¹¹⁰In ε decay (4.92 h) 1977MeZY

	His	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	G. Gürdal and F. G. Kondev	NDS 113, 1315 (2012)	1-Aug-2011

Parent: ¹¹⁰In: E=0.0; $J^{\pi}=7^+$; $T_{1/2}=4.92$ h 8; $Q(\varepsilon)=3878$ 12; $\%\varepsilon+\%\beta^+$ decay=100.0

Evaluator's note: Data are from 2000De11. Others: 2009Be44, 1992Ku01, 1980Ba58, 1979Sy02, 1977Me15, 1970BuZZ, 1970Ko12, 1970Sa02, 1969SyZZ, 1968SyZZ, 1962Ka08, 1953Bl44, 1951Mc11.

Levels

E(level) [†]	J π ‡	Comments
0.0	0^{+}	
657.755 10	2^{+}	
1475.770 12	2^{+}	
1542.424 12	4+	
1783.45 <i>3</i>	2^{+}	
2078.80 <i>3</i>	3-	
2162.781 12	3+	
2220.024 23	4+	
2250.478 24	4+	
2287.4? 10	2+	
2479.896 16	6+	
2539.632 17	5-	
2561.261 19	4+	
2659.792 17	5-	
2876.754 25	6+	
2926.709 16	5+	
3064.68 3	6 ⁺	J^{n} : Other: J=6 from $\gamma\gamma(\theta)$ results of 1980Ba58.
3121.56 3	6 ⁺	J ^{<i>x</i>} : Other: J=6 from $\gamma\gamma(\theta)$ results of 1980Ba58.
3187.30 3	8+	J^{α} : Other: $J=7$ from $\gamma\gamma(\theta)$ results of 1980Ba58.
3239.517 25	6 ⁺	
3275.32 4	8+	
3525.22 5	0,	

[†] From least-squares fit to $E\gamma$'s.

[‡] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	Iβ ⁺ ‡	$I\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(353 12)	3525.22		4.21 14	5.04 4	4.21 14	εK=0.8480 7; εL=0.1213 5; εM+=0.03076 15
(603 12)	3275.32		0.33 3	6.64 5	0.33 3	εK=0.8554 2; εL=0.11554 16; εM+=0.02907 5
(638 12)	3239.517		4.10 13	5.593 <i>23</i>	4.10 13	εK=0.8559 2; εL=0.11511 14; εM+=0.02895 4
(691 12)	3187.30		29.6 12	4.806 25	29.6 12	εK=0.8567 2; εL=0.11455 12; εM+=0.02878 4
(756 12)	3121.56		43.8 11	4.717 20	43.8 11	εK=0.8574 2; εL=0.1140 1; εM+=0.02861 3
(813 12)	3064.68		7.7 3	5.537 23	7.7 3	εK=0.8580 1; εL=0.11355 9; εM+=0.02849 3
(1001 12)	2876.754		2.33 25	6.24 5	2.33 25	εK=0.8593; εL=0.11250 6; εM+=0.02819 2
(1218 12)	2659.792		1.74 15	7.28^{1u} 5	1.74 15	εK=0.8544 2; εL=0.1163 1; εM+=0.02931 3
(1338 12)	2539.632		0.6 4	$7.9^{1u} 3$	0.6 4	εK=0.8552; εL=0.11544 9; εM+=0.02906 3
(1398 12)	2479.896	0.008 9	1.8 19	6.7 5	1.8 <i>19</i>	av Eβ=174.6 53; εK=0.8571 5; εL=0.1107 1; εM+=0.02769 3

 † Calculated from the total intensity imbalance.

[‡] Absolute intensity per 100 decays.

$\gamma(^{110}\text{Cd})$

I γ normalization: From Σ I(γ +ce) to g.s.=100 with the assumption that there is no direct β ⁻feeding to the ¹¹⁰Cd g.s..

