¹¹⁰Cd(**p**,**n**γ) **1987Kr15**

	His	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	G. Gürdal and F. G. Kondev	NDS 113, 1315 (2012)	1-Aug-2011

E(p)=5.2, 5.6, 6 MeV. Target: 1-3 mg/cm² thick, 95.6% enriched in ¹¹⁰Cd. The beams were provided by the Jyvaskyla 90 cm and the Debrecen 103 cm isochronous cyclotron. The γ -ray energies and intensities were measured at 90° and 125° with respect to the beam direction using a 15.5% Ge(Li) detector in Jyvaskyla. Low energy γ -rays were detected with a 7 mm LEPS detector. $\gamma\gamma$ coinc. were measured at 6 MeV proton energy with one LEPS, one 15.5% Ge(Li) and one 24.5% Ge(HP) detector placed at \approx 55°, \approx 125° and \approx 235° respect to the beam direction. \approx 25 million $\gamma\gamma$ coinc events were recorded. For conversion electron measurements a combined intermediate-image plus Si(Li) spectrometer was used. The γ -ray angular distributions were measured at 5.2, 5.6, 6 MeV proton energies using a 50 cm³ Ge(Li) detector in Debrecen. The γ -rays were detected at different angles with respect to the beam direction from 90° to 145° in 5° steps.

Measured: E γ , I γ , $\gamma\gamma$ coin, I(ce), σ (E,E γ , θ). Deduced: ¹¹⁰In levels, J, π , γ branching, mult., δ . Other: 1989Kr12.

¹¹⁰In Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
62.08 4	2+	69.1 min 5	Additional information 1. E(level),T _{1/2} : From Adopted Levels.
202.391 20	3+		
321.19 <i>3</i>	4+		
334.090 19	2+		
342.567 21	1+		
346.32 <i>3</i>	4+		
366.53 4	(5^{+})		
437.13 4	(5 ⁺)		
541.243 19	3+		
756.52 [#] 7	4+		
756.564 [#] 20	2-		
793.03 <i>3</i>	4+		
887.37 8	(5)		
958.46 <i>3</i>	3+		
970.89 5	(4)		
989.853 22	2-		
1023.39 5	3-		
1049.88 4	2^{+}		
1062.73 5	(4,5)		
1119.82 4	$(0)^{-}$		
1134.09 5	$(3,4)^{-}$		
1176.23 5	(2,3,4)		
1190.96 <i>3</i>	$(1,2,3)^{-}$		
1216.89 9	$2^+, 3^+, 4^+$		
1239.96 5	1-,2-,3-		
1254.92 6	$0^{-}, 1^{-}, 2^{-}$		
1303.35 16			

[†] From least-squares fit to $E\gamma$'s.

^{\ddagger} From the deduced γ -ray transition multipolarities and comparison of $\sigma_{exp}(p,n)$ with Hauser-Feshbach theoretical results.

[#] Following on results from (α ,n γ), the level at 756.55 keV is doublet. Corrected by the evaluators.

