>17</i><br>\$ A <sub>4</sub> =-0.10 <i>16</i> .                                                                                                                                                                                                                                                                              |
| 912.8 7                                              | 0.3                          | 5227.9                 | $10^{+}$                            | 4314.6            | (8+)                                 |                    |                    | •                                                                                                                                                                                                                                                                                                                                                                                             |

Continued on next page (footnotes at end of table)

### <sup>98</sup>Mo(<sup>16</sup>O,4nγ) 2005Wo03 (continued)

# $\gamma(^{110}\text{Sn})$ (continued)

| $E_{\gamma}^{\ddagger}$                                                                                      | $I_{\gamma}$                                                                                                 | E <sub>i</sub> (level)                                               | $\mathbf{J}_i^{\pi}$                                                                                                | $E_f$                                                                | $\mathbf{J}_f^\pi$                                                                                                                         | Mult. <sup>#</sup>  | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 933.9 2                                                                                                      | 1.7 <i>I</i>                                                                                                 | 3686.7                                                               | 7-                                                                                                                  | 2752.6                                                               | 6+                                                                                                                                         | (E1)                | 0.000623 9         | $A_2 = -0.22 \ 9; \ A_4 = +0.01 \ 1$<br>$\alpha = 0.000623 \ 9; \ \alpha(K) = 0.000544 \ 8;$<br>$\alpha(L) = 6.40 \times 10^{-5} \ 9; \ \alpha(M) = 1.244 \times 10^{-5}$<br>$I8; \ \alpha(N+) = 2.54 \times 10^{-6} \ 4$<br>$\alpha(N) = 2.34 \times 10^{-6} \ 4; \ \alpha(O) = 2.03 \times 10^{-7} \ 3$                                                             |
| 938.3 <i>3</i><br>942.8 <sup>&amp;</sup> 2<br>945.4 <i>5</i><br>967.4 <i>4</i>                               | 1.8 <i>3</i><br>1.6 <i>I</i><br>0.8 <i>2</i><br>0.3 <i>I</i>                                                 | 3416.5<br>7540.7<br>4280.2<br>4779.6                                 | $6^{(-)}$<br>(16 <sup>+</sup> )<br>(8 <sup>+</sup> )<br>9 <sup>-</sup><br>(11)                                      | 2477.3<br>6597.9<br>3334.8<br>3812.4                                 | 6 <sup>+</sup><br>(14 <sup>+</sup> )<br>(6 <sup>+</sup> )<br>(8 <sup>+</sup> )                                                             |                     |                    |                                                                                                                                                                                                                                                                                                                                                                       |
| 978.2 <i>1</i><br>984.6 <i>4</i>                                                                             | 1.5 4<br>83 <i>3</i>                                                                                         | 2196.8                                                               | (11)<br>4 <sup>+</sup>                                                                                              | 1211.8                                                               | 2 <sup>+</sup>                                                                                                                             | E2                  | 0.001332 19        | DCO=0.96 8; A <sub>2</sub> =+0.29 7; A <sub>4</sub> =-0.01 1<br>$\alpha$ =0.001332 19; $\alpha$ (K)=0.001156 17;<br>$\alpha$ (L)=0.0001422 20; $\alpha$ (M)=2.78×10 <sup>-5</sup><br>4; $\alpha$ (N+)=5.66×10 <sup>-6</sup><br>$\alpha$ (N)=5.21×10 <sup>-6</sup> 8: $\alpha$ (O)=4.44×10 <sup>-7</sup> 7                                                             |
| 1003.3 1                                                                                                     | 2.7 2                                                                                                        | 9494.1                                                               | (20 <sup>+</sup> )                                                                                                  | 8490.8                                                               | (18 <sup>+</sup> )                                                                                                                         |                     |                    | u(1)=5.21×10 0, u(0)=4.44×10 7                                                                                                                                                                                                                                                                                                                                        |
| 1007.6 <sup>(a)</sup> 2<br>1012.3 <i>I</i>                                                                   | 1.3 <i>I</i><br>5.2 <i>3</i>                                                                                 | 10501.5?<br>3764.9                                                   | (22 <sup>+</sup> )<br>8 <sup>-</sup>                                                                                | 9494.1<br>2752.6                                                     | (20 <sup>+</sup> )<br>6 <sup>+</sup>                                                                                                       | (M2)                | 0.00370 6          | DCO=0.90 15; A <sub>2</sub> =+0.30 12; A <sub>4</sub> =-0.06 7<br>$\alpha$ =0.00370 6; $\alpha$ (K)=0.00320 5;<br>$\alpha$ (L)=0.000398 6; $\alpha$ (M)=7.81×10 <sup>-5</sup> 11;<br>$\alpha$ (N+)=1.601×10 <sup>-5</sup> 23<br>$\alpha$ (N)=1.472×10 <sup>-5</sup> 21; $\alpha$ (O)=1.292×10 <sup>-6</sup>                                                           |