Ν

E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E _f J	$\int_{f}^{\pi} \mathbf{N}$	Mult. [@]	δ ^{&c}	α^{\dagger}	Comments
120.154 [#] 25	1.43 [#] 3	2659.792	5-	2539.632 5	5 ⁻ M	11(+E2)	-0.1 3	0.28 7	$\alpha(K)=0.24 5; \alpha(L)=0.031 14; \alpha(M)=0.006 3; \alpha(N+)=0.0011 5 \alpha(N)=0.0011 5; \alpha(O)=5.9\times10^{-5} 8$ Mult., δ : From adopted gammas.
$^{x}121.17$ 16 229.420 [#] 22	$0.4\ 2$ $0.0209^{\#}\ 4$	2479.896	6+	2250.478 4	ι+ [E	E2]		0.0801	α (K)exp=0.23 <i>12</i> (1970Ko12); K/L=5.8 <i>10</i> (1962Ka08) α (K)=0.0670 <i>10</i> ; α (L)=0.01070 <i>15</i> ; α (M)=0.00208 <i>3</i> ;
									α (N+)=0.000373 6 α (N)=0.000358 5; α (O)=1.410×10 ⁻⁵ 20
266.914 [#] 12	0.000304 [#] 16	2926.709	5+	2659.792 5	5-				
295.42 [#] 18	0.0177 [#] 23	2078.80	3-	1783.45 2	2+ (E	E1)		0.00805	α (K)=0.00702 <i>10</i> ; α (L)=0.000836 <i>12</i> ; α (M)=0.0001597 <i>23</i> ; α (N+)=2.98×10 ⁻⁵ <i>5</i> α (N)=2.83×10 ⁻⁵ <i>4</i> : α (O)=1.563×10 ⁻⁶ <i>22</i>
310.4 6	0.0006 3	1783.45	2+	1475.770 2	2+ [E	E2]		0.0290	$\alpha(K) = 0.0246 \ 4; \ \alpha(L) = 0.00357 \ 6; \ \alpha(M) = 0.000692 \ 11; \ \alpha(N+) = 0.0001257 \ 20$
									$\alpha(N)=0.0001203 \ 19; \ \alpha(O)=5.38\times10^{-6} \ 9$
341.3 ^{#e} 1	0.0417 [#] 15	2561.261	4+	2220.024 4	+ [N	M1]		0.01715	$\alpha(K)=0.01493\ 21;\ \alpha(L)=0.00181\ 3;\ \alpha(M)=0.000347\ 5;$ $\alpha(N+)=6.55\times10^{-5}\ 10$
#	#		. 1						$\alpha(N)=6.19\times10^{-5}$ 9; $\alpha(O)=3.61\times10^{-6}$ 5
365.448 [#] 11	$0.00070^{+}4$	2926.709	5+	2561.261 4	+				
387.075 9	$0.00038^{#} 2$	2926.709	5+	2539.632 5	5-				
396.894# 22	0.26# 17	2876.754	6+	2479.896 6	5+ M	11+E2		0.0125 8	$\alpha(K)=0.0108 \ 6; \ \alpha(L)=0.00139 \ 17; \ \alpha(M)=0.00027 \ 4; \ \alpha(N+)=5.0\times10^{-5} \ 6 \ \alpha(N)=4.7\times10^{-5} \ 6; \ \alpha(O)=2.50\times10^{-6} \ 5$
									Mult.: From adopted gammas.
409.6 3	0.447 10	2659.792	5-	2250.478 4	ι+ Ε	1(+M2)	-0.029 23	0.00349 9	$\alpha(K)=0.00305 \ 8; \ \alpha(L)=0.000361 \ 10; \ \alpha(M)=6.89\times10^{-5} \ 18; \ \alpha(N+)=1.29\times10^{-5} \ 4$
									$\alpha(N)=1.22\times10^{-5} 4$; $\alpha(O)=6.90\times10^{-7} 18$ Mult., δ : From adopted gammas. E1 from $\alpha(K)$ exp=0.0027 10 (1970Ko12) in ¹¹⁰ In s Decay
446.812 [#] 3	0.0281 [#] 15	2926.709	5+	2479.896 6	5 ⁺ M	11+E2	-0.39 2	0.00883	$\alpha(K)=0.00768 \ 11; \ \alpha(L)=0.000936 \ 14; \ \alpha(M)=0.000180 \ 3; \ \alpha(N+)=3.38\times 10^{-5} \ 5$
	"								α (N)=3.20×10 ⁻⁵ 5; α (O)=1.83×10 ⁻⁶ 3 Mult., δ : From adopted gammas.
460.85 [#] 8	0.428 [#] 8	2539.632	5-	2078.80 3	8- E2	2		0.00845	α (K)=0.00726 <i>11</i> ; α (L)=0.000965 <i>14</i> ; α (M)=0.000186 <i>3</i> ; α (N+)=3.43×10 ⁻⁵ <i>5</i>