$\frac{110}{\text{Cd}(\mathbf{p},\mathbf{n}\gamma)} \qquad 1987\text{Kr15} \text{ (continued)}$											
$\gamma(^{110}\text{In})$											
E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [@]	δ&	α^{\dagger}	Comments			
45.34 <i>3</i>	7.6 20	366.53	(5 ⁺)	321.19 4+							
90.83 5	4.0 <i>10</i> 9.8 <i>20</i>	437.13	(5 ⁺)	346.32 4+	D(+Q)	-0.13 13		Mult.: A ₂ =-0.40 17, A ₄ =-0.009 18.			
115.93 3	11.5 17	437.13	(5^+)	$321.19 4^+$	D(+Q)	-0.03 13	0.216	Mult.: $A_2 = -0.31$ 11, $A_4 = -0.08$ 15.			
118.81 3	105 /	321.19	4	202.391 3	MI(+E2)	-0.05 3	0.316	$\alpha(\mathbf{K})=0.2754; \alpha(\mathbf{L})=0.05467; \alpha(\mathbf{M})=0.0067514; \alpha(\mathbf{N}+)=0.00152$			
121 (2.9	25.2	224.000	2+	202.201.2+				α (N)=0.001231 24; α (O)=9.05×10 ⁻⁵ 14 Mult.: From A ₂ =-0.23 4, A ₄ =0.03 5 at 5.6 MeV and α (K)exp=0.31 6. Other: A ₂ =-0.21 3, A ₄ =-0.01 3 at Ep=6 MeV. δ : From Ep=5.6 MeV.			
131.03 8 140.30 <i>3</i>	2.5 <i>2</i> 665 27	202.391	2+ 3+	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1(+E2)	-0.04 6	0.199 4	$\alpha(K)=0.172 \ 3; \ \alpha(L)=0.0216 \ 6; \ \alpha(M)=0.00421 \ 12;$			
								$\alpha(N+)=0.000827\ 2I$ $\alpha(N)=0.000770\ 20:\ \alpha(O)=5\ 68\times10^{-5}\ IO$			
								Mult.: From α (K)exp=0.18 4 and A ₂ =-0.192 19, A ₄ =0.069 23 at Ep=5.6 MeV. Others: A ₂ =-0.22 5 at Ep=5.2 MeV, A ₂ =-0.170 13, A ₄ =0.003 16 at Ep=6 MeV.			
143.93 <i>3</i>	144 6	346.32	4+	202.391 3+	M1(+E2)	-0.07 5	0.186 4	δ: From E(p)=5.6 MeV. α (K)=0.161 3; α (L)=0.0203 6; α (M)=0.00395 11;			
								α (N+)=0.000776 20			
								$\alpha(N)=0.000723 \ 20; \ \alpha(O)=5.32\times10^{-5} \ 10$			
^x 149.82 4	9.0 5				M1		0.1655	$\alpha(K)=0.1434\ 20;\ \alpha(L)=0.0180\ 3;\ \alpha(M)=0.00349\ 5;$			
								$\alpha(N+)=0.000686\ 10$ $\alpha(N)=0.000639\ 9:\ \alpha(\Omega)=4\ 73\times10^{-5}\ 7$			
								Mult.: From $\alpha(K)$ exp=0.14 8.			
165.49 <i>10</i> 194.92 <i>10</i>	1.4 <i>4</i> 2.0 5	958.46 541.243	3+ 3+	$793.03 4^+$ $346.32 4^+$							
x198.77 5	6.5 4	011.210	5	510.52	M1(+E2)		0.11 3	$\alpha(K)=0.090\ 23;\ \alpha(L)=0.014\ 6;\ \alpha(M)=0.0028\ 12;\ \alpha(N+)=0.00052$			
								$\alpha(N)=0.00049\ 20;\ \alpha(O)=2.9\times10^{-5}\ 8$ Mult : From $\alpha(K)=n-0.07\ 4$			
201.10 4	6.7 5	1190.96	(1,2,3)-	989.853 2-				$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$			
207.16 3	91 6	541.243	3+	334.090 2+	M1		0.0689	$\alpha(K)=0.0597 \ 9; \ \alpha(L)=0.00742 \ 11; \ \alpha(M)=0.001439 \ 21; \ \alpha(N+)=0.000283 \ 4$			
								$\alpha(N)=0.000264 4; \alpha(O)=1.96\times 10^{-5} 3$			
								Mult.: From α (K)exp=0.066 <i>16</i> and A ₂ =-0.155 <i>13</i> , A ₄ =-0.006 <i>17</i> . δ : +0.03 2 deduced from $\gamma(\theta)$ reported.			
215.35 5	6.2 15	756.564	2-	541.243 3+							
220.09 10 ^x 223.84 10	2.7 3 1.5 5	541.243	31	321.19 4+							

