¹¹⁰Tc β^- decay 2000Wa07,1990Ay02

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	G. Gürdal and F. G. Kondev	NDS 113, 1315 (2012)	1-Aug-2011					

Parent: ¹¹⁰Tc: E=0.0; $J^{\pi}=(2,3^+)$; $T_{1/2}=0.900$ s 13; $Q(\beta^-)=9039$ 13; $\%\beta^-$ decay=100.0

2000Wa07: Source : ¹¹⁰Tc was produced by proton induced-fission of ²³⁸U and was extracted using online-mass separation technique at Jyvaskyla. A moving tape, 2 plastic scintillators, 3 Ge detectors and one LEPS detector were used. Measured: $\beta\gamma$, $\gamma\gamma$.

Deduced: E γ , I γ , J^{π} .

1990Ay02: ¹¹⁰Tc was produced by proton induced-fission of ²³⁸U and was extracted using online-mass separation technique at Jyvaskyla. The intensity of the separated ¹¹⁰Tc beam was 200 μ C. A moving tape was used to transport the mass-separated beam. Gamma-rays were detected using 25 % and 20 % Ge detectors. The x-rays and the low-energy γ -rays were detected by using 1.4 cm³ Ge detector. The β -rays were observed with a telescope system consisting of a 300 mm², 500 μ m thick surface barrier Δ E detector and a 6 cm thick, 7.5 cm in diameter NE102 plastic E-detector. Elli spectrometer was used to measure the internal conversion electrons.

Others: 2000Wa14, 1995Sc24, 1990Al43, 1991Jo11, 1990Al43, 1988AlZY, 1978Fr16, 1976MaYL, 1976Tr02, 1975Fe12, 1973TrZM, 1969WiZX.

¹¹⁰Ru Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	0^{+}	12.04 s 17	T _{1/2} : From Adopted Levels.
240.73 8	2+	0.50 ns 8	$T_{1/2}$: From 19958c24 using the centroid shift.
612.86 8	(2^+)	0.16 ns 8	$T_{1/2}$: From 372.1 ν (t) in 1995Sc24 using the centroid shift. Others: 0.01 ns 16 for
	(-)		613.0v(t) in 1995Sc24 using the centroid shift.
663.35 9	4+		
859.97 9	(3 ⁺)		
1084.36 12	(4^+)		
1137.33 10	(0^+)		
1396.42 8	2+		
1655.84 10	$(2,3,4^+)$		
1799.5 <i>3</i>	$(2,3,4^+)$		
1820.48 10	$(2,3,4^+)$		
1883.34 22	$(2,3,4^+)$		
1978.20 <i>19</i>	$(2^+, 3, 4^+)$		
2003.57 22	$(2,3,4^+)$		
2042.38 14	(2,3,4)		
2047.02 23	$(1,2^{+})$		
2085.27 13	$(2,3,4^+)$		
2143.1 <i>3</i>	$(1^+, 2, 3, 4^+)$		
2152.70 18	$(2,3,4^+)$		
2204.6 4	$(2,3,4^+)$		
2266.3 4	$(2,3,4^{+})$		
2337.9 4	$(2^+,3,4^+)$		
2366.9 5	$(2,3,4^+)$		
2413.02 25			
2419.6 4	$(1,2^+)$		
2491.4 6	$(2,3,4^{+})$		
2552.04 23	$(1,2^{+})$		
2573.87	$(2,3,4^{+})$		
2942.8 4	(3)		
3000.07 23	$(1,2^{+})$		
2019.5 8	$(2,3,4^{+})$		
30/2.23	(2,3,4)		
3091.39 14			

¹¹⁰Tc β^- decay 2000Wa07,1990Ay02 (continued)

¹¹⁰Ru Levels (continued)