 $^{110}_{48}\mathrm{Cd}_{62}\text{-}2$

					11	¹⁰ In ε decay	(4.92 h)	1977MeZY (co	ontinued)
							$\gamma(^{110}\text{Cd})$ (c	continued)	
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.@	δ ^{&c}	α^{\dagger}	Comments
461.1 ^{<i>a</i>}	2.3	3525.22	6+	3064.68	6+	E2		0.00843	$\alpha(N)=3.27 \times 10^{-5} 5; \alpha(O)=1.641 \times 10^{-6} 23$ Mult.: From adopted gammas. $\alpha(K)=0.00725 11; \alpha(L)=0.000963 14; \alpha(M)=0.000186 3;$ $\alpha(N+)=3.43 \times 10^{-5} 5$ $\alpha(N)=2.26 \times 10^{-5} 5; \alpha(O)=1.638 \times 10^{-6} 23$
461.80 ^{<i>a</i>} 13	4.8	3121.56	6+	2659.792	5-	[E1]		0.00258	Mult.: From adopted gammas. $\alpha(K)=0.00225 \ 4; \ \alpha(L)=0.000265 \ 4; \ \alpha(M)=5.07\times10^{-5} \ 8; \ \alpha(N+)=9.52\times10^{-6} \ 14$
467.01 4	0.184 22	2250.478	4+	1783.45	2+	E2		0.00812	$\alpha(N)=9.01\times10^{-6} \ 13; \ \alpha(O)=5.12\times10^{-7} \ 8 \\ \alpha(K)=13\times10^{-3} \ 4 \ (1979Sy02) \\ \alpha(K)=0.00698 \ 10; \ \alpha(L)=0.000926 \ 13; \ \alpha(M)=0.0001785 \ 25; \\ \alpha(N+-)=3.29\times10^{-5} \ 5 $
560.32 11	1.9 <i>1</i>	3121.56	6+	2561.261	4+	E2		0.00483	$\alpha(N)=3.14\times10^{-5} 5; \alpha(O)=1.580\times10^{-6} 23$ I_{γ} : From adopted gammas. $\alpha(K)=0.00417 6; \alpha(L)=0.000536 8; \alpha(M)=0.0001032 15;$ $\alpha(N+)=1.92\times10^{-5} 3$
581.93 9	8.7 <i>3</i>	3121.56	6+	2539.632	5-	E1(+M2)	-0.01 10	0.00150 15	$\alpha(N)=1.82\times10^{-5} 3; \ \alpha(O)=9.54\times10^{-7} 14$ Mult.: $\alpha(K)\exp=3.8\times10^{-3} 5$. Other: $3.3\times10^{-3} 16$ (1970Ko12). $\alpha(K)=0.00131 13; \ \alpha(L)=0.000154 17; \ \alpha(M)=2.9\times10^{-5} 4; \ \alpha(N+)=5.5\times10^{-6} 6$
584.21 8	6.6 2	3064.68	6+	2479.896	6+	M1+E2	+0.0 3	0.00458	$\begin{aligned} \alpha(N) &= 5.2 \times 10^{-6} \ 6; \ \alpha(O) &= 3.0 \times 10^{-7} \ 4 \\ \alpha(K) &= 0.00400 \ 6; \ \alpha(L) &= 0.000476 \ 7; \ \alpha(M) &= 9.12 \times 10^{-5} \ 13; \\ \alpha(N+) &= 1.725 \times 10^{-5} \ 25 \\ \alpha(N) &= 1.629 \times 10^{-5} \ 23; \ \alpha(O) &= 9.59 \times 10^{-7} \ 16 \\ E &= 0.00400 \ A &= 0.0040$
									E_{γ} : No final level within 5 sigmas. Uncertainty on energy probably underestimated. Least-squares fit gives 584.76 <i>3</i> . K/(L+M)=9 <i>3</i> (1962Ka08).
603.03 [#] 4	0.072 [#] 9	2078.80	3-	1475.770	2+	E1(+M2)	-0.14 22	0.0016 11	$\alpha(K)=0.0014 \ 10; \ \alpha(L)=0.00017 \ 12; \ \alpha(M)=3.2\times10^{-5} \ 24; \ \alpha(N+)=6.E-6 \ 5$
620.3553 [#] 17	0.053 [#] 8	2162.781	3+	1542.424	4+	M1+E2	-0.50 5	0.00391	$\alpha(N)=6.E-65; \alpha(O)=3.2\times10^{-7} 24$ $\alpha(K)=0.003415; \alpha(L)=0.0004106; \alpha(M)=7.86\times10^{-5} 11;$ $\alpha(N+)=1.482\times10^{-5} 21$
626.24 7	1.5 <i>I</i>	2876.754	6+	2250.478	4+	E2		0.00357	$\alpha(N)=1.401\times10^{-5}\ 20;\ \alpha(O)=8.11\times10^{-7}\ 12$ Mult., δ : From adopted gammas. $\alpha(K)=0.00309\ 5;\ \alpha(L)=0.000391\ 6;\ \alpha(M)=7.52\times10^{-5}\ 11;$ $\alpha(N+)=1.400\times10^{-5}\ 20$ $\alpha(N)=1.220\times10^{-5}\ 10\times10^{-7}\ 10$
641.68 5	26.4 6	3121.56	6+	2479.896	6+	M1(+E2)		0.00351 17	$\alpha(N)=1.529\times10^{-5} I9; \ \alpha(O)=7.11\times10^{-7} I0$ Mult.: $\alpha(K)\exp=3.0\times10^{-3} 4$. Other: $3.5\times10^{-3} I8$ (1970Ko12). $\alpha(K)=0.00305 I6; \ \alpha(L)=0.000373 9; \ \alpha(M)=7.16\times10^{-5} I7; \ \alpha(N+)=1.34\times10^{-5} 4$ $\alpha(N)=1.27\times10^{-5} 4; \ \alpha(O)=7.2\times10^{-7} 6$