ы

 $^{110}_{49}\mathrm{In}_{61}\text{-}2$

L

						110 Cd(p,n γ)	1987Kr 1	15 (continued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{\&}$	α^{\dagger}	Comments
233.31 4	11.8 6	989.853	2-	756.564	2-	M1(+E2)		0.065 15	$\alpha(K)=0.055 \ 11; \ \alpha(L)=0.008 \ 3; \ \alpha(M)=0.0016 \ 6; \ \alpha(N+)=0.00030 \ 10 \ \alpha(N)=0.00028 \ 10; \ \alpha(O)=1.8\times10^{-5} \ 4 \ Mult$: From $\alpha(K)$ exp=0.041 21. E2 admixture possible.
234.81 20 249.96 15 251.81 3	0.6 2 5.7 22 22.6 7	437.13 1239.96 793.03	(5 ⁺) 1 ⁻ ,2 ⁻ ,3 ⁻ 4 ⁺	202.391 989.853 541.243	3 ⁺ 2 ⁻ 3 ⁺	M1(+E2)	-0.01 15	0.0411 8	$\alpha(K)=0.0357\ 7;\ \alpha(L)=0.00440\ 11;\ \alpha(M)=0.000854\ 22;\ \alpha(N+)=0.000168\ 4$ $\alpha(N)=0.000157\ 4;\ \alpha(O)=1.166\times10^{-5}\ 20$ Mult.: From $\alpha(K)$ exp=0.035 3 and A ₂ =-0.33 12, A ₄ =-0.17
259.22 <i>11</i> 266.87 <i>10</i>	≤2.4 4.2 <i>16</i>	321.19 1023.39	4 ⁺ 3 ⁻	62.08 756.564	2^+ 2^-				16.
272.03 3	639 19	334.090	2+	62.08	2+	M1(+E2)	+0.06 4	0.0337	$\alpha(K)=0.0292 5; \alpha(L)=0.00360 6; \alpha(M)=0.000699 11; \alpha(N+)=0.0001376 20 \alpha(N)=0.0001280 19; \alpha(O)=9.53\times10^{-6} 14Mult.: From \alpha(K)exp=0.032 3 and A2=-0.193 11, A4=-0.009 13 at Ep=5.6 MeV. Other: A2=0.172 17, A4=-0.014 21 at Ep=6 MeV.$
280.48 <i>3</i>	1000 <i>30</i>	342.567	1+	62.08	2+	M1(+E2)	+0.04 22	0.0311 9	α(K)=0.0270 7; α(L)=0.00332 14; α(M)=0.00064 3; α(N+)=0.000127 5 α(N)=0.000118 5; α(O)=8.79×10 ⁻⁶ 20 Mult.: From α(K)exp=0.0291 23 and A ₂ =-0.004 13, A ₄ =-0.011 15 at Ep=5.6 MeV. δ: From Ep=5.6 MeV.
x284.25 10 338.85 5	3.0 8 13.1 7	541.243	3+	202.391	3+	M1,E2		0.0210 19	$\alpha(K)=0.0180 \ 15; \ \alpha(L)=0.0024 \ 4; \ \alpha(M)=0.00047 \ 8; \\ \alpha(N+)=9.1\times10^{-5} \ 14 \\ \alpha(N)=8.5\times10^{-5} \ 14; \ \alpha(O)=5.8\times10^{-6} \ 4 \\ \text{Mult} \text{ From } \alpha(V) = 0.010 \ 2 \\ \text{Mult} \text{ from } \alpha(V) = 0.010 \ 2 \ 2 \\ \text{Mult} \text{ from } \alpha(V) = 0.010 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ $
363.23 4	15.3 6	1119.82	(0)-	756.564	2-	E2		0.0184	Mult.: From $\alpha(\mathbf{K})\exp=0.019$ 5. $\alpha(\mathbf{K})\exp=0.0165$ 15 $\alpha(\mathbf{K})=0.01561$ 22; $\alpha(\mathbf{L})=0.00222$ 4; $\alpha(\mathbf{M})=0.000435$ 6; $\alpha(\mathbf{N}+)=8.30\times10^{-5}$ 12 $\alpha(\mathbf{N})=7.80\times10^{-5}$ 12: $\alpha(\mathbf{O})=4.95\times10^{-6}$ 7
377.52 4	17.2 7	1134.09	(3,4) ⁻	756.564	2-	M1,E2		0.0154 9	$\alpha(K)=0.0133 7; \ \alpha(L)=0.00175 21; \ \alpha(M)=0.00034 5; \alpha(N+)=6.6\times10^{-5} 8 \alpha(N)=6.2\times10^{-5} 7; \ \alpha(O)=4.25\times10^{-6} 16 Mult.: From \ \alpha(K)exp=0.0131 11.$
x386.24 15 389.98 10 410.20 10 413.98 3	2.6 5 2.4 3 6.2 6 231.2 92	756.52 756.52 756.564	4+ 4+ 2 ⁻	366.53 346.32 342.567	(5 ⁺) 4 ⁺ 1 ⁺	E1(+M2)	+0.05 3	0.00366 16	α=0.00366 16; α(K)=0.00319 14; α(L)=0.000381 18;