 † From a least-square fit to $E_{\gamma}.$

[‡] From Adopted Levels.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger \#}$	$\log ft^{\ddagger}$	Comments
(5948 13)	3091.39	1.23 23	6.41 9	av E β =2662.1 63
(5967 13)	3072.2	2.92 23	6.05 4	av E β =2671.3 63
(6020 13)	3019.5	0.77 16	6.64 9	av E β =2696.5 63
(6033 13)	3006.07	2.45 25	6.14 5	av E β =2703.0 63
(6096 13)	2942.8	0.38 7	6.97 8	av E β =2733.2 63
(6465 13)	2573.8	0.75 11	6.79 7	av E β =2909.9 63
(6487 13)	2552.04	0.34 7	7.14 9	av E β =2920.3 63
(6548 13)	2491.4	1.23 16	6.60 <i>6</i>	av E β =2949.3 63
(6619 13)	2419.6	0.41 6	7.10 7	av E β =2983.7 63
(6626 13)	2413.02	0.69 16	6.88 10	av $E\beta = 2986.8 \ 63$
(6672 13)	2366.9	1.53 16	6.54 5	av $E\beta = 3008.9 \ 63$
(6701 13)	2337.9	0.60 10	6.96 8	av E β =3022.8 63
(6773 13)	2266.3	0.92 8	6.79 4	av $E\beta = 3057.1 \ 63$
(6834 13)	2204.6	0.67 9	6.95 6	av E β =3086.6 63
(6886 13)	2152.70	3.4 4	6.26 6	av $E\beta = 3111.4 \ 63$
(6896 13)	2143.1	0.77 8	6.91 5	av E β =3116.0 63
(6954 13)	2085.27	2.91 25	6.35 4	av Eβ=3143.7 63
(6992 13)	2047.02	4.3 7	6.19 8	av E β =3162.0 63
(6997 13)	2042.38	1.30 16	6.71 6	av E β =3164.2 63
(7035 13)	2003.57	2.22 23	6.49 5	av E β =3182.8 63
(7061 13)	1978.20	1.61 18	6.63 5	av E β =3194.9 63
(7156 13)	1883.34	1.00 8	6.87 4	av E β =3240.3 63
(7219 13)	1820.48	4.7 7	6.21 7	av E β =3270.3 63
(7240 13)	1799.5	1.30 16	6.78 <i>6</i>	av E β =3280.4 63
(7383 13)	1655.84	2.0 4	6.63 9	av E β =3349.1 63
(7643 13)	1396.42	5.0 7	6.30 7	av E β =3473.1 63
(7955 13)	1084.36	1.04 8	7.06 4	av E β =3622.2 63
(8179 13)	859.97	8.5 6	6.20 4	av E β =3729.4 62
(8376 13)	663.35	3.0 4	6.70 <i>6</i>	av E β =3823.3 62
(8426 13)	612.86	18.3 11	5.93 <i>3</i>	av E β =3847.4 62
(8798 13)	240.73	23.3 11	5.907 22	av E β =4024.9 62

[†] From intensity balances and the level scheme by the evaluators. Since the decay scheme suffers from pandemonium, values should be considered as tentative.

[±] Since the decay scheme is incomplete (pandemonium), the values are tentative.

[#] Absolute intensity per 100 decays.

 $\gamma(^{110}\text{Ru})$

Iy normalization: From Σ Ti(g.s.)=100. β^- feeding to the $J^{\pi} = 0^+$ g.s. is assumed to be negligible.

E _γ ‡	I_{γ} ^{‡@}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	α^{\dagger}	Comments
164.7 <i>1</i> 196.6 <i>1</i>	2.2 <i>4</i> 0.23 <i>3</i>	1820.48 859.97	$(2,3,4^+)$ (3 ⁺)	1655.84 (2,3,4 663.35 4 ⁺	[M1]	0.0490	α (K)=0.0428 6; α (L)=0.00508 8; α (M)=0.000934 14; α (N+)=0.0001589 23 α (N)=0.0001510 22; α (O)=7.90×10 ⁻⁶ 12

