108 Cd(α ,2n γ) **1980Va13**

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	G. Gürdal and F. G. Kondev	NDS 113, 1315 (2012)	1-Aug-2011						

Beam: $E\alpha=32$ MeV. Target: 5 mg/cm² (for γ -ray measurements) and 0.5 mg/cm² (for conversion electron measurements) thick, isotropically enriched self-supporting foils. The α beam was provided by the AVF cyclotron of the Vrije Universiteit in Amsterdam. γ -rays were detected using two large volume Ge(Li) detectors. Conversion electrons were detected using a mini-orange spectrometer. Measured: E γ , I γ , $\gamma\gamma(t)$, $\gamma(\theta)$, E(ce), Ice.

Other: 1969Ya05, 1980Va13.

¹¹⁰Sn Levels

E(level) [†]	J ^π ‡	T _{1/2}	Comments
0.0	0^{+}	4.154 h 4	$T_{1/2}$: From Adopted Levels.
1212.02 9	2+		-/- *
2197.05 10	4+		
2455.9 <i>4</i>	(4^{+})		
2480.0 8	6+	8.2 ns 2	Q=0.34 4 μ=0.072 18
			T _{1/2} : Weighted average of 8.0 ns 2 (1212 γ (t)) and 8.4 ns 2 (985 γ (t)) in 1980Va13. Other: 8.5 ns 4 (282.9 γ (t)) in 1980Va13, but the transition is contaminated with similar one in ¹¹⁰ In.
			Q: from $\gamma(\theta, H, t)$ (1989Vo17).
			μ : From $\gamma(\theta, H, t)$ (g=0.012 3) (1989Vo17).
			configuration: Possible admixture of $v(g_{7/2})^2$ and $v(g_{7/2}, d_{5/2})$ configurations.
2756.0 8	6+		
2804.6 9			
2967.1 9	(7)		
3689.3 8	7-		
3767.5 9	8-		$\mu = -2.4 \ 12$
			μ : From IPAD (g=-0.30 15) (1989Vo17).
			configuration: possible $v(h_{11/2}, d_{5/2})$ configuration.
3814.8 9	(8^{+})		
3935.3 9	9-		
4319.0 9	$10^{(-)}$		
4897.2 9	$10^{(-)}$		
5111.0 9	11-		
5332.4 10	11-		

 † From least-squares fit to Ey's.

[±] From 1980Va13, based on the deduced γ -ray transition multipolarities.

$\gamma(^{110}\text{Sn})$									
E_{γ}^{\ddagger}	I_{γ} ‡	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.#	$\delta^{@}$	α^{\dagger}	Comments	
78.2 1	13 1	3767.5	8-	3689.3 7-	M1+E2	0.05 3	1.140 20	$\alpha(K)=0.983 \ 16; \ \alpha(L)=0.128 \ 4; \ \alpha(M)=0.0251 \ 9; \ \alpha(N+)=0.00511 \ 15 \ \alpha(N)=0.00471 \ 15; \ \alpha(O)=0.000402 \ 7 \ Mult.: \ 0.07 \le \alpha \le 1.5 \ deduced \ from \ intensity \ balance \ by \ the \ authors, \ \alpha=1.5 \ 2 \ by \ the \ evaluators; \ A_2=-0.147 \ 12, \ A_4=0.01 \ 2.$	
167.84 6	19.3 9	3935.3	9-	3767.5 8-	M1+E2	0.08 3	0.1341 20	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.1159 \ 17; \ \alpha(\mathbf{L}) = 0.0147 \ 3; \\ &\alpha(\mathbf{M}) = 0.00289 \ 5; \ \alpha(\mathbf{N}+) = 0.000589 \ 10 \\ &\alpha(\mathbf{N}) = 0.000542 \ 10; \ \alpha(\mathbf{O}) = 4.68 \times 10^{-5} \ 7 \\ &\text{Mult.:} \ \alpha(\mathbf{K}) \exp = 0.15 \ 3; \ \mathbf{A}_2 = -0.090 \ 10, \\ &\mathbf{A}_4 = -0.01 \ 2. \end{aligned} $	

Continued on next page (footnotes at end of table)