ω

 $^{110}_{49}\mathrm{In}_{61}\text{-}3$

I

						110 Cd(p,n γ)	1987Kr 1	15 (continued)	
γ ⁽¹¹⁰ In) (continued)									
E _γ ‡	I_{γ} #	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult.@	δ ^{&}	α^{\dagger}	Comments
					<u>,</u>				$\alpha(M)=7.4\times10^{-5} 4$; $\alpha(N+)=1.44\times10^{-5} 7$ $\alpha(N)=1.34\times10^{-5} 7$; $\alpha(O)=9.7\times10^{-7} 5$ Mult.: From $\alpha(K)\exp=0.0039 \ 10$ and $A_2=-0.154 \ 15$, $A_4=-0.010 \ 20$.
417.16 5 419.57 <i>10</i>	11.3 22 3.0 3	958.46 1176.23	3^+ (2,3,4)	541.243 756.564	3+ 2 ⁻				
422.46 4	31 12	756.564	2-	334.090	2+	E1(+M2)	-0.04 27	0.003 3	α =0.003 3; α (K)=0.003 3; α (L)=0.0004 4; α (M)=7.E-5 7; α (N+)=1.4×10 ⁻⁵ 14
									α (N)=1.3×10 ⁻⁵ <i>13</i> ; α (O)=9.E-7 <i>10</i> Mult.: From α (K)exp=0.0029 <i>6</i> and A ₂ =0.18 <i>8</i> , A ₄ =0.028 <i>11</i> .
429.52 20 434.39 <i>3</i>	1.7 <i>4</i> 74.7 22	970.89 1190.96	(4) $(1,2,3)^{-}$	541.243 756.564	3+ 2 ⁻	M1(+E2)	0.02 11	0.01026	$\alpha(K)=0.00893 \ 13; \ \alpha(L)=0.001083 \ 16; \ \alpha(M)=0.000210 \ 3; \ \alpha(N+)=4.13\times10^{-5} \ 6$
									α (N)=3.85×10 ⁻⁵ 6; α (O)=2.88×10 ⁻⁶ 4 Mult.: From α (K)exp=0.0093 10 and A ₂ =-0.23 12, A ₄ =0.074 15.
435.34 10	7.5 15	756.52	4+	321.19	4+ 2+	-			
448.61 5	11.1 7	989.853	2-	541.243	3+	E1		0.00292 4	$\alpha = 0.00292 \ 4; \ \alpha(K) = 0.00255 \ 4; \ \alpha(L) = 0.000303 \ 5; \alpha(M) = 5.85 \times 10^{-5} \ 9; \ \alpha(N+) = 1.146 \times 10^{-5} \ 16 \alpha(N) = 1.068 \times 10^{-5} \ 15; \ \alpha(O) = 7.72 \times 10^{-7} \ 11 Mult.: From \ \alpha(K) exp = 0.0025 \ 10.$
x452.39 ^{<i>a</i>} 15	2.06	702.02	4+	221 10	4 +				
471.83 <i>10</i> 479.16 <i>3</i>	2.8 2 146 5	793.03 541.243	4* 3+	62.08	2 ⁺	M1(+E2)	+0.03 3	0.00806 12	α =0.00806 <i>12</i> ; α (K)=0.00702 <i>10</i> ; α (L)=0.000848 <i>12</i> ; α (M)=0.0001643 <i>23</i> ; α (N+)=3.24×10 ⁻⁵ α (N)=3.01×10 ⁻⁵ <i>5</i> ; α (O)=2.26×10 ⁻⁶ <i>4</i> Mult.: From α (K)exp=0.0067 <i>4</i> and A ₂ =-0.164 <i>18</i> , A ₄ =-0.021 <i>25</i> . Other: A ₂ =-0.35 <i>16</i> , A ₄ =-0.12 <i>21</i> at Ep=5.6 MeV
483.38 5	13.2 14	1239.96	1-,2-,3-	756.564	2-	M1,E2		0.00781 14	$\alpha = 0.00781 \ 14; \ \alpha(\text{K}) = 0.00675 \ 15; \ \alpha(\text{L}) = 0.00086 \ 4; \alpha(\text{M}) = 0.000167 \ 7; \ \alpha(\text{N}+) = 3.25 \times 10^{-5} \ 10 \alpha(\text{N}) = 3.04 \times 10^{-5} \ 10; \ \alpha(\text{O}) = 2.16 \times 10^{-6} \ 7$
498.31 7	6.6 10	1254.92	0-,1-,2-	756.564	2-	M1,E2		0.00721 16	Mult.: From α (K)exp=0.0078 <i>11</i> . α =0.00721 <i>16</i> ; α (K)=0.00623 <i>18</i> ; α (L)=0.000790 <i>23</i> ; α (M)=0.000153 <i>5</i> ; α (N+)=2.99×10 ⁻⁵ <i>7</i> α (N)=2.79×10 ⁻⁵ <i>7</i> ; α (O)=1.99×10 ⁻⁶ <i>7</i>
520.89 <i>10</i> 533.73 <i>10</i> 540.98 <i>15</i> 554.14 <i>7</i>	0.8 2 4.4 9 2.0 4 8.3 6	887.37 970.89 887.37 756.564	(5) (4) (5) 2 ⁻	366.53 437.13 346.32 202.391	(5^+) (5^+) 4^+ 3^+				Mult.: From α(K)exp=0.0059 10.