¹¹⁰ Tc β^- decay 2000Wa07,1990Ay02 (continued)								
$\gamma(^{110}\text{Ru})$ (continued)								
E _γ ‡	Ι _γ ‡@	E _i (level)	J_i^π	E_{f}	J_f^π	Mult. [#]	$lpha^{\dagger}$	Comments
221.9 <i>1</i> 224.5 5	1.70 <i>20</i> 0.017 <i>1</i>	2042.38 1084.36	(2,3,4) (4 ⁺)	1820.48 859.97	(2,3,4 ⁺) (3 ⁺)	[M1]	0.0345	α (K)=0.0302 5; α (L)=0.00357 6; α (M)=0.000656 10; α (N+)=0.0001117 17
240.7 1	100	240.73	2+	0.0	0+	E2	0.0569	$\begin{array}{l} \alpha(\mathrm{N}) = 0.0001062 \ 17; \ \alpha(\mathrm{O}) = 5.57 \times 10^{-6} \ 9 \\ \alpha(\mathrm{K}) = 0.0485 \ 7; \ \alpha(\mathrm{L}) = 0.00686 \ 10; \\ \alpha(\mathrm{M}) = 0.001267 \ 18; \\ \alpha(\mathrm{N}+) = 0.000206 \ 3 \end{array}$
247.1 <i>1</i>	3.1 3	859.97	(3 ⁺)	612.86	(2+)	[M1]	0.0269	$\begin{aligned} &\alpha(N) = 0.000198 \ 3; \ \alpha(O) = 7.97 \times 10^{-6} \ 12 \\ &\alpha(K) = 0.0235 \ 4; \ \alpha(L) = 0.00278 \ 4; \\ &\alpha(M) = 0.000510 \ 8; \\ &\alpha(N+) = 8.68 \times 10^{-5} \ 13 \end{aligned}$
259.2 1	0.21 1	1396.42	2+	1137.33	(0+)	[E2]	0.0441	$\alpha(N)=8.25\times10^{-5} 12; \ \alpha(O)=4.33\times10^{-6} 6 \\ \alpha(K)=0.0377 6; \ \alpha(L)=0.00523 8; \\ \alpha(M)=0.000965 14; \\ \alpha(N+)=0.0001576 23 \\ \alpha(N+)=0.0$
366.0 <i>1</i> 372.1 <i>1</i>	0.90 <i>20</i> 23.7 <i>10</i>	2413.02 612.86	(2+)	2047.02 240.73	(1,2 ⁺) 2 ⁺	(M1+E2)	0.0114 <i>19</i>	$\alpha(\mathbf{K})=0.0001514\ 22;\ \alpha(\mathbf{O})=6.24\times10^{-6}\ 9$ $\alpha(\mathbf{K})=0.0099\ 16;\ \alpha(\mathbf{L})=0.0012\ 3;\alpha(\mathbf{M})=0.00023\ 5;\ \alpha(\mathbf{N}+)=3.8\times10^{-5}\ 8$
421.0 5 422.6 <i>1</i>	0.319 <i>9</i> 6.9 <i>4</i>	1084.36 663.35	(4 ⁺) 4 ⁺	663.35 240.73	4 ⁺ 2 ⁺	E2	0.0089 13	$\alpha(N)=3.6\times10^{-5} 7; \ \alpha(O)=1.74\times10^{-6} 22$ $\alpha(K)=0.00769 \ 11; \ \alpha(L)=0.000971 \ 14; \alpha(M)=0.000178 \ 3; \alpha(N+)=2.97\times10^{-5} 5 \alpha(N)=2.84\times10^{-5} 4; \ \alpha(O)=1.325\times10^{-6} $