				1	¹⁰⁸ Cd(α ,2n γ) 1980Va13 (continued)		(continued)		
$\gamma(^{110}\text{Sn})$ (continued)									
E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments
276.06 8	20 1	2756.0	6+	2480.0	6+	M1(+E2)	0.0 2	0.0354 7	$\alpha(K)=0.0307 \ 6; \ \alpha(L)=0.00382 \ 11; \\ \alpha(M)=0.000747 \ 22; \\ \alpha(N+)=0.000153 \ 4 \\ \alpha(N)=0.000141 \ 4; \ \alpha(O)=1.227\times10^{-5} \\ 22$
282.9 8	70 6	2480.0	6+	2197.05	4+	(E2)		0.0430 8	Mult.: $\alpha(K)\exp=0.038 \ 8; \ A_2=0.382$ $11, \ A_4=0.01 \ 2.$ $\alpha(K)=0.0360 \ 6; \ \alpha(L)=0.00564 \ 10;$ $\alpha(M)=0.001121 \ 20;$ $\alpha(N+)=0.000220 \ 4$ $\alpha(N)=0.000205 \ 4; \ \alpha(O)=1.427\times10^{-5}$ 24 E : Doublet with 283 keV transition
324.6 2 383.7 3 487.1 2 985.03 3	2.6 2 4.9 3 3.1 2 84 3	2804.6 4319.0 2967.1 2197.05	10 ⁽⁻⁾ (7) 4 ⁺	2480.0 3935.3 2480.0 1212.02	6 ⁺ 9 ⁻ 6 ⁺ 2 ⁺	M1(+E2) M1+E2 E2	0.0 2	0.001330 <i>19</i>	in ¹¹⁰ In. Mult.: α (K)exp=0.030 <i>12</i> ; A ₂ =0.32 <i>3</i> , A ₄ =-0.07 <i>10</i> . Mult.: A ₂ =0.11 <i>3</i> , A ₄ =0.06 <i>6</i> . Mult.: A ₂ =-0.16 <i>2</i> , A ₄ =-0.01 <i>3</i> . Mult.: A ₂ =-0.59 <i>3</i> , A ₄ =-0.04 <i>4</i> . α =0.001330 <i>19</i> ; α (K)=0.001155 <i>17</i> ; α (L)=0.0001421 <i>20</i> ; α (M)=2.78×10 ⁻⁵ <i>4</i> ; α (N)=5.21×10 ⁻⁶ <i>8</i> ; α (O)=4.43×10 ⁻⁷ 7
1011.3 2	5.3 3	3767.5	8-	2756.0	6+	M2		0.00371 6	Mult.: $\alpha(K)\exp=1.16\times10^{-3}$; A ₂ =0.314 13, A ₄ =-0.06 2. α =0.00371 6; $\alpha(K)$ =0.00321 5; $\alpha(L)$ =0.000399 6; $\alpha(M)$ =7.83×10 ⁻⁵ 11; $\alpha(N+)$ =1.605×10 ⁻⁵ 23 $\alpha(N)$ =1.476×10 ⁻⁵ 21; $\alpha(O)$ =1.295×10 ⁻⁶ 19
1129.7 <i>4</i>	5.3.3	4897.2	10 ⁽⁻⁾	3767.5	8-	(E2)			Mult.: α (K)exp=3.8×10 ⁻³ <i>12</i> ; A ₂ =0.30 <i>3</i> , A ₄ =-0.16 <i>4</i> . Mult.: α (K)exp=0.57×10 ⁻³ <i>12</i> :
1175.6 3	8.8 4	5111.0	11-	3935.3	9-	E2		0.000911 <i>13</i>	A ₂ =0.42 7, A ₄ =-0.18 8. α =0.000911 13; α (K)=0.000789 11; α (L)=9.56×10 ⁻⁵ 14; α (M)=1.87×10 ⁻⁵ 3; α (N+)=8.08×10 ⁻⁶ 12 α (N)=3.51×10 ⁻⁶ 5; α (O)=3.02×10 ⁻⁷ 5; α (IPF)=4.27×10 ⁻⁶ 7
1209.42 9	33 2	3689.3	7-	2480.0	6+			0.000424 6	Mult.: $\alpha(K)\exp=0.75\times10^{-3} 15$; $A_2=0.36 2$, $A_4=-0.11 5$. $\alpha=0.000424 6$; $\alpha(K)=0.000336 5$; $\alpha(L)=3.93\times10^{-5} 6$; $\alpha(M)=7.63\times10^{-6} 11$; $\alpha(N+)=4.07\times10^{-5} 6$ $\alpha(N)=1.437\times10^{-6} 21$; $\alpha(O)=1.251\times10^{-7} 18$; $\alpha(IPF)=3.92\times10^{-5} 6$ Mult.: $\alpha(K)\exp=0.67\times10^{-3} 8$ for unresolved 1209.4-1212.0 doublet; $A_2=0.30 2$, $A_4=-0.05 2$.

