$^{110}\mathrm{Ag}\,\beta^-$ decay (249.83 d)

	His	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	G. Gürdal and F. G. Kondev	NDS 113, 1315 (2012)	1-Aug-2011

Parent: ¹¹⁰Ag: E=117.59 5; $J^{\pi}=6^+$; $T_{1/2}=249.83$ d 4; $Q(\beta^-)=2892.9$ 15; $\%\beta^-$ decay=98.67 8

1993Ki18: 5 mg ¹⁰⁹Ag, enriched to 98.20% was irradiated by the thermal neutrons at Tsing-Hua Open-Pool reactor. γ -singles were measured using a HPGe-NaI(Tl) Compton-suppression spectrometer. Two HPGe detectors were used for $\gamma\gamma(\theta)$ measurements. Measured:E γ , I γ , $\gamma\gamma$ -coin., $\gamma\gamma(\theta)$. Deduced: Energy levels, mult., δ .

1990Me15: γ -ray energies were analyzed using automated multi-spectrometer γ -ray counting facility at LLNL's Nuclear Chemistry Division. Measured: E γ , I γ .

1981Ma09: ^{110m}Ag sources were produced at I'Institut National des Radioéléments de Flerus by slow-neutron activation of natural silver. γ-rays were detected using three Ge(Li) and one intrinsic Ge coaxial detectors. Measured: Eγ, Iγ.

1979Ve03: ^{110m}Ag sources were prepared at Bhabha Atomic Research Center at India. γ -rays were detected using a 64.1 cc Ge(Li) detector. 64.1 cc Ge(Li) and 3"x3" NaI(Tl) detectors were used for $\gamma\gamma(\theta)$ measurements. Measured: E γ , I γ , $\gamma\gamma(\theta)$. Deduced: Energy levels, mult., δ .

Others: 2000He14, 1993Ka37, 1981Ma09, 1980Ro22, 1980Yo05, 1979Co14, 1978Ma26, 1978Wa07, 1977Ge12, 1974Pr07, 1972Ph04, 1971Si21, 1970Kr14, 1969Br03, 1967Kr04, 1967Le19, 1967Mo12, 1965Si17, 1964Br21, 1964Ne05, 1964Sc06, 1963Su07, 1963Da03, 1962Ka07, 1960Vo06.

¹¹⁰Cd Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	0^{+}	stable	
657.7621 11	2+		μ : 0.52 3 from Adopted Levels. Other: 0.56 10 (from g=0.28 5, deduced using T _{1/2} =5 ps 1 in nuclear orientation (1978Wa07)) in ¹¹⁰ Ag β^- Decay (249.83 d).
1475.7900 14	2^{+}		
1542.4438 14	4+		
1783.491 16	2^{+}		
2078.485 12	3-		
2162.8012 15	3+		J^{π} : J=3 from $\gamma\gamma(\theta)$ results of 1970Kr03 and 1980Ba58.
2220.0680 14	4+		
2250.549 12	4+		
2287.57? 5	2+		a 2287.41 level is fed from $J^{\pi}=1^{+110}$ Ag β^{-} decay (24.6 s). Because no γ feeding from higher levels is observed here from $J^{\pi}=6^{+110}$ Ag β^{-} decay (249.76 d), the weak β feeding to this level suggests a high spin (J>4); therefore, the possibility of a close-lying doublet is not excluded.
2356.2?	2^{+}		
2433.23 3	3+		
2479.933 3	6+		
2539.672 8	5-		
2561.284 9	4+		
2659.857 11	5-		
2662.50? 10	0^+		Observation in this decay is questionable because of $J^{\pi}=0^+$ assignment in ¹¹⁰ Ag β^- decay (24.6 s), and no γ feeding to this level is observed here. Otherwise, this must be a close-lying doublet.
2705.668 10	$(4)^+$		
2707.397 8	$(4)^+$		
2793.420 7	$(4)^{+}$		
2842.62 6	$(5)^{-}$		
2876.808 11	6+		
2926.7465 16	5+		J^{π} : J=5 from $\gamma\gamma(\theta)$ results of 1970Kr03 and 1980Ba58.