4

L

						¹¹⁰ Cd(p	, n γ) 1987	Kr15 (continue	ed)		
γ ⁽¹¹⁰ In) (continued)											
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	5 ^{&}	α^{\dagger}	Comments		
566.15 <i>15</i>	11.0 11	887.37	(5)	321.19	4+						
590.61 <i>5</i>	≤10.0 18.3 <i>9</i>	793.03	4+	202.391	3+	M1(+E2)	-0.05 16	0.00486 7	$ \begin{array}{l} \alpha = 0.00486 \ 7; \ \alpha(\mathrm{K}) = 0.00424 \ 7; \ \alpha(\mathrm{L}) = 0.000509 \ 8; \\ \alpha(\mathrm{M}) = 9.85 \times 10^{-5} \ 14; \ \alpha(\mathrm{N}+) = 1.94 \times 10^{-5} \ 3 \\ \alpha(\mathrm{N}) = 1.81 \times 10^{-5} \ 3; \ \alpha(\mathrm{O}) = 1.359 \times 10^{-6} \ 20 \\ \mathrm{Mult.: \ From \ } \alpha(\mathrm{K}) \exp = 0.0044 \ 4 \ \mathrm{and} \ \mathrm{A_2} = -0.32 \ 13, \ \mathrm{A_4} = -0.069 \\ 18. \end{array} $		
592.04 20 612.15 5	0.9 <i>3</i> 29.0 <i>20</i>	958.46 958.46	3+ 3+	366.53 346.32	(5 ⁺) 4 ⁺	M1(+E2)	+0.23 16	0.00445 8	α =0.00445 8; α (K)=0.00387 7; α (L)=0.000466 7; α (M)=9.02×10 ⁻⁵ 13; α (N+)=1.78×10 ⁻⁵ 3 α (N)=1.654×10 ⁻⁵ 25; α (O)=1.240×10 ⁻⁶ 22 Mult.: From α (K)exp=0.0041 3 and A ₂ =-0.35 9, A ₄ =-0.026 11.		
615.90 <i>20</i> 624.40 <i>7</i>	5.0 <i>5</i> 12.7 <i>8</i>	958.46 958.46	3+ 3+	342.567 334.090	1^+ 2 ⁺	M1,E2		0.00403 24	α =0.00403 24; α (K)=0.00350 22; α (L)=0.000433 14; α (M)=8.40×10 ⁻⁵ 25; α (N+)=1.65×10 ⁻⁵ 6 α (N)=1.53×10 ⁻⁵ 6; α (O)=1.11×10 ⁻⁶ 8 Mult: From α (K)=0.0030 10		
637.30 6	24.3 24	958.46	3+	321.19	4+	M1(+E2)	-0.05 16	0.00406 6			
647.24 5	62.3 19	989.853	2-	342.567	1+	E1(+M2)	-0.03 12	0.00126 22	α =0.00126 22; α (K)=0.00110 19; α (L)=0.000130 24; α (M)=2.5×10 ⁻⁵ 5; α (N+)=4.9×10 ⁻⁶ 10 α (N)=4.6×10 ⁻⁶ 9; α (O)=3.4×10 ⁻⁷ 7 Mult.: A ₂ =-0.21 6, A ₄ =0.02 9. Other: α (K)exp≤0.0016.		
649.74 5 655.73 5 ^x 674.53 30	4.80 <i>10</i> 6.6 <i>5</i> 2.6 <i>8</i>	970.89 989.853	(4) 2 ⁻	321.19 334.090	4+ 2+						
677.12 <i>15</i> 689.27 <i>10</i> 694.46 <i>5</i>	4.6 9 1.3 2 96 3	1023.39 1023.39 756.564	3^{-} 3^{-} 2^{-}	346.32 334.090 62.08	4+ 2+ 2+	E1		0.001077 15	α =0.001077 15; α (K)=0.000941 14; α (L)=0.0001106 16;		
									α (M)=2.13×10 ⁻⁵ 3; α (N+)=4.19×10 ⁻⁶ α (N)=3.90×10 ⁻⁶ 6; α (O)=2.87×10 ⁻⁷ 4 Mult.: From α (K)exp=0.0090 27.		
696.20 5 702.07.19	10.0 25	1062.73 1023 39	(4,5) 3 ⁻	366.53 321 19	(5 ⁺) 4 ⁺						
707.32 5	146.7 59	1049.88	2+	342.567	1+ 1	M1+E2	+0.05 5	0.00318 5	α =0.00318 5; α (K)=0.00277 4; α (L)=0.000331 5; α (M)=6.40×10 ⁻⁵ 9; α (N+)=1.264×10 ⁻⁵ 18 α (N)=1.175×10 ⁻⁵ 17; α (O)=8.85×10 ⁻⁷ 13 Mult : From α (K)exp=0.0264 18 and A2==0.12 3 A4=0.06 4		
715.71 8	16.1 29	1049.88	2^{+}	334.090	2^{+}	M1,E2		0.00288 22	$\alpha = 0.00288 \ 22; \ \alpha(K) = 0.00251 \ 20; \ \alpha(L) = 0.000307 \ 16;$		