ω

L

				1	10 In ε dec	eay (4.92 h) 1977	MeZY (contin	ued)
						γ ⁽¹¹⁰ Cd) (continu	ued)	
${\rm E}_{\gamma}^{\ddagger}$	$\mathrm{I}_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f J	f Mult.	@	$lpha^{\dagger}$	Comments
648.58 8	0.4 1	3525.22	6+	2876.754 6	+ M1+	E2 +0.20 +10-12	0.00357 6	Mult.: α (K)exp=2.96×10 ⁻³ 21. Other: 3.5×10^{-3} 8 (1970Ko12). δ -0.05 +16-10 or +0.74 +17-25 (1977Be19). α (K)=0.00311 5; α (L)=0.000370 6; α (M)=7.09×10 ⁻⁵ 10; α (N+)=1.341×10 ⁻⁵ 19
								$\alpha(N) = 1.266 \times 10^{-5} \ 18; \ \alpha(O) = 7.45 \times 10^{-7} \ 12$ $\alpha(K) \exp: = 4.2 \times 10^{-3} \ 12 \ (1979 \text{Sy02}). \ \text{Other:} \ 1.2 \times 10^{-3} \ 4$ (1980Ba58).
657.750 10	100 2	657.755	2+	0.0 0	* E2		0.00314	$\alpha(K)=0.00272 \ 4; \ \alpha(L)=0.000342 \ 5; \ \alpha(M)=6.57\times10^{-5} \ 10; \\ \alpha(N+)=1.224\times10^{-5} \ 18 \\ \alpha(N)=1.161\times10^{-5} \ 17; \ \alpha(O)=6.26\times10^{-7} \ 9 \\ M_{2}(L+M) = 0.5 \ (10(2K-08))$
677.6 ^{<i>a</i>} 5	4.6 5	2220.024	4+	1542.424 4	+ M1+	E2 -0.34 2	0.00320	Mult.: $K/(L+M)=0.0.5 (1962Ka08)$. $\alpha(K)\exp=2.2\times10^{-3} 4 (1979Sy02)$ $\alpha(K)=0.00279 4; \alpha(L)=0.000332 5; \alpha(M)=6.37\times10^{-5} 9;$ $\alpha(N+)=1.203\times10^{-5} 17$ $\alpha(N)=1.126\times10^{-5} 16; \alpha(Q)=6.65\times10^{-7} 10$
687.0091 [#] 18	0.127 [#] 20	2162.781	3+	1475.770 2	+ M1+	E2 -1.69 +2-4	0.00289	$\begin{aligned} \alpha(N) &= 1.136 \times 10^{-7} I6; \ \alpha(O) &= 6.03 \times 10^{-7} I6 \\ \alpha(K) &= 0.00251 \ 4; \ \alpha(L) &= 0.000309 \ 5; \ \alpha(M) &= 5.93 \times 10^{-5} \ 9; \\ \alpha(N+) &= 1.111 \times 10^{-5} \ 16 \\ \alpha(N) &= 1.052 \times 10^{-5} \ 15; \ \alpha(O) &= 5.85 \times 10^{-7} \ 9 \\ \text{Mult} \ 5; \ \text{From edented comments} \end{aligned}$
706.67 ^b	0.13	2926.709	5+	2220.024 4	+ M1+	E2 -1.15 +5-6	0.00275	$\alpha(K)=0.00239 \ 4; \ \alpha(L)=0.000291 \ 5; \ \alpha(M)=5.58\times10^{-5} \ 8; \\ \alpha(N+)=1.048\times10^{-5} \ 15 \\ \alpha(N)=9.92\times10^{-6} \ 14; \ \alpha(O)=5.61\times10^{-7} \ 9 \\ Mult.: \ From 1980Ba58.$
707.40 ^b 2	30.0 10	3187.30	8+	2479.896 6	* E2		0.00260	δ: From adopted gammas. $-0.5 2$ in ¹¹⁰ In ε Decay (4.9 h). $\alpha(K)=0.00226 4$; $\alpha(L)=0.000281 4$; $\alpha(M)=5.40\times10^{-5} 8$; $\alpha(N+)=1.008\times10^{-5} 15$ $\alpha(N)=9.56\times10^{-6} 14$; $\alpha(O)=5.21\times10^{-7} 8$ Mult.: From $\alpha(K)$ exp=2.61×10 ⁻³ 16. E2+M1 with $\delta=+0.52 + 12 - 10$ reported in 1980Ba58 See also 1977Be19. If $J^{\pi}=8^{+}$ M1 component is impossible. Other: $\alpha(K)$ exp=2.9×10 ⁻³ 6 (1970Ko12). K/(L+M)=6.0 5 (1962Ka08).
708.12 ^b	1.67 <i>17</i>	2250.478	4+	1542.424 4	+ M1+	E2 -0.14 <i>3</i>	0.00291	$\alpha(K)=0.00254 \ 4; \ \alpha(L)=0.000301 \ 5; \ \alpha(M)=5.76\times10^{-5} \ 8; \\ \alpha(N+)=1.090\times10^{-5} \ 16 \\ \alpha(N)=1.029\times10^{-5} \ 15; \ \alpha(O)=6.07\times10^{-7} \ 9 \\ \text{Mult} \ \delta; \ \text{From adopted gammas}$
744.26 3	2.0 1	2220.024	4+	1475.770 2	+ E2		0.00229	$\alpha(K)=0.00199 \ 3; \ \alpha(L)=0.000246 \ 4; \ \alpha(M)=4.73\times10^{-5} \ 7; \ \alpha(N+)=8.83\times10^{-6} \ 13 \ \alpha(N)=8.37\times10^{-6} \ 12; \ \alpha(O)=4.60\times10^{-7} \ 7 \ Mult.: From the decay pattern. \ \alpha(K)exp=0.0021 \ 2. Other:$

