¹¹⁰Rh β^- decay (28.0 s) 1999Lh01,1988Ay02

	His	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	G. Gürdal and F. G. Kondev	NDS 113, 1315 (2012)	1-Aug-2011

Parent: ¹¹⁰Rh: E=0.0+y; J^{π} =(6⁺); T_{1/2}=28.0 s 13; Q(β^{-})=5505 18; % β^{-} decay=100.0

1999Lh01: Source: ²³⁸U(p,F), E(p) = 25 MeV. The parent ¹¹⁰Rh was mass separated on-line at the IGISOL facility. The ion beams of the separated activities were implanted on a moving tape. The γ -rays were detected by four Ge detectors of the EUROGAM phase-1 type. They were positioned in a plane around the collection spot at a distance of 10cm and at angles of 80°, 110° and 155° with respect to each other. The beta-rays were detected by two 0.9mm thick plastic scintillator detectors positioned at one on each side of the source. Measured: E γ , $\gamma\gamma$, $\beta\gamma$ t. Deduced: ¹¹⁰Pd levels, J^{π} .

1988Ay02: Source: ²³⁸U(p,F), E(p) = 20 MeV. IGISOL on-line mass separator facility was used to separate the parent ¹¹⁰Rh nucleus. The ¹¹⁰Rh production rate was $\approx 2 \times 10^3$ ions/ μ C. The ion beams of the separated activities were implanted on a 6 mm wide moving tape. The γ -rays were detected by 25% and 23% coaxial Ge detectors. A 1.4 cm³ planar Ge detector was used to detect the low-energy γ -rays. The conversion electrons were detected by a 3 mm thick, LN-cooled Si(Li) detector. β -rays were detected with a 1 mm thick NE102 plastic Δ E detector in a combination with a 6.0 cm long and 7.5 cm in diameter NEE102 plastic scintillator. Measured: E γ , I γ , $\gamma\gamma$, $\beta\gamma$, ce. Deduced: Levels, Mult., J^{π}.

Others: 2000Wa14, 1973FrYO, 1970Pi01 and 1970Wa28.

¹¹⁰Pd Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	J ^{π‡}
0.0	0^{+}	1212.10 21	(3^{+})	1987.21 24	(6^{+})
373.80 20	2+	1398.33 22	4+	2260.6 3	(5^+)
813.60 18	2+	1574.0 <i>3</i>	6+	2447.8 <i>4</i>	(2^{+})
920.66 21	4+	1900.07 22	(4^{+})	2790.64 24	(6^{+})
				2804.95 23	(6^{+})

[†] From least-squares fit to $E\gamma$.

[‡] From Adopted Levels.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger \#}$	$\log ft^{\dagger\ddagger}$	Comments
(2700 18)	2804.95	45 4	4.88 5	av Eβ=1112.8 84
(2714 18)	2790.64	22.9 20	5.19 5	av E β =1119.5 85
(3244 18)	2260.6	3.4 19	6.34 25	av $E\beta = 1368.4 85$
(3518 18)	1987.21	0.9 7	7.1 4	av $E\beta = 1497.6 \ 86$
(3605 18)	1900.07			<i>Iβ</i> ⁻ : a significant feeding is calculated to this level from intensity balance considerations, which is inconsistent with the corresponding transition being second forbidden. This is most likely due to pandemonium effect.
(3931 18)	1574.0	7.2 21	6.38 13	av E β =1693.5 86

 † From intensity balances and the level scheme by the evaluators.

[‡] Since the energy of the isomeric level is not known and the decay scheme is incomplete, the values are approximate.

[#] Absolute intensity per 100 decays.

$\gamma(^{110}\text{Pd})$

I γ normalization: From Σ Ti(g.s.)=100. ¹¹⁰Rh (J^{π} =(6⁺)) to ¹¹⁰Pd (J^{π} =0⁺) g.s. β^{-} feeding is assumed to be negligible.