| 1013.8 3                                                                                                     | 4.0 6                                                                                                        | 3210.6                                                               | (3,5)                                                                                                               | 2196.8                                                               | 4+                                                                                                                                         |                     |                    | <i>18</i><br>For J=3, $A_2$ =+0.15 20, $A_4$ =+0.003 7; for J=5 $A_2$ =+0.15 20, $A4$ =+0.01 2                                                                                                                                                                                                                                                                        |
| 1014.5 <sup>@a</sup> 2<br>1019.1 9<br>1041.0 <sup>a</sup> 10<br>1092.9 1<br>1099.0 1<br>1129.5 1<br>1175.3 5 | 1.3 <i>I</i><br>0.4 <i>I</i><br>0.3 <i>I</i><br>3.6 <i>3</i><br>2.5 <i>I</i><br>6.1 <i>3</i><br>8.9 <i>3</i> | 11516.0?<br>6036.0<br>6370.9<br>4779.6<br>6206.0<br>4894.3<br>5107.0 | (24 <sup>+</sup> )<br>(12 <sup>+</sup> )<br>(12)<br>9 <sup>-</sup><br>(11)<br>10 <sup>-</sup><br>(11 <sup>-</sup> ) | 10501.5?<br>5016.5<br>5330.1<br>3686.7<br>5107.0<br>3764.9<br>3932.3 | (22 <sup>+</sup> )<br>(10 <sup>+</sup> )<br>(11 <sup>-</sup> )<br>7 <sup>-</sup><br>(11 <sup>-</sup> )<br>8 <sup>-</sup><br>9 <sup>-</sup> | E2<br>D<br>E2<br>E2 | 0.000912 13        | $A_{2}=+0.24 \ 11; \ A_{4}=-0.09 \ 5$<br>DCO=0.90 15<br>DCO=0.64 14; \ A_{2}=+0.26 \ 11; \ A_{4}=-0.08 \ 7<br>DCO=0.94 18; \ A_{2}=+0.33 \ 8; \ A_{4}=-0.05 \ 2<br>\alpha=0.000912 \ 13; \alpha(K)=0.000790 \ 11;<br>\alpha(L)=9.57\times10^{-5} \ 14; \ \alpha(M)=1.87\times10^{-5}                                                                                  |
|                                                                                                              |                                                                                                              |                                                                      |                                                                                                                     |                                                                      |                                                                                                                                            |                     |                    | 3; $\alpha$ (N+)=8.05×10 <sup>-6</sup> <i>12</i><br>$\alpha$ (N)=3.51×10 <sup>-6</sup> 5; $\alpha$ (O)=3.02×10 <sup>-7</sup> 5;<br>$\alpha$ (IPF)=4.24×10 <sup>-6</sup> 8<br>B(E2)(W.u.)=0.16 5                                                                                                                                                                       |
| 1191.1 <i>3</i><br>1203.7 <i>2</i>                                                                           | 1.9 <i>3</i><br>2.1 <i>2</i>                                                                                 | 3991.3<br>5016.5                                                     | $(8^+)$<br>$(10^+)$                                                                                                 | 2800.1<br>3812.4                                                     | $(6^+)$<br>$(8^+)$                                                                                                                         |                     |                    |                                                                                                                                                                                                                                                                                                                                                                       |
| 1208.8 5                                                                                                     | 31 1                                                                                                         | 3686.7                                                               | 7-                                                                                                                  | 2477.3                                                               | 6+                                                                                                                                         | E1                  | 0.000424 6         | DCO=0.72 09; A <sub>2</sub> =-0.29 9; A <sub>4</sub> =+0.01 1<br>$\alpha$ =0.000424 6; $\alpha$ (K)=0.000337 5;<br>$\alpha$ (L)=3.93×10 <sup>-5</sup> 6; $\alpha$ (M)=7.64×10 <sup>-6</sup><br>11; $\alpha$ (N+)=4.04×10 <sup>-5</sup> 7<br>$\alpha$ (N)=1.438×10 <sup>-6</sup> 21; $\alpha$ (O)=1.252×10 <sup>-7</sup><br>18: $\alpha$ (IPE)=3.89×10 <sup>-5</sup> 6 |
| 1211.8 4                                                                                                     | 100 8                                                                                                        | 1211.8                                                               | 2+                                                                                                                  | 0.0                                                                  | 0+                                                                                                                                         | E2                  | 0.000860 12        | DCO=1.00 9; A <sub>2</sub> =+0.20 7; A <sub>4</sub> =-0.07 4<br>$\alpha$ =0.000860 12; $\alpha$ (K)=0.000741 11;<br>$\alpha$ (L)=8.95×10 <sup>-5</sup> 13; $\alpha$ (M)=1.747×10 <sup>-5</sup><br>25; $\alpha$ (N+)=1.200×10 <sup>-5</sup><br>$\alpha$ (N)=3.28×10 <sup>-6</sup> 5; $\alpha$ (O)=2.83×10 <sup>-7</sup> 4;<br>$\alpha$ (ME)=8.44×10 <sup>-6</sup> 12   |
| 1215.3 <sup><i>a</i></sup> 1                                                                                 | 1.4 2                                                                                                        | 6545.2                                                               | (13)                                                                                                                | 5330.1                                                               | (11 <sup>-</sup> )                                                                                                                         |                     |                    | $u(11^{\circ}\Gamma) = 0.44 \times 10  13$                                                                                                                                                                                                                                                                                                                            |