4

 $^{110}_{48}\mathrm{Cd}_{62}\text{-}4$

L

					1	10 In ε deca	ay (4.92 h)	1977MeZY	(continued)
							$\gamma(^{110}\text{Cd})$	(continued)	
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	δ ^{&c}	α^{\dagger}	Comments
			_						0.0022 9 (1970Ko12). Mult=M1+E2 by 1980Ba58 and
759.87 6	3.2 1	3239.517	6+	2479.896	6+	M1+E2	+0.29 10	0.00245	1970K612. $\alpha(K)=0.00214 \ 4; \ \alpha(L)=0.000254 \ 4; \ \alpha(M)=4.86\times10^{-5} \ 8; \ \alpha(N+)=9.19\times10^{-6} \ 14 \ \alpha(N)=8.68\times10^{-6} \ 13; \ \alpha(O)=5.11\times10^{-7} \ 0$
									E_{γ} : No final level within 4 sigmas. Uncertainty on energy probably underestimated. Least-squares fit gives 759.60 3. Mult., δ : From adopted gammas. α (K)exp=2.2×10 ⁻³ 1 in 1 ¹⁰ In c Decay (4.92 h)
763.93	0.17	2926.709	5+	2162.781	3+	E2		0.00215	$\alpha(K)=0.00186 \ 3; \ \alpha(L)=0.000230 \ 4; \ \alpha(M)=4.42\times10^{-5} \ 7; \ \alpha(N+)=8.26\times10^{-6} \ 12$
									$\alpha(N)=7.83\times10^{-6}$ II; $\alpha(O)=4.32\times10^{-7}$ 6 Mult : From adopted gammas
774.71 7	0.042 21	2250.478	4+	1475.770	2+	E2		0.00207	$\alpha(K)=0.00180 \ 3; \ \alpha(L)=0.000222 \ 4; \ \alpha(M)=4.26\times10^{-5} \ 6; \ \alpha(N+)=7.97\times10^{-6} \ 12$
									$\alpha(N)=7.55\times10^{-6}$ 11; $\alpha(O)=4.17\times10^{-7}$ 6
^x 795.42 3	0.33 3								I_{γ} ,Mult.: From adopted gammas.
795.42 3	0.33 3	3275.32	8+	2479.896	6+	E2		0.00194	α (K)=0.001689 24; α (L)=0.000208 3; α (M)=3.98×10 ⁻⁵ 6; α (N+)=7.46×10 ⁻⁶ 11
									$\alpha(N)=7.07\times10^{-6} \ 10; \ \alpha(O)=3.92\times10^{-7} \ 6$
									Mult.: From adopted gammas. $\alpha(K) \exp (2.6 \times 10^{-5} 8 \text{ in }^{110} \text{ ln})$ $\varepsilon \text{ Decay (4.9 h).}$
818.016 ^{<i>a</i>} 12	2.3 1	1475.770	2+	657.755	2+	M1+E2	-1.36 6	0.00191	α (K)=0.001666 24; α (L)=0.000201 3; α (M)=3.86×10 ⁻⁵ 6; α (N+)=7.25×10 ⁻⁶ 11
									α (N)=6.86×10 ⁻⁶ 10; α (O)=3.91×10 ⁻⁷ 6
									Mult.: $\alpha(K)\exp[1.91\times10^{-9}15]$. Other: $1.9\times10^{-9}8$ (1970Ko12).
									δ : From adopted gammas.
844.667 13	3.3 1	3064.68	6+	2220.024	4+	E2		1.68×10^{-3}	$\alpha(K)=0.001463\ 21;\ \alpha(L)=0.000179\ 3;\ \alpha(M)=3.43\times10^{-5}\ 5;\ \alpha(N+)=6.43\times10^{-6}\ 9$
									$\alpha(N)=6.09\times10^{-6}$ 9; $\alpha(O)=3.40\times10^{-7}$ 5 Mult : $\alpha(K) \approx 1.46\times10^{-3}$ 8. Other: 1.50×10 ⁻³ 7
871.08 5	0.32 4	3121.56	6+	2250.478	4+	[E2]		1.56×10^{-3}	$\alpha(\text{K})=0.001361 \ 19; \ \alpha(\text{L})=0.0001658 \ 24; \ \alpha(\text{M})=3.18\times10^{-5} \ 5; \ \alpha(\text{N}+)=5.96\times10^{-6} \ 9$
								2	$\alpha(N) = 5.65 \times 10^{-6} 8; \alpha(O) = 3.16 \times 10^{-7} 5$
884.667 ^{<i>a</i>} 13	94.5 <i>19</i>	1542.424	4+	657.755	2+	E2		1.51×10^{-3}	$\alpha(K)=0.001313 \ 19; \ \alpha(L)=0.0001597 \ 23; \ \alpha(M)=3.06\times10^{-5} \ 5; \ \alpha(N+)=5.74\times10^{-6} \ 8$
									$\alpha(N)=5.44\times10^{-6} \ 8; \ \alpha(O)=3.05\times10^{-7} \ 5$ Mult.: $\alpha(K)\exp=1.34\times10^{-3} \ 8.$ Other: 1.31 2 (1970Ko12).
901.53 5	2.0 1	3121.56	6+	2220.024	4+	[E2]		1.44×10^{-3}	$\alpha(K)=0.001257 \ 18; \ \alpha(L)=0.0001526 \ 22; \ \alpha(M)=2.93\times10^{-5} \ 4;$