E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger a}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{\&}$	α^{\dagger}	Comments
291.6 [#] 2	2.0 4	1212.10	(3+)	920.66	4+	[M1]		0.0213	$\alpha(K)=0.0186 \ 3; \ \alpha(L)=0.00222 \ 4; \ \alpha(M)=0.000417 \ 6; \ \alpha(N+)=7.03\times10^{-5} \ 10 \ \alpha(N)=7.03\times10^{-5} \ 10$
373.8 2	100 4	373.80	2+	0.0	0+	E2		0.01448	$\alpha(N)=7.05\times10^{-1.05}$ $\alpha(K)=0.01245$ 18; $\alpha(L)=0.001661$ 24; $\alpha(M)=0.000314$ 5; $\alpha(N+)=5.17\times10^{-5}$ 8 $\alpha(N)=5.17\times10^{-5}$ 8 Mult.: From adopted gammas. I_{γ} : The authors give 100 38 (1999Lh01), but the quoted
398.6 2	22.2 12	1212.10	(3+)	813.60	2+	[M1]		0.00969	uncertainty may be a typo. $\alpha(K)=0.00847 \ I2; \ \alpha(L)=0.001002 \ I4; \ \alpha(M)=0.000188 \ 3; \ \alpha(N+)=3.17\times10^{-5} \ 5 \ \alpha(N)=3.17\times10^{-5} \ 5$
439.8 2	32.9 <i>21</i>	813.60	2+	373.80	2+	E2+M1	-4.6 +19-12	0.00870 15	$\alpha(\mathbf{K}) = 0.00751 \ 13; \ \alpha(\mathbf{L}) = 0.000970 \ 20; \ \alpha(\mathbf{M}) = 0.000183 \ 4; \ \alpha(\mathbf{N}+) = 3.03 \times 10^{-5} \ 6 \ \alpha(\mathbf{N}) = 3.03 \times 10^{-5} \ 6 \ 5 \ \mathrm{From adopted gammas}$
477.8 2	8.1 6	1398.33	4+	920.66	4+	[M1]		0.00622	α(K)=0.00544 8; α(L)=0.000640 9; α(M)=0.0001202 17; α(N+)=2.03×10 ⁻⁵ 3 α(N)=2.03×10 ⁻⁵ 3
501.9 [#] 2	3.6 10	1900.07	(4+)	1398.33	4+	[M1]		0.00552	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00483 \ 7; \ \alpha(\mathrm{L}) = 0.000568 \ 8; \ \alpha(\mathrm{M}) = 0.0001066 \ 15; \\ &\alpha(\mathrm{N}+) = 1.80 \times 10^{-5} \ 3 \\ &\alpha(\mathrm{N}) = 1.80 \times 10^{-5} \ 3 \end{aligned}$
544.4 [#] 2	6.8 12	2804.95	(6+)	2260.6	(5+)	[M1]		0.00455	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00398 \ 6; \ \alpha(\mathbf{L}) = 0.000466 \ 7; \ \alpha(\mathbf{M}) = 8.75 \times 10^{-5} \ 13; \\ &\alpha(\mathbf{N}+) = 1.477 \times 10^{-5} \ 21 \\ &\alpha(\mathbf{N}) = 1.477 \times 10^{-5} \ 21 \end{aligned}$
546.9 2	43 3	920.66	4+	373.80	2+	E2		0.00462	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00401 \ 6; \ \alpha(\mathbf{L}) = 0.000503 \ 7; \ \alpha(\mathbf{M}) = 9.46 \times 10^{-5} \ 14; \\ &\alpha(\mathbf{N}+) = 1.576 \times 10^{-5} \ 23 \\ &\alpha(\mathbf{N}) = 1.576 \times 10^{-5} \ 23 \end{aligned}$
584.6 2	15.2 12	1398.33	4+	813.60	2+	[E2]		0.00384	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00333 \ 5; \ \alpha(\mathbf{L}) = 0.000415 \ 6; \ \alpha(\mathbf{M}) = 7.80 \times 10^{-5} \ 11; \\ &\alpha(\mathbf{N}+) = 1.300 \times 10^{-5} \ 19 \\ &\alpha(\mathbf{N}) = 1.300 \times 10^{-5} \ 19 \end{aligned}$
588.8 [#] 2	4.1 4	1987.21	(6 ⁺)	1398.33	4+	[E2]		0.00376	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00327 \ 5; \ \alpha(\mathbf{L}) = 0.000406 \ 6; \ \alpha(\mathbf{M}) = 7.64 \times 10^{-5} \ 11; \\ &\alpha(\mathbf{N}+) = 1.274 \times 10^{-5} \ 18 \\ &\alpha(\mathbf{N}) = 1.274 \times 10^{-5} \ 18 \end{aligned}$
653.3 2	18.3 <i>16</i>	1574.0	6+	920.66	4+	[E2]		0.00285	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00247 \ 4; \ \alpha(\mathbf{L}) = 0.000304 \ 5; \ \alpha(\mathbf{M}) = 5.71 \times 10^{-5} \ 8; \\ &\alpha(\mathbf{N}+) = 9.53 \times 10^{-6} \ 14 \\ &\alpha(\mathbf{N}) = 9.53 \times 10^{-6} \ 14 \end{aligned}$