Continued on next page (footnotes at end of table)

#### <sup>98</sup>Mo(<sup>16</sup>O,4nγ) 2005Wo03 (continued)

### $\gamma(^{110}\text{Sn})$ (continued)

| Eγ‡                              | $I_{\gamma}$ ‡                 | E <sub>i</sub> (level)     | $\mathbf{J}_i^{\pi}$   | $E_f  J_f^{\pi}$                                      | Mult. <sup>#</sup> | $lpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------|--------------------------------|----------------------------|------------------------|-------------------------------------------------------|--------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1219.3 2<br>1227.4 4<br>1242.5 8 | 6.0 5<br>0.7 <i>1</i><br>1.7 7 | 3416.5<br>5218.9<br>2455.4 |                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | <b></b>            |                  |                                                                                                                                                                                                                                                                                                                                                                      |
| 1246.4 2<br>1249.9 2             | 4.8 6<br>2.1 2                 | 4002.7                     | 3<br>(7 <sup>+</sup> ) | 1211.8 2 <sup>+</sup><br>2752.6 6 <sup>+</sup>        | E1<br>M1+E2        | 0.00089 8        | A <sub>2</sub> =-0.16 5; A <sub>4</sub> =+0.01 2<br>DCO=0.8 3; A <sub>2</sub> =+0.5 4; A <sub>4</sub> =+0.13 10<br>$\alpha$ =0.00089 8; $\alpha$ (K)=0.00076 7;<br>$\alpha$ (L)=9.1×10 <sup>-5</sup> 8; $\alpha$ (M)=1.78×10 <sup>-5</sup> 15;<br>$\alpha$ (N+)=1.69×10 <sup>-5</sup> 6<br>$\alpha$ (N)=3.4×10 <sup>-6</sup> 3; $\alpha$ (O)=2.9×10 <sup>-7</sup> 3; |
| 1287 5 5                         | 097                            | 3764 9                     | 8-                     | 2477 3 6+                                             |                    |                  | $\alpha$ (IPF)=1.33×10 <sup>-5</sup> 9                                                                                                                                                                                                                                                                                                                               |
| 1295.6.1                         | 191                            | 5227.9                     | 10+                    | 3932.3 9-                                             | E1                 |                  | DCO=0.60.18: A <sub>2</sub> =+0.4.4: A <sub>4</sub> =+0.16.18                                                                                                                                                                                                                                                                                                        |
| 1335.0 1                         | 2.3 2                          | 3812.4                     | (8 <sup>+</sup> )      | 2477.3 6+                                             | (E2)               | 0.000728 11      | $\begin{array}{l} A_{2}=+0.36 \ 15; \ A_{4}=-0.03 \ 4\\ \alpha=0.000728 \ 11; \ \alpha(\mathrm{K})=0.000608 \ 9;\\ \alpha(\mathrm{L})=7.29\times10^{-5} \ 11; \ \alpha(\mathrm{M})=1.422\times10^{-5} \ 20;\\ \alpha(\mathrm{N}+)=3.37\times10^{-5} \ 5\\ \alpha(\mathrm{N})=2.68\times10^{-6} \ 4; \ \alpha(\mathrm{O})=2.32\times10^{-7} \ 4; \end{array}$         |