S

 $^{110}_{48}\mathrm{Cd}_{62}\text{--}5$

L

						110 In ε de	cay (4.92 h) 1977MeZY	(continued)
							γ (¹¹⁰ C	d) (continued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E _f	\mathbf{J}_{f}^{π}	Mult.@	δ ^{&c}	α^{\dagger}	Comments
937.478 <i>13</i>	69.6 <i>14</i>	2479.896	6+	1542.424	4+	E2		1.32×10^{-3}	$\begin{aligned} &\alpha(\text{N}+)=5.49\times10^{-6}\ 8\\ &\alpha(\text{N})=5.20\times10^{-6}\ 8;\ \alpha(\text{O})=2.92\times10^{-7}\ 4\\ &\alpha(\text{K})=0.001149\ 16;\ \alpha(\text{L})=0.0001390\ 20;\ \alpha(\text{M})=2.66\times10^{-5}\ 4; \end{aligned}$
007.16.4	10.7.2	2520 (22	<i>z</i> -	1542 424	4+	$E1(\cdot M2)$	0.02.5	4.01×10-4.17	$\alpha(N+)=5.00\times10^{-6}$ 7 $\alpha(N)=4.73\times10^{-6}$ 7; $\alpha(O)=2.67\times10^{-7}$ 4 Mult.: $\alpha(K)\exp=1.14\times10^{-3}$ 8. Other: 1.1×10^{-3} 3 (1970Ko12). K/(L+M)=6.6 14 (1962Ka08). (K) 0.000420 15; $\alpha(L) = 4.07\times10^{-5}$ 18; $\alpha(M) = 0.5\times10^{-6}$ 4.
997.10 4	10.7 2	2339.632	3	1342.424 2	4.	E1(+M2)	-0.03 3	4.91×10 · 1/	
1018.87 ^{<i>a</i>}	0.30	2561.261	4+	1542.424 4	4+	M1+E2	-0.6 4	0.00123 5	$\alpha(K)=0.00107 \ 4; \ \alpha(L)=0.000126 \ 5; \ \alpha(M)=2.42\times10^{-5} \ 8; \\ \alpha(N+)=4.57\times10^{-6} \ 16 \\ \alpha(N)=4.32\times10^{-6} \ 15; \ \alpha(O)=2.54\times10^{-7} \ 11 \\ Mult \ \delta: \ From adopted gammas$
1019.48 ^{<i>a</i>} 1	0.7	3239.517	6+	2220.024	4+	[E2]		1.09×10^{-3}	$\alpha(K)=0.000952 \ 14; \ \alpha(L)=0.0001144 \ 16; \ \alpha(M)=2.19\times10^{-5} \ 3; \ \alpha(N+)=4.12\times10^{-6} \ 6 \ \alpha(N)=3.90\times10^{-6} \ 6; \ \alpha(O)=2.22\times10^{-7} \ 4$
1045.24 9	0.82 4	3525.22	6+	2479.896 (6+	M1(+E2)	+0.3 3	0.00119 4	$ α(K) = 0.00104 4; α(L) = 0.000122 4; α(M) = 2.34 \times 10^{-5} 7; $
1085.52 4	1.39 5	2561.261	4+	1475.770 2	2+	E2		9.52×10 ⁻⁴	$\alpha(K)=0.000830 I^2$; $\alpha(L)=9.92\times10^{-5} I^4$; $\alpha(M)=1.90\times10^{-5} 3$; $\alpha(N+)=3.57\times10^{-6} 5$ $\alpha(N)=3.38\times10^{-6} 5$; $\alpha(O)=1.94\times10^{-7} 3$ Mult.: $\alpha(K)\exp=0.8\times10^{-3} 2$. Other: 0.7 2. From $\alpha(K)\exp$ M1 contribution cannot be excluded
1117.36 2	4.3 1	2659.792	5-	1542.424	4+	E1		4.01×10 ⁻⁴	$\alpha(K)=0.000346 5; \alpha(L)=3.98\times10^{-5} 6; \alpha(M)=7.60\times10^{-6} 11; \alpha(N+)=8.04\times10^{-6} 12 \alpha(N)=1.356\times10^{-6} 19; \alpha(O)=7.98\times10^{-8} 12; \alpha(IPF)=6.60\times10^{-6} 10 $ Mult : $\alpha(K)=0.00000000000000000000000000000000000$
1125.67 3	0.2 1	1783.45	2+	657.755 2	2+	M1+E2	+0.28 4	1.01×10^{-3}	$\alpha(K) \exp[=0.9 \times 10^{-3} 2 (1979 \text{Sy02})]$ $\alpha(K) = 0.000886 \ 13; \ \alpha(L) = 0.0001038 \ 15; \ \alpha(M) = 1.98 \times 10^{-5} \ 3;$ $\alpha(N+) = 4.78 \times 10^{-6} \ 7$