424.2 <i>I</i> 471.5 <i>I</i>	4.4 7 0.63 8	1820.48 1084.36	(2,3,4 ⁺) (4 ⁺)	1396.42 612.86	2 ⁺ (2 ⁺)	[E2]	0.0064 9	α (K)=0.00552 8; α (L)=0.000686 10; α (M)=0.0001261 18; α (N+)=2.11×10 ⁻⁵ 3
536.3 1	0.24 5	1396.42	2+	859.97	(3+)	[M1]	0.0039 6	$\begin{array}{l} \alpha(\mathrm{N})=2.01\times10^{-5} \ 3; \ \alpha(\mathrm{O})=9.58\times10^{-7} \ 14 \\ \alpha(\mathrm{K})=0.00345 \ 5; \ \alpha(\mathrm{L})=0.000398 \ 6; \\ \alpha(\mathrm{M})=7.29\times10^{-5} \ 11; \\ \alpha(\mathrm{N}+)=1.245\times10^{-5} \ 18 \\ \alpha(\mathrm{N})=1.182\times10^{-5} \ 17; \ \alpha(\mathrm{O})=6.30\times10^{-7} \\ \alpha(\mathrm{O})=0.00000000000000000000000000000000000$
612.9 <i>1</i>	19.0 6	612.86	(2 ⁺)	0.0	0+	[E2]	0.0030 5	α (K)=0.00262 4; α (L)=0.000315 5; α (M)=5.78×10 ⁻⁵ 8; α (N+)=9.73×10 ⁻⁶ 14
619.2 <i>1</i>	15.0 5	859.97	(3+)	240.73	2+	[M1]	0.0028 4	$\alpha(N)=9.27\times10^{-6} I3; \ \alpha(O)=4.60\times10^{-7} 7$ $\alpha(K)=0.00247 4; \ \alpha(L)=0.000283 4; $ $\alpha(M)=5.18\times10^{-5} 8; $ $\alpha(N+)=8.85\times10^{-6} I3$
733.1 1	0.83 6	1396.42	2+	663.35	4+	[E2]	0.0019 3	$\begin{aligned} &\alpha(N) = 8.41 \times 10^{-6} \ 12; \ \alpha(O) = 4.49 \times 10^{-7} \ 7 \\ &\alpha(K) = 0.001633 \ 23; \ \alpha(L) = 0.000193 \ 3; \\ &\alpha(M) = 3.54 \times 10^{-5} \ 5; \\ &\alpha(N+) = 5.99 \times 10^{-6} \ 9 \\ &\alpha(N) = 5.70 \times 10^{-6} \ 8; \ \alpha(O) = 2.89 \times 10^{-7} \ 4 \end{aligned}$
783.6 <i>1</i> 796.1 2 843.6 2	0.67 9 1.10 <i>10</i> 0.39 5	1396.42 1655.84 1084.36	2 ⁺ (2,3,4 ⁺) (4 ⁺)	612.86 859.97 240.73	(2 ⁺) (3 ⁺) 2 ⁺	[E2]	0.0013 19	α (K)=0.001153 <i>17</i> ; α (L)=0.0001349 <i>19</i> ; α (M)=2.47×10 ⁻⁵ <i>4</i> ;

