$\frac{100 \text{Mo}(^{14}\text{N},4n\gamma) \quad 1980\text{Be49}}{\text{History}}$ $\frac{\text{Type}}{\text{Full Evaluation}} \quad \frac{\text{Author}}{\text{G. Gürdal and F. G. Kondev}} \quad \frac{\text{Citation}}{\text{NDS 113, 1315 (2012)}} \quad \frac{\text{Literature Cutoff Date}}{1-\text{Aug-2011}}$

 E_{beam} =62 MeV. ¹⁴N beam was provided by Grenoble ISN cyclotron. 1 mg/cm² thick, 97% enriched in ¹⁰⁰Mo target with a 30 mg/cm² lead backing was used. γ -rays were measured with two Ge(Li) and one Ge detectors. Measured: E γ , I γ , $\gamma\gamma(t)$, $\gamma(\theta)$, θ from 0° to 90°, 5 angles, linear pol, E(ce).

¹¹⁰In Levels

From delayed $\gamma\gamma$ -coin results, no evidence for a short-lived isomeric state was observed.

E(level) [†]	Jπ‡	T _{1/2}	Comments	
0.0	7+	4.92 h 8	$J^{\pi}, T_{1/2}$: From Adopted Levels.	
413.60 16	$(7)^{+}$		· 1/2 1	
714.6 4	$(8)^{+}$			
800.08 19	$(7)^{-}$			
808.20 16	$(8)^{-}$			
1018.0 <i>3</i>	(9)-			
1561.9 <i>3</i>	$(10)^{-}$			
2129.4 5				
2175.2 4	$(11)^{-}$			
2492.8 6				
2597.3 4	$(12)^{-}$			
2765.4 6	(12^{-})			
2838.6 5	(13 ⁻)			
3193.2 7	(14^{-})			
3374.4 12				
3513.2 6	(12^{+})			
3715.0 9	(14 ⁻)			
3720.8 6	(13^{+})			
3915.4 9	(13^{-})			
3944.6 8	(14^{+})			
4080.4 9	(14)			
4230.0 10	(15^{+})			
4309.0 10	(15)			
4552.0 10	(16^{+})			
4399.1 11	(10^{-})			
5086 2 12	(10^{-})			
5282 6 15	(17^{-})			
5649 6 18	(1/)			
5652.1.73				
5052.1 15				

[†] From least-squares fit to $E\gamma's$.

^{\ddagger} From the deduced γ -ray transition multipolarities and band structure.