					11	0 Rh β^- dec	cay (28.0 s)	1999Lh01,1988Ay02 (continued)
γ ⁽¹¹⁰ Pd) (con								d) (continued)
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	α^{\dagger}	Comments
687.7 2	32.6 24	1900.07	(4 ⁺)	1212.10	(3 ⁺)	[M1]	0.00263	$\alpha(K)=0.00230 \ 4; \ \alpha(L)=0.000268 \ 4; \ \alpha(M)=5.02\times10^{-5} \ 7; \ \alpha(N+)=8.48\times10^{-6} \ 12 \ \alpha(N)=8.48\times10^{-6} \ 12$
803.5 [#] 2	1.1 3	2790.64	(6+)	1987.21	(6+)	[M1]	0.00184	$\alpha(K)=0.001612 \ 23; \ \alpha(L)=0.000187 \ 3; \ \alpha(M)=3.50\times10^{-5} \ 5; \\ \alpha(N+)=5.91\times10^{-6} \ 9$
813.6 2	11.5 14	813.60	2+	0.0	0+	[E2]	1.63×10 ⁻³	$\alpha(N)=5.91\times10^{-5} 9$ $\alpha(K)=0.001423 \ 20; \ \alpha(L)=0.0001707 \ 24; \ \alpha(M)=3.20\times10^{-5} \ 5; \ \alpha(N+)=5.37\times10^{-6} \ 8$
817.6 ^{#} 2	2.0 6	2804.95	(6 ⁺)	1987.21	(6 ⁺)	[M1]	1.77×10^{-3}	$\alpha(N)=5.37\times10^{-5} 8$ $\alpha(K)=0.001549 22; \ \alpha(L)=0.000180 3; \ \alpha(M)=3.37\times10^{-5} 5;$ $\alpha(N+)=5.68\times10^{-6} 8$ $\alpha(N)=5.68\times10^{-6} 8$
838.2 [#] 3	23.9 19	1212.10	(3 ⁺)	373.80	2+	[M1]	1.67×10^{-3}	$\alpha(K)=0.001465\ 21;\ \alpha(L)=0.0001697\ 24;\ \alpha(M)=3.18\times10^{-5}\ 5;\ \alpha(N+)=5.37\times10^{-6}\ 8$
890.5 <i>3</i>	10.0 12	2790.64	(6 ⁺)	1900.07	(4+)	[E2]	1.31×10 ⁻³	$\alpha(\mathbf{K})=0.001148 \ 16; \ \alpha(\mathbf{L})=0.0001366 \ 20; \ \alpha(\mathbf{M})=2.56\times10^{-5} \ 4; \\ \alpha(\mathbf{N}+)=4.30\times10^{-6} \ 6 \\ \alpha(\mathbf{N})=4.30\times10^{-6} \ 6$
904.5 <i>3</i>	19.5 20	2804.95	(6 ⁺)	1900.07	(4+)	[E2]	1.27×10^{-3}	$\alpha(\mathbf{N}) = 1.50 \times 10^{-5} \text{ G}$ $\alpha(\mathbf{K}) = 0.001107 \ 16; \ \alpha(\mathbf{L}) = 0.0001315 \ 19; \ \alpha(\mathbf{M}) = 2.47 \times 10^{-5} \ 4;$ $\alpha(\mathbf{N}+) = 4.14 \times 10^{-6} \ 6$ $\alpha(\mathbf{N}) = 4.14 \times 10^{-6} \ 6$
