²⁵²Cf SF decay 2004Lu03

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	G. Gürdal and F. G. Kondev	NDS 113, 1315 (2012)	1-Aug-2011				

 Parent: ²⁵²Cf: E=0; J^π=0⁺; T_{1/2}=2.645 y 8; %SF decay=3.086 8
2004Lu03: ≈62µCi ²⁵²Cf source was placed between two iron foils with a thickness of 10mg/cm² and in the center of Gamma sphere array (at LBNL), consisting of 102 Compton-suppressed Ge detectors. More than 5.7×10¹¹ triple-γ or higher coincident events were collected. Measured: $E\gamma$, $I\gamma$, $\gamma\gamma\gamma$.

¹¹⁰Rh Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0+x 58.9+x 5	(5^+) (6 ⁻)		Additional information 1.
124.7+x [#] 7	(7 ⁻)	16 ns 4	$T_{1/2}$: From 65.8 γ (t) in 2004Lu03. However, this level is assigned as a collective, band-member in the Adopted Levels, and hence, the lifetime should originate from another state.
284.0+x [@] 8	(8 ⁻)		
470.8+x [#] 8	(9-)		
770.7+x [@] 9	(10 ⁻)		
1028.7+x [#] 9	(11^{-})		
1391.0+x [@] 9	(12 ⁻)		
1766.2+x [#] 10	(13 ⁻)		

 † From a least-square fit to $E_{\gamma}{'}s.~\Delta E\gamma$ = 0.5 keV was assumed by the evaluator.

[‡] From 2004Lu03. [#] Band(A): (7⁻) band,α=1.

[@] Band(a): (8⁻) band, α =0.

$\gamma(^{110}\text{Rh})$

E _γ ‡	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{\dagger}	Comments
58.9	>180	58.9+x	(6 ⁻)	0+x	(5 ⁺)	E1	0.663	α (K)=0.576 8; α (L)=0.0717 10; α (M)=0.01320 19; α (N+)=0.00220 3
								α (N)=0.00212 3; α (O)=8.54×10 ⁻⁵ 12
(5.0	. 120	1047.	(7 -)	59.0	(f-)	M1 . E2	2 (25	Mult.: $\alpha(\exp)$ deduced from intensity balance.
65.8	>130	124./+X	(7)	58.9+X	(6)	MI+E2	3.6 25	$\alpha(K) = 2.6 I/; \alpha(L) = 0.8 /; \alpha(M) = 0.15 I4;$ $\alpha(N+) = 0.024 20$
								$\alpha(N)=0.023\ 20;\ \alpha(O)=0.00038\ 20$
								Mult.: From $\alpha(\exp)=1.49$ 5, using intensity balance.
159.3	100	284.0+x	(8 ⁻)	124.7+x	(7^{-})	M1+E2	0.17 8	α (K)=0.15 7; α (L)=0.023 13; α (M)=0.0043 25;
								α (N+)=0.0007 4
								$\alpha(N)=0.0007 4; \alpha(O)=2.4\times10^{-3} 9$
								Mult.: From $\alpha(\exp)=0.09$ 5, using intensity balance.
186.8	53.1	470.8+x	(9 ⁻)	284.0+x	(8^{-})			
258.0	13.1	1028.7+x	(11^{-})	770.7+x	(10^{-})			
299.9	23.9	770.7+x	(10^{-})	470.8+x	(9 ⁻)			
346.1	1.3	470.8+x	(9 ⁻)	124.7+x	(7^{-})			
362.3	7.9	1391.0+x	(12^{-})	1028.7+x	(11^{-})			
375.3	2.8	1766.2+x	(13^{-})	1391.0+x	(12^{-})			
486.7	5.6	770.7+x	(10-)	284.0+x	(8-)			
557.9	5.9	1028.7+x	(11 ⁻)	470.8+x	(9 ⁻)			

Continued on next page (footnotes at end of table)

²⁵²Cf SF decay 2004Lu03 (continued)

$\gamma(^{110}\text{Rh})$ (continued)

Eγ‡	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
620.3	10.9	1391.0+x	(12 ⁻)	770.7+x	(10 ⁻)
737.5	1.4	1766.2+x	(13 ⁻)	1028.7+x	(11^{-})

[†] Additional information 2.[‡] From 2004Lu03.

 $^{110}_{45}\text{Rh}_{65}$

 $^{110}_{45}\text{Rh}_{65}$

4