6

From ENSDF

 $^{110}_{48}$ Cd₆₂-6

	¹¹⁰ In ε decay (4.92 h) 1977MeZY (continued)											
	γ ⁽¹¹⁰ Cd) (continued)											
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f J ²	f Mult. [@]	δ ^{&c}	$lpha^\dagger$	Comments				
¥11(2.00.7	0.2.1							$\alpha(N)=3.55\times10^{-6} 5$; $\alpha(O)=2.11\times10^{-7} 3$; $\alpha(IPF)=1.019\times10^{-6} 15$ δ : From adopted gammas.				
1305.11 9	0.3 <i>1</i> 0.35 <i>3</i>	3525.22	6+	2220.024 4	+ [E2]		6.70×10^{-4}	α (K)=0.000563 8; α (L)=6.65×10 ⁻⁵ 10; α (M)=1.272×10 ⁻⁵ 18; α (N+)=2.73×10 ⁻⁵ 4				
1334.14 6	1.0 <i>1</i>	2876.754	6+	1542.424 4	+ E2		6.48×10 ⁻⁴	$\alpha(N)=2.27\times10^{-6} 4; \ \alpha(O)=1.316\times10^{-7} \ 19; \ \alpha(IPF)=2.49\times10^{-5} 4$ $\alpha(K)\exp=0.5\times10^{-3} 2 \ (1970Ko12)$ $\alpha(K)=0.000539 \ 8; \ \alpha(L)=6.35\times10^{-5} 9; \ \alpha(M)=1.215\times10^{-5} \ 17;$ $\alpha(N+)=3.37\times10^{-5} 5$ $\alpha(N)=2.17\times10^{-6} 3; \ \alpha(O)=1.259\times10^{-7} \ 18; \ \alpha(IPF)=3.14\times10^{-5} 5$				
								$\alpha(N)=2.17\times10^{-5}$ s, $\alpha(O)=1.259\times10^{-7}$ 7, $\alpha(PF)=5.14\times10^{-5}$ S Mult.: From adopted gammas. From $\alpha(K)\exp=0.5\times10^{-3}$ 2 (1970Ko12) M1,E2 is favored in ¹¹⁰ In ε Decay (4.9 h). If $\alpha(K)\exp=0.33\times10^{-3}$ 9 (1980Ba58) is accepted, then multipolarity is E1.				
1384.39 <i>17</i>	0.19 <i>1</i>	2926.709	5+	1542.424 4	+ M1+E2	-0.44 1	6.82×10 ⁻⁴	$\alpha(K)=0.000562 \ 8; \ \alpha(L)=6.55\times10^{-5} \ 10; \ \alpha(M)=1.252\times10^{-5} \ 18; \ \alpha(N+)=4.25\times10^{-5} \ 6 \ \alpha(N)=2.24\times10^{-6} \ 4; \ \alpha(Q)=1.331\times10^{-7} \ 19; \ \alpha(DE)=4.02\times10^{-5} \ 6$				
1421.04 4	0.47 6	2078.80	3-	657.755 2	+ E1(+M2)	+0.01 8	4.32×10 ⁻⁴ 10	$ δ: From adopted gammas0.42 4 in 110 In ε Decay (4.9 h). α(K)=0.000226 9; α(L)=2.59\times10^{-5} 10; α(M)=4.94\times10^{-6} 19; α(N+)=0.000175 3 $				
								$\alpha(N)=8.8\times10^{-7}$ 4; $\alpha(O)=5.23\times10^{-8}$ 20; $\alpha(IPF)=0.000174$ 3 Mult.: From decay pattern. $\alpha(K)\exp=0.51\times10^{-3}$ 13 and Mult=M1,E2 by 1979Sy02.				
1475.76 <i>3</i>	1.27 7	1475.770	2+	0.0 0	+ E2		5.77×10 ⁻⁴	$\alpha(\mathbf{K})=0.000440 \ 7; \ \alpha(\mathbf{L})=5.16\times10^{-5} \ 8; \ \alpha(\mathbf{M})=9.87\times10^{-6} \ 14; \\ \alpha(\mathbf{N}+)=7.51\times10^{-5} \ 11 \\ \alpha(\mathbf{N})=1.760\times10^{-6} \ 25; \ \alpha(\mathbf{O})=1.029\times10^{-7} \ 15; \ \alpha(\mathbf{IPF})=7.32\times10^{-5} \ 11 \\ \alpha(\mathbf{N})=1.760\times10^{-6} \ 25; \ \alpha(\mathbf{O})=1.029\times10^{-7} \ 15; \ \alpha(\mathbf{IPF})=7.32\times10^{-5} \ 11 \\ \alpha(\mathbf{N})=1.760\times10^{-6} \ 25; \ \alpha(\mathbf{O})=1.029\times10^{-7} \ 15; \ \alpha(\mathbf{IPF})=7.32\times10^{-5} \ 11 \\ \alpha(\mathbf{N})=1.02\times10^{-6} \ 10^{-6} \$				
1505.00 2	0.26 4	2162.781	3+	657.755 2	+ M1+E2	-1.27 3	5.90×10 ⁻⁴	Mult.: $\alpha(K)\exp=3.6\times10^{-4}$ 7. Other: 3.8×10^{-4} 2 (1970Ko12). $\alpha(K)=0.000446$ 7; $\alpha(L)=5.20\times10^{-5}$ 8; $\alpha(M)=9.94\times10^{-6}$ 14; $\alpha(N+)=8.21\times10^{-5}$ 12 (D) 1076 1076 107 1077 15 (DE) 0.002 1075 10				
								α (N)=1.776×10 ° 25; α (O)=1.048×10 ° 75; α (IPF)=8.02×10 ° 72 δ : From adopted gammas0.30 7 (1980Ba58) in ¹¹⁰ In ε Decay (4.9 h).				
1521.66 20	0.17 3	3064.68	6+	1542.424 4	+ [E2]		5.64×10^{-4}	$\alpha(K)=0.000415 \ 6; \ \alpha(L)=4.86\times10^{-5} \ 7; \ \alpha(M)=9.28\times10^{-6} \ 13; \\ \alpha(N+)=9.13\times10^{-5} \ 13 \\ \alpha(N)=1.655\times10^{-6} \ 24; \ \alpha(O)=9.69\times10^{-8} \ 14; \ \alpha(IPF)=8.96\times10^{-5} \ 13 \\ \alpha(D)=1.65\times10^{-6} \ 24; \ \alpha(D)=9.69\times10^{-8} \ 14; \ \alpha(DF)=8.96\times10^{-5} \ 13 \\ \alpha(D)=1.65\times10^{-6} \ 24; \ \alpha(D)=9.69\times10^{-8} \ 14; \ \alpha(DF)=8.96\times10^{-5} \ 13 \\ \alpha(D)=1.65\times10^{-6} \ 24; \ \alpha(D)=9.69\times10^{-8} \ 14; \ \alpha(DF)=8.96\times10^{-5} \ 13 \\ \alpha(D)=1.6\times10^{-5} \ 13 $				
1562.26 4	0.51 3	2220.024	4+	657.755 2	+ E2		5.56×10 ⁻⁴	E_{γ} : ΔEγ was increased by the evaluators to fit the level scheme. $\alpha(K)=0.000394$ 6; $\alpha(L)=4.61\times10^{-5}$ 7; $\alpha(M)=8.80\times10^{-6}$ 13; $\alpha(N+)=0.0001067$ 15 $\alpha(N+)=1.571\times10^{-6}$ 23; $\alpha(Q)=0.21\times10^{-8}$ 12; $\alpha(IBE)=0.0001050$ 15				
1570.07.10	0.26.6	2121 56	7±	1540 404 4			5 52 10-4	Mult.: From decay pattern. α (K)exp=4.5×10 ⁻⁴ <i>I</i> and mult=M1,E2 by 1979Sy02.				
15/9.07 12	0.26 6	3121.56	0^+	1542.424 4	[E2]		5.53×10 ⁻⁴	$\alpha(K)=0.000386\ 6;\ \alpha(L)=4.51\times10^{-5}\ 7;\ \alpha(M)=8.62\times10^{-6}\ 12;$				

 \neg

 $^{110}_{48}\text{Cd}_{62}$ -7

¹¹⁰In ε decay (4.92 h) **1977MeZY** (continued)

$\gamma(^{110}$ Cd) (continued)