979.2 <i>3</i>	3.2 6	1900.07	(4+)	920.66	4+	[M1]	1.18×10 ⁻³	$\alpha(\mathbf{K}) = 0.001036 \ 15; \ \alpha(\mathbf{L}) = 0.0001195 \ 17; \ \alpha(\mathbf{M}) = 2.24 \times 10^{-5} \ 4; \\ \alpha(\mathbf{N}+) = 3.78 \times 10^{-6} \ 6 \\ \alpha(\mathbf{N}) = 3.78 \times 10^{-6} \ 6 $
1048.5 [#] 3	7.8 16	2260.6	(5 ⁺)	1212.10	(3 ⁺)	[E2]	9.05×10 ⁻⁴	$\alpha(K) = 0.000792 \ 11; \ \alpha(L) = 9.31 \times 10^{-5} \ 13; \ \alpha(M) = 1.744 \times 10^{-5} \ 25; \\ \alpha(N+) = 2.93 \times 10^{-6} \ 5 \\ \alpha(N) = 2.93 \times 10^{-6} \ 5$
1049.5 <i>3</i>	1.6 6	2447.8	(2^{+})	1398.33	4+			E_{γ} : 1048.3 keV in 1988Ay02.
1086.5 [#] 3	7.0 24	1900.07	(4+)	813.60	2+	[E2]	8.37×10 ⁻⁴	$\alpha(K)=0.000732 \ 11; \ \alpha(L)=8.59\times10^{-5} \ 12; \ \alpha(M)=1.609\times10^{-5} \ 23; \ \alpha(N+)=2.71\times10^{-6} \ 4 \ \alpha(N)=2.71\times10^{-6} \ 4$
1216.5 3	2.2 6	2790.64	(6 ⁺)	1574.0	6+	[M1]	7.45×10 ⁻⁴	$\alpha(K) = 0.000647 \ 9; \ \alpha(L) = 7.42 \times 10^{-5} \ 11; \ \alpha(M) = 1.390 \times 10^{-5} \ 20; \alpha(N+) = 1.038 \times 10^{-5} \ 15 \alpha(N) = 2 \ 35 \times 10^{-6} \ 4; \ \alpha(IPE) = 8 \ 03 \times 10^{-6} \ 12$
1230.9 <i>3</i>	8.1 15	2804.95	(6+)	1574.0	6+	[M1]	7.29×10^{-4}	$\alpha(K) = 0.000631 \ 9; \ \alpha(L) = 7.24 \times 10^{-5} \ 11; \ \alpha(M) = 1.355 \times 10^{-5} \ 19; \\ \alpha(N+) = 1.220 \times 10^{-5} \ 18 \\ \alpha(N) = 2.29 \times 10^{-6} \ 4; \ \alpha(IPF) = 9.91 \times 10^{-6} \ 15$
1340.0 [#] 3	2.8 6	2260.6	(5 ⁺)	920.66	4+	[M1]	6.29×10 ⁻⁴	$\alpha(K) = 0.000527 \ 8; \ \alpha(L) = 6.03 \times 10^{-5} \ 9; \ \alpha(M) = 1.129 \times 10^{-5} \ 16; \alpha(N+) = 3.08 \times 10^{-5} \ 5 \alpha(N) = 1.91 \times 10^{-6} \ 3; \ \alpha(IPF) = 2.89 \times 10^{-5} \ 4$

