$(HI,xn\gamma)$ 2003Fo09

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	G. Gürdal and F. G. Kondev	NDS 113, 1315 (2012)	1-Aug-2011				

2003Fo09: ¹⁷³Yb(²⁴Mg,X γ); E = 134.5 MeV and 1 mg/cm² ¹⁷³Yb target consisting of isotopically enriched (95%) material, evaporated on a 7 mg/cm² Au backing. ¹⁷⁶Yb(²³Na,X γ); E=129 MeV and 1 mg/cm² ¹⁷⁶Yb target consisting of isotopically enriched (98%) material, evaporated on a 10 mg/cm² Au backing. ²⁰⁸Pb(¹⁸O,X γ); E=91 MeV and a 45 mg/cm² Pb target. The Gammasphere array (LBNL) comprised of 92 Compton-suppressed large volume HPGe detectors (for the ¹⁹⁷Pb compound nucleus (CN) experiment) and 100 HPGE detectors for the ¹⁹⁹Tl and ²²⁶Th CN experiments) were used. The four-fold coincidence events ($\approx 2.3 \times 10^9$ for ¹⁹⁷Pb CN experiment, $\approx 10^{10}$ for ¹⁹⁹Tl CN experiment, and $\approx 2.5 \times 10^9$ for ²²⁶Th CN experiment) were recorded. Measured E γ , I γ , $\gamma\gamma$, and $\gamma\gamma\gamma$.

The level scheme differs from the adopted one. Specifically, the 159.1+X level here is equivalent to 284.0+X in the adopted, and the authors in 2003Fo09 missed the low-energy transitions at the bottom of the band.

¹¹⁰Rh Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0+x		Additional information 1.
159.1+x [#] 5	(8 ⁻)	E(level): x<296 (2003Fo09) from systematics of 8^- states in 100 Rh, 102 Rh and 104 Rh.
345.6+x [@] 7	(9-)	
645.2+x [#] 7	(10 ⁻)	
903.0+x [@] 7	(11^{-})	
$1265.3 + x^{\#} 8$	(12 ⁻)	
1640.2+x [@] 8	(13 ⁻)	

[†] From least-squares fit to E_{γ} 's. $\Delta E \gamma = 0.5$ keV was assumed by the evaluators.

[‡] From 2003Fo09, based on systematics in lighter odd-odd Rh isotopes.

[#] Band(A): $\pi g_{9/2} \otimes \nu h_{11/2}$, $\alpha = 0$.

[@] Band(a): $\pi g_{9/2} \otimes \nu h_{11/2}$, $\alpha = 1$.

$\gamma(^{110}\text{Rh})$

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$
159.1		159.1+x	(8-)	0+x
186.6	10	345.6+x	(9 ⁻)	159.1+x (8 ⁻)
257.8	35.3 60	903.0+x	(11^{-})	645.2+x (10 ⁻)
299.5	61.7 70	645.2+x	(10^{-})	345.6+x (9 ⁻)
362.2	16.9 10	1265.3+x	(12^{-})	903.0+x (11 ⁻)
374.8	5.8 7	1640.2+x	(13^{-})	$1265.3 + x (12^{-})$
486.0	5.7 6	645.2+x	(10^{-})	159.1+x (8 ⁻)
557.5	9.2 9	903.0+x	(11^{-})	345.6+x (9 ⁻)
620.1	3.6 4	1265.3+x	(12^{-})	645.2+x (10 ⁻)
737.3	4.1 5	1640.2+x	(13-)	903.0+x (11 ⁻)

[†] From 2003Fo09. [‡] From ²⁰⁸Pb(¹⁸O,Xγ) in 2003Fo09.

(HI,xnγ) 2003Fo09

 $^{110}_{45}\text{Rh}_{65}$

$^{110}_{45} \mathrm{Rh}_{65}$

3