S

 $^{110}_{49} In_{61}$ -5

L

						¹¹⁰ Cd(p	, n γ) 1987	Kr15 (continue	ed)
							γ ⁽¹¹⁰ In) (co	ontinued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult.@	δ ^{&}	α^{\dagger}	Comments
									$\alpha(M)=5.9\times10^{-5} 3; \alpha(N+)=1.17\times10^{-5} 7$ $\alpha(N)=1.09\times10^{-5} 6; \alpha(O)=8.0\times10^{-7} 7$ Mult.: From $\alpha(K)\exp=0.031 8$.
716.37 10	2.3 10	1062.73	(4,5)	346.32	4 ⁺				
741.60 10	1.6 <i>3</i> 17 5 7	1062.73	(4,5) 2 ⁺	321.19	4' 2+	M1 E2		0.00253.20	$\alpha = 0.00253.20$; $\alpha (K) = 0.00220.18$; $\alpha (L) = 0.000268.16$;
750.08 0	17.57	958.40	5	202.391	5	W11,E2		0.00255 20	$\alpha(M) = 5.2 \times 10^{-5} \ 3; \ \alpha(N+) = 1.02 \times 10^{-5} \ 7$ $\alpha(N) = 9.5 \times 10^{-6} \ 6; \ \alpha(O) = 7.0 \times 10^{-7} \ 7$
5 (0, 13, 0)		070.00		000.001	2+				Mult.: From α (K)exp=0.023 5.
768.43 9	7.5 8	970.89	(4)	202.391	3 ⁺	E 1		0.000840.12	$-0.000840, 12,(K) = 0.000742, 11,(L) = 0.00040, 10^{-5}, 12$
///.30.0	45.1 15	1119.82	(0)	542.507	1	EI		0.000849 12	$\alpha = 0.000849 \ 12; \ \alpha(K) = 0.000742 \ 11; \ \alpha(L) = 0.70 \ 10^{-5} \ 13; \ \alpha(M) = 1.677 \times 10^{-5} \ 24; \ \alpha(M+) = 3.30 \times 10^{-6} \ 10^{-7} \ $
									$\alpha(N)=3.0/\times10^{-6}$ 5; $\alpha(O)=2.26\times10^{-7}$ 4 Mult : From $\alpha(K)$ even = 0.0077 15 and $\Delta_{2}=-0.08$ 8. $\Delta_{3}=-0.025$
									I1.
787.48 6	24.9 25	989.853	2-	202.391	3+	E1(+M2)	-0.18 30	0.0010 9	α =0.0010 9; α (K)=0.0009 8; α (L)=0.00010 10;
									$\alpha(M)=2.0\times10^{-5}$ 20; $\alpha(N+)=4.E-6$ 4
									$\alpha(N)=4.E-64; \alpha(O)=3.E-73$ Mult: From $\alpha(V)=0.0058, 10 \text{ and } A=0.026, A=0.17, 11$
^x 800.06.8	9.7.7					E1		0.000801 12	$\alpha = 0.00801 \ 12: \ \alpha(K) = 0.000700 \ 10: \ \alpha(L) = 8.19 \times 10^{-5} \ 12:$