100 Mo(14 N,4n γ) **1980Be49** (continued)

$\gamma(^{110}\text{In})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	Comments
8.2 [@]		808.20	(8)-	800.08	(7)-		
104.5 5	2.5 5	2597.3	$(12)^{-}$	2492.8			
165.0 5	2.6 6	4080.4	(14^{-})	3915.4	(13^{-})	1.61	
207.4 5	8.0 16	3720.8	(13+)	3513.2	(12+)	MI	Mult.: $A_2 = -0.30$ 5, $A_4 = -0.02$ 5. POL= -0.23 6.
209.8 2	100	1018.0	(9)-	808.20	(8)-	M1	Mult.: $A_2 = -0.19 4$, $A_4 = +0.01 4$. POL = $-0.32 3$
223.8 5	11.2 22	3944.6	(14+)	3720.8	(13+)	M1	Mult.: $A_2 = -0.16$ 5, $A_4 = +0.05$ 5. POI $= -0.36$ 6
241.3 2	34 4	2838.6	(13 ⁻)	2597.3	(12)-	M1	Mult: $A_2 = -0.14 4$, $A_4 = +0.02 4$.
272 8 [@]		2765 1	(12^{-})	2402.8			10L = -0.56 4.
272.8	14.3	4230.0	(12) (15^+)	3944.6	(14^{+})	M1	Mult.: $A_{2} = -0.176$, $A_{4} = -0.066$
203.13	115	1250.0	(15)	5911.0	(11)	1,11	POL=-0.4 1.
288.6 5	7.2 14	4369.0	(15 ⁻)	4080.4	(14 ⁻)	M1	Mult.: $A_2 = -0.28 \ 8, \ A_4 = +0.14 \ 7.$
301.2 5	5.8 12	714.6	$(8)^{+}$	413.60	$(7)^{+}$		Mult.: $A_2 = +0.08$ 7, $A_4 = +0.08$ 7.
354.6 5	16 4	3193.2	(14 ⁻)	2838.6	(13 ⁻)	M1	Mult.: $A_2 = -0.20$ 6, $A_4 = +0.03$ 6. POL = -0.52 9
363.4 5	5.0 10	2492.8		2129.4			Mult.: $A_2 = -0.03 \ 10.$
367 [‡] 1	1.5.3	5649.6		5282.6	(17^{-})		-
369.1 5	8.4 16	4599.1	(16^{+})	4230.0	(15^+)	M1	Mult.: $A_2 = -0.65 \ 12, \ A_4 = +0.25 \ 7.$
			. ,				POL=-0.34 8.
386.3 5	7.5 15	800.08	$(7)^{-}$	413.60	$(7)^{+}$		
394.5 2	26 3	808.20	(8)-	413.60	$(7)^{+}$	E1	Mult.: A ₂ =-0.20 4, A ₄ =+0.01 4. POL=+0.58 9.
413.5 2	41 4	413.60	$(7)^{+}$	0.0	7+	M1	Mult.: A ₂ =+0.33 <i>3</i> , A ₄ =+0.06 <i>5</i> . POL=+0.73 9.
422.1 2	35 4	2597.3	(12)-	2175.2	(11)-	M1	$A_2 = -0.09 4, A_4 = +0.02 4.$ POL = -0.32 4.
432.6 5	6.3 13	4801.6	(16 ⁻)	4369.0	(15^{-})	(M1)	Mult.: $A_2 = -0.42 \ 10, A_4 = +0.14 \ 10.$
481 [‡] 1	21	5282.6	(17^{-})	4801.6	(16^{-})		Mult.: $A_2 = -0.36$ 15.
487.1 5	5.3 11	5086.2	(17^+)	4599.1	(16^+)	(M1)	Mult.: $A_2 = -0.45$ 9. $A_4 = +0.30$ 15.
521.8 5	13 3	3715.0	(14 ⁻)	3193.2	(14 ⁻)		Mult.: $A_2 = +0.205$, $A_4 = +0.067$.
543.9 2	62 6	1561.9	(10)-	1018.0	(9)-	M1	Mult.: $A_2 = -0.15 4$, $A_4 = +0.05 4$. POI = $-0.38 3$
565.9 5	4.3 9	5652.1		5086.2	(17^{+})		
567.5 5	2 1	2129.4		1561.9	$(10)^{-}$		
590.4 5	11 <i>3</i>	2765.4	(12^{-})	2175.2	$(11)^{-}$	(M1)	Mult.: $A_2 = -0.32$ 7, $A_4 = +0.10$ 6.
609 [‡] 1	4 1	3374.4		2765.4	(12^{-})		
613.3 2	52 5	2175.2	(11)-	1561.9	(10)-	M1	Mult.: $A_2 = -0.08 \ 4$, $A_4 = +0.03 \ 4$.
714.4 5	13 <i>3</i>	714.6	(8)+	0.0	7+	M1	Mult.: $A_2 = -0.10 \ 6, \ A_4 = +0.2 \ 1.$ POL=-0.74 20.
754 [‡] 1	51	1561.9	$(10)^{-}$	808.20	$(8)^{-}$		Mult.: $A_2 = -0.03 \ 10$.
800.1 2	29 <i>3</i>	800.08	$(7)^{-}$	0.0	7+	E1	Mult.: $A_2 = +0.37 \ 3$, $A_4 = +0.05 \ 5$.
808.3 2	57 6	808.20	(8)-	0.0	7+	E1	Mult: $A_{2}=-0.15 4$, $A_{4}=+0.03 3$.
817.6.5	72	4532.6		3715.0	(14^{-})		$1 \text{ OL} = \pm 0.42 \text{ J}.$
955.7.5	31	3720.8	(13^{+})	2765.4	(12^{-})		Mult.: $A_2 = +0.05 8$.
1035 1	31	2597 3	$(12)^{-}$	1561.9	$(10)^{-1}$		Mult : $A_{2} = +0.6.2$
1157.1 5	92	2175.2	$(12)^{-1}$	1018.0	(9) ⁻	(E2)	Mult.: $A_2 = +0.33 \ 6, A_4 = -0.03 \ 9.$

Continued on next page (footnotes at end of table)

100 **Mo**(14 **N,4n** γ) 1980Be49 (continued)

$\gamma(^{110}\text{In})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	Comments
1242 [‡] 1	4 1	4080.4	(14 ⁻)	2838.6	(13 ⁻)		Mult.: $A_2 = -0.3 2$.
1318 [‡] 1	2.4 5	3915.4	(13 ⁻)	2597.3	$(12)^{-}$		
1321 [‡] <i>1</i>	2.8 6	2129.4		808.20	(8)-		
1337.8 5	62	3513.2	(12^{+})	2175.2	$(11)^{-}$	E1	Mult.: $A_2 = -0.26 \ I0, \ A_4 = -0.1 \ I.$
							POL=+0.9 4.

[†] From 1980Be49.
[‡] ΔE=1 keV assigned by the evaluators.
[#] From γ(θ) and linear polarization in 1980Be49.
[@] Placement of transition in the level scheme is uncertain.

¹¹⁰₄₉In₆₁

4