²⁴⁸Cm SF decay 1994Sh26

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	G. Gürdal and F. G. Kondev	NDS 113, 1315 (2012)	1-Aug-2011				

Parent: ²⁴⁸Cm: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=348\times10^3$ y 6; %SF decay=8.39 16

1994Sh26: Source: $\approx 2\mu$ Ci ²⁴⁸Cf. Prompt γ -rays were detected using the EUROGAM array consisting of 45 Compton suppressed Ge and 5 LEPS detectors. Measured: $E\gamma$, $I\gamma$, $\gamma\gamma\gamma$ (2×10⁹ triple- γ or higher fold coincident events). Deduced: Levels, J^{π} . Other: 1999SmZX.

¹¹⁰Ru Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	0+	12.04 s 17	$T_{1/2}$: From Adopted Levels.
240.60 [#] 24	2^{+}		Q: -0.74 9 from lifetime measurements using Doppler-profile method in 1999SmZX.
612.70 [@] 24	(2^{+})		
663.2 [#] 3	4+		
859.8 [@] 3	(3 ⁺)		
1084.7 [@] 3	(4 ⁺)		
1238.8 [#] 4	6+		
1375.5 [@] 3	(5 ⁺)		
1684.6 [@] 4	(6+)		
1944.0 [#] 5	(8 ⁺)		
$2020.9^{\textcircled{0}}{5}$	(7^{+})		
2398.1 [@] 11	(8+)		
2758.7 <mark>#</mark> 6	(10^{+})		
2776.8 [@] 6	(9 ⁺)		

 † From a least-square fit to $E_{\gamma}.$

[±] From 1994Sh26, based on $\gamma\gamma(\theta)$, systematics of low-lying collective states in Ru isotopes and the observed decay patterns.

Band(A): g.s. band.

[@] Band(B): γ band.

$\gamma(^{110}\text{Ru})$

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]
196.6 <i>3</i>	0.41	859.8	(3^{+})	663.2	4+	
224.9 <i>3</i>	0.4	1084.7	(4^{+})	859.8	(3^{+})	
240.6 3	100	240.60	2+	0.0	0^{+}	E2
247.1 3	5.7	859.8	(3^{+})	612.70	(2^{+})	
290.8 3	0.9	1375.5	(5^{+})	1084.7	(4^{+})	
309.1 3	0.5	1684.6	(6^{+})	1375.5	(5^{+})	
372.1 3	11.7	612.70	(2^{+})	240.60	2+	
421.5 3	5.5	1084.7	(4^{+})	663.2	4+	
422.6 3	54.6	663.2	4+	240.60	2+	E2
445.8 <i>3</i>	0.6	1684.6	(6^{+})	1238.8	6+	
472.0 3	10.8	1084.7	(4^{+})	612.70	(2^{+})	
515.7 3	21.4	1375.5	(5^{+})	859.8	(3^{+})	
575.6 <i>3</i>	40.6	1238.8	6+	663.2	4+	E2
599.9 <i>3</i>	6.2	1684.6	(6^{+})	1084.7	(4^{+})	
612.7 <i>3</i>	10.3	612.70	(2^{+})	0.0	0^{+}	

²⁴⁸Cm SF decay 1994Sh26 (continued)

$\gamma(^{110}\text{Ru})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
619.2 3	23.3	859.8	(3^{+})	240.60	2+	713.5 3	2.0	2398.1	(8^{+})	1684.6	(6^{+})
645.4 <i>3</i>	9.2	2020.9	(7^{+})	1375.5	(5^{+})	755.9 <i>3</i>	1.9	2776.8	(9^{+})	2020.9	(7^{+})
705.2 3	19.4	1944.0	(8^{+})	1238.8	6+	814.7 <i>3</i>	3.6	2758.7	(10^{+})	1944.0	(8^{+})
712.3 3	3.8	1375.5	(5 ⁺)	663.2	4+	844.1 <i>3</i>	1.7	1084.7	(4 ⁺)	240.60	2+

[†] From the level energy differences in 1994Sh26. $\Delta E\gamma$ estimated by the evaluator. [‡] From 1994Sh26. The uncertainties vary from 20% for weak transitions to 3% for strong transitions. [#] From $\gamma\gamma(\theta)$ in 1994Sh26, but A₂ and A₄ values were not given by the authors.

 $^{110}_{44}\mathrm{Ru}_{66}$

²⁴⁸Cm SF decay 1994Sh26

¹¹⁰₄₄Ru₆₆