Continued on next page (footnotes at end of table)

 E_{γ}^{\ddagger}

1212.01 9

¹⁰⁸Cd(α ,2n γ) 1980Va13 (continued) $\gamma(^{110}\text{Sn})$ (continued) Iγ[‡] $\frac{E_i(\text{level})}{1212.02}$ $\frac{\mathbf{J}_{i}^{\pi}}{2^{+}} \quad \frac{\mathbf{E}_{f}}{0.0} \quad \frac{\mathbf{J}_{f}^{\pi}}{0^{+}}$ Mult.[#] α^{\dagger} Comments E2 $\begin{array}{c} \alpha = 0.000859 \ 12; \ \alpha(\mathrm{K}) = 0.000740 \ 11; \\ \alpha(\mathrm{L}) = 8.95 \times 10^{-5} \ 13; \ \alpha(\mathrm{M}) = 1.746 \times 10^{-5} \ 25; \\ \alpha(\mathrm{N}+..) = 1.203 \times 10^{-5} \end{array}$ 0.000859 12 100

								$\begin{aligned} &\alpha(\text{N}) = 3.28 \times 10^{-6} \ 5; \ \alpha(\text{O}) = 2.83 \times 10^{-7} \ 4; \\ &\alpha(\text{IPF}) = 8.47 \times 10^{-6} \ 12 \\ &\text{Mult.:} \ \alpha(\text{K}) \exp = 0.67 \times 10^{-3} \ 8 \ \text{for unresolved} \\ &1209.4 - 1212.0 \ \text{doublet}; \ \text{A}_2 = -0.27 \ 2, \ \text{A}_4 = 0.02 \\ &6. \end{aligned}$
1243.9 <i>3</i>	5.7 3	2455.9	(4+)	1212.02	2+	E2	0.000819 12	$\begin{aligned} &\alpha = 0.000819 \ 12; \ \alpha(\mathrm{K}) = 0.000702 \ 10; \\ &\alpha(\mathrm{L}) = 8.47 \times 10^{-5} \ 12; \ \alpha(\mathrm{M}) = 1.652 \times 10^{-5} \ 24; \\ &\alpha(\mathrm{N}+) = 1.653 \times 10^{-5} \\ &\alpha(\mathrm{N}) = 3.11 \times 10^{-6} \ 5; \ \alpha(\mathrm{O}) = 2.68 \times 10^{-7} \ 4; \end{aligned}$
								α (IPF)=1.316×10 ⁻⁵ <i>19</i> Mult.: α (K)exp=0.67×10 ⁻³ <i>12</i> ; A ₂ =0.31 <i>2</i> , A ₄ =-0.06 <i>4</i> .
1334.8 2	6.4 4	3814.8	(8 ⁺)	2480.0	6+	E2	0.000729 11	α =0.000729 11; α (K)=0.000608 9; α (L)=7.30×10 ⁻⁵ 11; α (M)=1.423×10 ⁻⁵ 20; α (N+)=3.37×10 ⁻⁵ 5
								$\alpha(N)=2.68\times10^{-6} 4; \ \alpha(O)=2.32\times10^{-7} 4; \alpha(IPF)=3.08\times10^{-5} 5 Mult.: \ \alpha(K)exp=0.59\times10^{-3} 10; \ A_2=0.35 2,$
1397.0 5	7.8 4	5332.4	11-	3935.3	9-	E2	0.000684 10	$\begin{array}{l} A_{4} = -0.01 \ 5. \\ \alpha = 0.000684 \ 10; \ \alpha(\mathrm{K}) = 0.000555 \ 8; \\ \alpha(\mathrm{L}) = 6.64 \times 10^{-5} \ 10; \ \alpha(\mathrm{M}) = 1.295 \times 10^{-5} \ 19; \\ \alpha(\mathrm{N}+) = 5.02 \times 10^{-5} \ 8 \\ \alpha(\mathrm{N}) = 2.44 \times 10^{-6} \ 4; \ \alpha(\mathrm{O}) = 2.11 \times 10^{-7} \ 3; \\ \alpha(\mathrm{IPF}) = 4.75 \times 10^{-5} \ 7 \\ \mathrm{Mult.:} \ \alpha(\mathrm{K}) \exp = 0.56 \times 10^{-3} \ 14; \ \mathrm{A}_{2} = 0.38 \ 3, \\ \mathrm{A}_{4} = -0.08 \ 4. \end{array}$
								Mult.: α (K)exp=0.56×10 ⁻³ 14; A ₂ =0.38 A ₄ =-0.08 4.

[†] Additional information 1. [‡] From 1980Va13 (I γ (1212.01)=100). [#] From $\gamma(\theta)$ and α (K)exp in 1980Va13.

[@] From $\gamma(\theta)$ in 1980Va13.

 $^{110}_{50}{
m Sn}_{60}$