000100 0	<i></i>					21		0.000001 12	$\alpha(M)=1.579\times10^{-5} 23; \ \alpha(N+)=3.10\times10^{-6}$
									$\alpha(N)=2.89\times10^{-6} 4; \alpha(O)=2.13\times10^{-7} 3$
			(a 1) -						Mult.: From α (K)exp=0.007 3.
813.01 15	2.5 10	1134.09	$(3,4)^{-}$	321.19	4 ⁺ 2 ⁺				
829.86 10	1.0.2	1025.39	(2.3.4)	346.32	3 4 ⁺				
842.27 10	2.2 2	1176.23	(2,3,4)	334.090	2+				
855.00 10	1.3 6	1176.23	(2,3,4)	321.19	4+				
857.11 20	1.5 3	1190.96	$(1,2,3)^{-}$	334.090	2+	M1 E2		0.00102.16	
870.31 22	12.2 /	1216.89	2',3',4'	346.32	4'	M1,E2		0.00182 16	$\alpha = 0.00182 \ 16; \ \alpha(\text{K}) = 0.00158 \ 14; \ \alpha(\text{L}) = 0.000191 \ 14; \\ \alpha(\text{M}) = 3.7 \times 10^{-5} \ 3; \ \alpha(\text{N}+) = 7.3 \times 10^{-6} \ 6$
									$\alpha(N) = 6.8 \times 10^{-6} \text{ S}; \ \alpha(O) = 5.0 \times 10^{-7} \text{ S}$ Mult : From $\alpha(K) = 0.015 \text{ A}$
882.95 19	9.9 6	1216.89	2+,3+,4+	334.090	2+	M1,E2		0.00176 16	$\alpha = 0.00176 \ 16; \ \alpha(\text{K}) = 0.00153 \ 14; \ \alpha(\text{L}) = 0.000185 \ 14; \\ \alpha(\text{M}) = 3.6 \times 10^{-5} \ 3; \ \alpha(\text{N} + \) = 7.0 \times 10^{-6} \ 6$
									$\alpha(N) = 6.5 \times 10^{-6} 5; \alpha(O) = 4.8 \times 10^{-7} 5$ Mult : From $\alpha(K) = 0.017 4$
^x 883.78 10	0.8 3								man from without otory in
895.70 10	1.5 2	1216.89	2+,3+,4+	321.19	4+				
896.31 6	24.3 19	958.46	3+	62.08	2+	M1+E2	-0.23 16	0.00183 4	$ \begin{array}{l} \alpha = 0.00183 \ 4; \ \alpha(\mathrm{K}) = 0.00160 \ 3; \ \alpha(\mathrm{L}) = 0.000190 \ 4; \\ \alpha(\mathrm{M}) = 3.67 \times 10^{-5} \ 7; \ \alpha(\mathrm{N} +) = 7.24 \times 10^{-6} \ 13 \\ \alpha(\mathrm{N}) = 6.73 \times 10^{-6} \ 12; \ \alpha(\mathrm{O}) = 5.07 \times 10^{-7} \ 10 \end{array} $