|                                  |                                |                            |                        |                                                       |                    |                  | $\alpha$ (IPF)=3.08×10 <sup>-5</sup> 5                                                                                                                                                                                                                                                                                                                               |
| 1397.6 <i>1</i>                  | 2.7 1                          | 5330.1                     | (11 <sup>-</sup> )     | 3932.3 9-                                             | E2                 | 0.000684 10      | DCO=0.9 3; A <sub>2</sub> =+0.19 8; A <sub>4</sub> =-0.11 6<br>$\alpha$ =0.000684 10; $\alpha$ (K)=0.000554 8;<br>$\alpha$ (L)=6.64×10 <sup>-5</sup> 10; $\alpha$ (M)=1.293×10 <sup>-5</sup> 19;<br>$\alpha$ (N+)=5.03×10 <sup>-5</sup> 7<br>$\alpha$ (N)=2.43×10 <sup>-6</sup> 4; $\alpha$ (O)=2.11×10 <sup>-7</sup> 3;<br>$\alpha$ (IPE)=4 77×10 <sup>-5</sup> 7   |
| 1530.1.8                         | 175                            | 2741.9                     | (0 1 2 3)              | 1211.8 2+                                             |                    |                  |                                                                                                                                                                                                                                                                                                                                                                      |
| 1609.8 6                         | 2.3 6                          | 2821.4                     | (3,4)                  | 1211.8 2+                                             |                    |                  | For J=3 $A_2$ =+0.10 <i>10</i> , $A_4$ =+0.01 <i>1</i> ; for J=4 $A_2$ =+0.06 6, $A_4$ =-0.15 <i>15</i> .                                                                                                                                                                                                                                                            |

<sup>†</sup> Additional information 1.

<sup>‡</sup> From 2005Wo03 (I $\gamma$ (1211.8)=100).

<sup>#</sup> Deduced from DCO ratios, $\gamma(\theta)$  and  $\gamma$ -decay pattern. DCO ratio was defined as DCO=I $_{\gamma}(E_{\gamma}; 38^{\circ}+25^{\circ})/I_{\gamma}(E_{\gamma}; 90^{\circ}+87^{\circ})$ ; DCO is around 0.6 for  $\Delta J=1$ , dipole transitions and about 1.0 for stretched  $\Delta J=2$ , quadrupole or  $\Delta I=0$ , dipole transitions. Angular distribution data were normalized to transitions with isotropic angular distributions of  $\gamma$  rays from long-lived radioactive nuclide.

<sup>@</sup> Ordering of the 1007.6-1014.5 cascade is arbitrary.

&  $\Delta J=2$  favored from the apparent cascade assignment, but direct information concerning the multipolarity is not available, because the  $\gamma$ -ray peak is located on the tail of a closely spaced strong peak.

<sup>a</sup> Placement of transition in the level scheme is uncertain.

 $^{110}_{50}$ Sn<sub>60</sub>-6



 $^{110}_{50}{\rm Sn}_{60}$ 







 $^{110}_{50}{
m Sn}_{60}$