${\rm E_{\gamma}}^{\ddagger}$	I_{γ} [‡] <i>d</i>	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.@	δ ^{&c}	α^{\dagger}	Comments
1592.69 12	0.15 7	2250.478	4+	657.755 2+	E2		5.51×10 ⁻⁴	$ \begin{array}{c} \alpha(\mathrm{N}+)=0.0001133 \ 16 \\ \alpha(\mathrm{N})=1.538\times10^{-6} \ 22; \ \alpha(\mathrm{O})=9.02\times10^{-8} \ 13; \ \alpha(\mathrm{IPF})=0.0001117 \ 16 \\ \alpha(\mathrm{K})=0.000380 \ 6; \ \alpha(\mathrm{L})=4.43\times10^{-5} \ 7; \ \alpha(\mathrm{M})=8.47\times10^{-6} \ 12; \\ \alpha(\mathrm{N}+)=0.0001187 \ 17 \\ \end{array} $
1629.65 ^e	0.47	2287.4?	2+	657.755 2+	M1+E2	+0.06 3	5.87×10 ⁻⁴	$\begin{aligned} &\alpha(\text{N})=1.512\times10^{-6}\ 22;\ \alpha(\text{O})=8.87\times10^{-6}\ 13;\ \alpha(\text{IPF})=0.0001171\ 17\\ &I_{\gamma},\text{Mult.: From adopted gammas.}\\ &\alpha(\text{K})=0.000408\ 6;\ \alpha(\text{L})=4.73\times10^{-5}\ 7;\ \alpha(\text{M})=9.03\times10^{-6}\ 13;\\ &\alpha(\text{N}+)=0.0001227\ 18 \end{aligned}$
1697.77 25	0.26 1	3239.517	6+	1542.424 4+	[E2]		5.45×10 ⁻⁴	$\alpha(N)=1.616\times10^{-6}\ 23;\ \alpha(O)=9.66\times10^{-8}\ 14;\ \alpha(IPF)=0.0001210\ 17$ Mult., δ : From adopted gammas. $\alpha(K)=0.000336\ 5;\ \alpha(L)=3.91\times10^{-5}\ 6;\ \alpha(M)=7.47\times10^{-6}\ 11;$ $\alpha(N+)=0.0001628\ 23$
1783.50 5	0.07 <i>3</i>	1783.45	2+	0.0 0+	E2		5.49×10 ⁻⁴	$\alpha(N)=1.334\times10^{-6}$ 19; $\alpha(O)=7.85\times10^{-8}$ 11; $\alpha(IPF)=0.0001614$ 23 $E_{\gamma}: \Delta E_{\gamma}$ was increased by the evaluators to fit the level scheme. $\alpha(K)=0.000306$ 5; $\alpha(L)=3.56\times10^{-5}$ 5; $\alpha(M)=6.79\times10^{-6}$ 10;
^x 1802.39 7	0.63 9							α (N+)=0.000201 3 α (N)=1.212×10 ⁻⁶ 17; α (O)=7.15×10 ⁻⁸ 10; α (IPF)=0.000200 3 I_{γ} ,Mult.: From adopted gammas. I γ =0.15 8 in ¹¹⁰ In ε decay (4.92 h).
1903.36 <i>12</i>	0.30 4	2561.261	4+	657.755 2+	E2		5.65×10 ⁻⁴	$\alpha(\mathbf{K})=0.000271 \ 4; \ \alpha(\mathbf{L})=3.14\times10^{-5} \ 5; \ \alpha(\mathbf{M})=6.00\times10^{-6} \ 9; \\ \alpha(\mathbf{N}+)=0.000256 \ 4 \\ \alpha(\mathbf{N})=1.071\times10^{-6} \ 15; \ \alpha(\mathbf{O})=6.33\times10^{-8} \ 9; \ \alpha(\mathbf{IPF})=0.000255 \ 4 \\ \mathbf{M} = 10^{-6} \ 15; \ \alpha(\mathbf{O})=6.33\times10^{-8} \ 9; \ \alpha(\mathbf{IPF})=0.000255 \ 4 \\ \mathbf{M} = 10^{-6} \ 15; \ \alpha(\mathbf{O})=6.33\times10^{-8} \ 9; \ \alpha(\mathbf{IPF})=0.000255 \ 4 \\ \mathbf{M} = 10^{-6} \ M$
1982.77 <i>18</i>	0.39 1	3525.22	6+	1542.424 4+	[E2]		5.80×10 ⁻⁴	Mult.: From adopted gammas. $\alpha(K)=0.000251 \ 4; \ \alpha(L)=2.91\times10^{-5} \ 4; \ \alpha(M)=5.55\times10^{-6} \ 8; \ \alpha(N+)=0.000294 \ 5$ $\alpha(N)=9.92\times10^{-7} \ 14; \ \alpha(O)=5.87\times10^{-8} \ 9; \ \alpha(IPF)=0.000293 \ 5$

[†] Additional information 1.
[‡] From 2000De11 (based on 1977MeZY), unless otherwise stated.

From adopted gammas.

^(a) Deduced from $\alpha(K)$ exp and δ in 1980Ba58, unless otherwise stated. $\alpha(K)$ exp were normalized to $\alpha(K)(657.750\gamma)=0.00272$.

[&] From adopted gammas.

^{*a*} Doublet.

 ∞

^b Triplet.

^c If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^d For absolute intensity per 100 decays, multiply by 0.983 19.

^e Placement of transition in the level scheme is uncertain.

^x γ ray not placed in level scheme.

6

 $^{110}_{48}\mathrm{Cd}_{62}$

6-⁷⁹p3^{8†}