From ENSDF

I

					110 Rh β^- de	ecay (28.0 s)	1999Lh01,1988Ay02 (continued)
						$\gamma(^{110}]$	Pd) (continued)
Eγ‡	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.@	α^{\dagger}	Comments
1392.1 [#] 3	9.3 10	2790.64	(6+)	1398.33 4+	[E2]	5.45×10 ⁻⁴	$\alpha(K)=0.000436\ 7;\ \alpha(L)=5.04\times10^{-5}\ 7;\ \alpha(M)=9.43\times10^{-6}\ 14;\ \alpha(N+)=4.90\times10^{-5}\ 7$ $\alpha(N)=1.588\times10^{-6}\ 23;\ \alpha(IPF)=4.74\times10^{-5}\ 7$
1406.6 3	4.7 7	2804.95	(6 ⁺)	1398.33 4+	[E2]	5.38×10^{-4}	$\alpha(K)=0.000427\ 6;\ \alpha(L)=4.93\times10^{-5}\ 7;\ \alpha(M)=9.23\times10^{-6}\ 13;\ \alpha(N+)=5.32\times10^{-5}\ 8$ $\alpha(N)=1.555\times10^{-6}\ 22;\ \alpha(IPF)=5.16\times10^{-5}\ 8$
1579.2 4	1.1 5	2790.64	(6+)	1212.10 (3 ⁺)	[M3]	1.61×10 ⁻³	$\alpha(K)=0.001393\ 20;\ \alpha(L)=0.0001670\ 24;\ \alpha(M)=3.14\times10^{-5}\ 5;\ \alpha(N+)=2.30\times10^{-5}\ 4$ $\alpha(N)=5.30\times10^{-6}\ 8;\ \alpha(IPF)=1.77\times10^{-5}\ 3$ $E_{\gamma}:\ 1577\ keV\ in\ 1988Ay02.$
1593.6 [#] 3	4.0 9	2804.95	(6 ⁺)	1212.10 (3 ⁺)	[M3]	1.58×10^{-3}	α (K)=0.001361 <i>19</i> ; α (L)=0.0001629 <i>23</i> ; α (M)=3.06×10 ⁻⁵ <i>5</i> ; α (N+)=2.43×10 ⁻⁵ <i>4</i> α (N)=5.17×10 ⁻⁶ <i>8</i> ; α (IPF)=1.91×10 ⁻⁵ <i>3</i>
1869.5 [#] 5	2.0 4	2790.64	(6 ⁺)	920.66 4+	[E2]	5.21×10 ⁻⁴	$\alpha(K)=0.000246\ 4;\ \alpha(L)=2.81\times10^{-5}\ 4;\ \alpha(M)=5.26\times10^{-6}\ 8;\ \alpha(N+)=0.000242\ 4$ $\alpha(N)=8.88\times10^{-7}\ 13;\ \alpha(IPF)=0.000241\ 4$
1884.1 [#] 4	5.1 9	2804.95	(6 ⁺)	920.66 4+	[E2]	5.24×10^{-4}	α (K)=0.000243 4; α (L)=2.77×10 ⁻⁵ 4; α (M)=5.18×10 ⁻⁶ 8; α (N+)=0.000248 4 α (N)=8.75×10 ⁻⁷ 13; α (IPF)=0.000248 4

4

[†] Additional information 1.
[‡] From 1999Lh01.
[#] Observed in 1999Lh01, but not in 1988Ay02.
[@] From adopted gammas.
[&] If No value given it was assumed δ=0.00 for E2/M1, δ=1.00 for E3/M2 and δ=0.10 for the other multipolarities.
^a For absolute intensity per 100 decays, multiply by 0.89 4.

From ENSDF

¹¹⁰Rh β^- decay (28.0 s) 1999Lh01,1988Ay02

S

 $^{110}_{46}\mathrm{Pd}_{64}$

 $^{110}_{46}\mathrm{Pd}_{64}$ -5