6

From ENSDF

 $^{110}_{49} {\rm In}_{61}$ -6

I

						¹¹⁰ Cd(p	,n γ) 1987	Kr15 (continu	ied)
							$\gamma(^{110}\text{In})$ (co	ontinued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{\&}$	α^{\dagger}	Comments
905.94 10	8.7 6	1239.96	1 ⁻ ,2 ⁻ ,3 ⁻	334.090	2+	E1		0.000624 9	Mult.: A ₂ =-0.530 <i>10</i> , A ₄ =-0.019 <i>12</i> . Other M1,E2 from α (K)exp=0.013 <i>3</i> . α =0.000624 <i>9</i> ; α (K)=0.000546 <i>8</i> ; α (L)=6.37×10 ⁻⁵ <i>9</i> ;
									$\alpha(M)=1.227\times10^{-5} \ 18; \ \alpha(N+)=2.41\times10^{-6} \ 4$ $\alpha(N)=2.25\times10^{-6} \ 4; \ \alpha(O)=1.665\times10^{-7} \ 24$ Mult.: From $\alpha(K)$ exp=0.007 3.
912.41 8	11.2 8	1254.92	0-,1-,2-	342.567	1+	E1		0.000615 9	$\alpha = 0.000615 \ 9; \ \alpha(\text{K}) = 0.000538 \ 8; \ \alpha(\text{L}) = 6.28 \times 10^{-5} \ 9; \alpha(\text{M}) = 1.210 \times 10^{-5} \ 17; \ \alpha(\text{N}+) = 2.38 \times 10^{-6} \ 4 \alpha(\text{N}) = 2.22 \times 10^{-6} \ 4; \ \alpha(\text{O}) = 1.642 \times 10^{-7} \ 23 $
927.77 5	38.3 15	989.853	2-	62.08	2+	E1(+M2)	-0.03 14	0.00060 10	Mult.: From α (K)exp=0.0069 17. α =0.00060 10; α (K)=0.00052 9; α (L)=6.1×10 ⁻⁵ 11; α (M)=1.18×10 ⁻⁵ 21; α (N+)=2.3×10 ⁻⁶ 5 α (N)=2.2×10 ⁻⁶ 4; α (O)=1.6×10 ⁻⁷ 3 Mult. From α (K)exp=0.0054 0, and A = 0.10.7. A = 0.022 0
961.30 6	31.5 <i>13</i>	1023.39	3-	62.08	2+	E1(+M2)	-0.07 10	0.00057 8	
969.26 15	4.9 3	1303.35	- 1	334.090	2+				
987.81 <i>5</i>	51.3 21	1049.88	2+	62.08	2+	M1(+E2)	+0.07 21	0.00148 3	α =0.00148 3; α (K)=0.001292 23; α (L)=0.000153 3; α (M)=2.95×10 ⁻⁵ 5; α (N+)=5.84×10 ⁻⁶ 10 α (N)=5.43×10 ⁻⁶ 10; α (O)=4.10×10 ⁻⁷ 8 Mult.: From α (K)exp=0.0128 14 and A ₂ =0.30 6, A ₄ =0.10 8.
1114.18 10	12.1 12	1176.23	(2,3,4)	62.08	2+				α (K)exp=0.007 4
1177.93 10	15.1 23	1239.96	$1^{-}.2^{-}.3^{-}$	62.08	2^{+}				

 \neg

[†] Additional information 2. [‡] From E(p)=6 MeV and 90° with respect to beam direction. [#] From E(p)=6 MeV and 125° with respect to beam direction. (I γ (280.48)=1000). [@] From α (K)exp (ce(K)(536.5 γ) (mult.=M4) of ¹¹¹In used for normalization) and/or $\gamma(\theta)$ at Ep=6 MeV, unless otherwise stated.

[&] From $\gamma(\theta)$ at Ep=6 MeV, unless otherwise stated.

^{*a*} Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{110}_{49}\mathrm{In}_{61}\text{-}8$

 $^{110}_{49}\mathrm{In}_{61}\text{-}8$

From ENSDF

 ∞

9

 $^{110}_{49}\mathrm{In}_{61}\text{-}9$

 $^{110}_{49}\mathrm{In}_{61}\text{-}9$

From ENSDF