Continued on next page (footnotes at end of table)

 $^{110}_{44}$ Ru₆₆-4

¹¹⁰ Tc $β^-$ decay 2000Wa07,1990Ay02 (continued)								
γ ⁽¹¹⁰ Ru) (continued)								
Eγ‡	Ι _γ ‡@	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. [#]	α^{\dagger}	Comments
952.4.2	0.40.7	2006.07	(1.2 ⁺)	2152 70	$(2, 2, 4^{+})$			α (N+)=4.19×10 ⁻⁶ α (N)=3.99×10 ⁻⁶ 6; α (O)=2.05×10 ⁻⁷ 3
855.4 2 896.7 1	2.40 <i>10</i>	1137.33	(1,2) (0^+)	240.73	(2,3,4) 2 ⁺	[E2]	0.0011 <i>16</i>	α (K)=0.000997 <i>14</i> ; α (L)=0.0001161 <i>17</i> ; α (M)=2.13×10 ⁻⁵ <i>3</i> ; α (N+)=3.61×10 ⁻⁶ α (N)=3.43×10 ⁻⁶ <i>5</i> ; α (O)=1.771×10 ⁻⁷ 25
960.5 <i>1</i> 1025.2 <i>3</i>	0.90 <i>10</i> 1.11 <i>20</i>	1820.48 3072.2	$(2,3,4^+)$ $(2,3,4^+)$	859.97 2047.02	(3 ⁺) (1,2 ⁺)			 I_γ: Uncertainty of 0.020 quoted in table I of 2000Wa07 is probably a misprint. The evaluator has increased it by a factor of 10.
1043.6 <i>5</i> 1155.8 <i>1</i> 1186.6 <i>3</i>	0.75 6 6.9 4 1.70 20	1655.84 1396.42 1799.5	$(2,3,4^+)$ 2^+ $(2,3,4^+)$	612.86 240.73 612.86	(2^+) 2^+ (2^+)			E_{γ} : Assigned to depopulate 2047 keV
1225.3 <i>I</i> 1270.9 <i>I</i> 1282.3 <i>3</i> 1292.9 <i>2</i> 1314.7 <i>2</i> 1390.7 <i>2</i>	3.1 3 1.6 3 0.54 7 0.70 10 1.30 20 2.9 3	2085.27 3091.39 2419.6 2152.70 1978.20 2003.57	$(2,3,4^{+})$ $(1,2^{+})$ $(2,3,4^{+})$ $(2^{+},3,4^{+})$ $(2,3,4^{+})$	859.97 1820.48 1137.33 859.97 663.35 612.86	$(3^+) (2,3,4^+) (0^+) (3^+) 4^+ (2^+)$			level in 1990Ay02.
1396.4 2	2.00 20	1396.42	2+	0.0	0+	[E2]	0.0005 7	$\alpha(K)=0.000380 \ 6; \ \alpha(L)=4.31\times10^{-5} \ 6; \\ \alpha(M)=7.89\times10^{-6} \ 11; \\ \alpha(N+)=5.06\times10^{-5} \ 8 \\ \alpha(N)=1.277\times10^{-6} \ 18; \ \alpha(O)=6.78\times10^{-8} \\ 10; \ \alpha(IPE)=4 \ 93\times10^{-5} \ 7 $
1414.7 2 1415.1 <i>1</i> 1539.5 <i>3</i>	0.45 9 3.00 20 4.2 5	2552.04 1655.84 2152.70	$(1,2^+)$ $(2,3,4^+)$ $(2,3,4^+)$	1137.33 240.73 612.86	(0^+) 2 ⁺ (2^+)			
1579.0 2 1642.6 2 1674.6 4 1737.8 3 1806.4 3 1844.5 3 1868.6 5 1902.4 3 1963.9 4 2025.6 4 2046.8 4 2096.8 7 2126.2 5 2212.2 5 2250.6 6 2333.0 7 2393.0 7 2406.6 8 2459.4 8	$\begin{array}{c} 1.90 \ 20 \\ 1.30 \ 10 \\ 0.36 \ 7 \\ 0.80 \ 10 \\ 3.8 \ 3 \\ 0.70 \ 10 \\ 0.60 \ 9 \\ 1.00 \ 10 \\ 0.87 \ 11 \\ 1.20 \ 10 \\ 3.8 \ 7 \\ 0.49 \ 8 \\ 0.42 \ 11 \\ 2.00 \ 20 \\ 0.80 \ 10 \\ 1.60 \ 20 \\ 0.98 \ 14 \\ 2.2 \ 3 \\ 1.00 \ 20 \\ 1.90 \ 20 \end{array}$	$\begin{array}{c} 1820.48\\ 1883.34\\ 2337.9\\ 1978.20\\ 2047.02\\ 2085.27\\ 3006.07\\ 2143.1\\ 2204.6\\ 2266.3\\ 2047.02\\ 2942.8\\ 2337.9\\ 2366.9\\ 3072.2\\ 2491.4\\ 2573.8\\ 3006.07\\ 3019.5\\ 3072.2\\ \end{array}$	$\begin{array}{c} (2,3,4^+) \\ (2,3,4^+) \\ (2^+,3,4^+) \\ (1,2^+) \\ (1,2^+) \\ (1,2^+) \\ (1,2^+) \\ (1,2^+) \\ (1,2^+) \\ (2,3,4^+) \\ (2,3,4^+) \\ (2,3,4^+) \\ (2,3,4^+) \\ (2,3,4^+) \\ (2,3,4^+) \\ (2,3,4^+) \\ (2,3,4^+) \\ (1,2^+) \\ (2,3,4^+) \\$	$\begin{array}{c} 240.73\\ 612.86\\ 612.86\\ 612.86\\ 612.86\end{array}$	2^{+} 2^{+} 4^{+} 2^{+} 2^{+} 2^{+} 2^{+} 2^{+} 2^{+} 2^{+} (3^{+}) 2^{+} 2^{+} (3^{+}) 2^{+} (2^{+}) (2^{+}) (2^{+})			E_{γ} : Least-square fit gives 1579.8 <i>1</i> keV.

[†] Additional information 1.

110 Tc β^- decay 2000Wa07,1990Ay02 (continued)

 $\gamma(^{110}\text{Ru})$ (continued)

[‡] From 2000Wa07, unless otherwise stated.
[#] From ¹¹⁰Ru adopted gammas.
[@] For absolute intensity per 100 decays, multiply by 0.77 *13*.

110 Tc β^- decay 2000Wa07,1990Ay02

6

Decay Scheme (continued)