[†] From least-squares fit to $E\gamma's$.

[‡] From Adopted Levels.

$^{110}\mathrm{Ag}\,\beta^-$ decay (249.83 d) (continued)

β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	$\log ft^{\dagger}$	Comments
(83.7 15)	2926.7465	68.6 5	5.365 25	av Eβ=21.80 41
				E(decay): Other: 87 2 (1963Da03).
(133.7 15)	2876.808	0.399 18	8.228 25	av $E\beta = 35.67 \ 43$
(167.9 15)	2842.62	0.0232 9	9.773 21	av $E\beta = 45.53 \ 44$
(350.6 15)	2659.857	0.036 5	10.61 6	av $E\beta = 102.83\ 50$
(470.8 15)	2539.672	0.061 5	10.81 4	av $E\beta = 144.11\ 54$
530 2	2479.933	31.3 <i>3</i>	8.277 6	av $E\beta = 165.5255$
				E(decay): Weighted average of 531 2 (1967Mo12), 530 5 (1962Ka07) and 529 3 (1963Da03).

[†] From total intensity balances and the level scheme.
[‡] For absolute intensity per 100 decays, multiply by 0.9867 8.

$\gamma(^{110}\text{Cd})$

Iγ normalization: From Σ Ti(g.s.)=100. β^- feeding to the $J^{\pi} = 0^+$ ¹¹⁰Cd g.s. is assumed to be negligible.

ω

E_{γ}^{\ddagger}	$I_{\gamma}^{\#a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{\&}$	α^{\dagger}	Comments
1.60 <i>10</i> 120.23 <i>3</i>	0.0179 9	2707.397 2659.857	$(4)^+$ 5 ⁻	2705.668 2539.672	$(4)^+$ 5 ⁻	M1 M1(+E2)	-0.1 3	0.28 7	Mult.: From M1/M2/M3=10 2/1.0/0.35 10 (1993Ka37). $\alpha(K)=0.24$ 5; $\alpha(L)=0.031$ 14; $\alpha(M)=0.006$ 3; $\alpha(N+)=0.0011$ 5 $\alpha(N)=0.0011$ 5; $\alpha(O)=5.9\times10^{-5}$ 8
133.333 7	0.0780 16	2926.7465	5+	2793.420	(4)+	[M1]		0.207	Mult., δ : From adopted gammas. $\alpha(K)=0.180 \ 3; \ \alpha(L)=0.0224 \ 4; \ \alpha(M)=0.00431 \ 6; \ \alpha(N+)=0.000811 \ 12$
219.348 8	0.076 5	2926.7465	5+	2707.397	(4)+	[M1]		0.0539	$\alpha(N)=0.000767711; \alpha(O)=4.39\times10^{-5777}$ $\alpha(K)=0.04687; \alpha(L)=0.005758; \alpha(M)=0.00110416;$ $\alpha(N+)=0.0002083$
221.078 10	0.0716 10	2926.7465	5+	2705.668	(4)+	[M1]		0.0527	$\alpha(N)=0.000197 \ 3; \ \alpha(O)=1.137\times10^{-5} \ 16$ $\alpha(K)=0.0458 \ 7; \ \alpha(L)=0.00563 \ 8; \ \alpha(M)=0.001081 \ 16;$ $\alpha(N+)=0.000204 \ 3$
229.420 ^c 22	0.0126 14	2479.933	6+	2250.549	4+	[E2]		0.0801	α (N)=0.000193 3; α (O)=1.114×10 ⁻⁵ 16 α (K)=0.0670 10; α (L)=0.01070 15; α (M)=0.00208 3; α (N+)=0.000373 6
^x 264.25 6 266.914 12	0.0064 <i>6</i> 0.043 <i>4</i>	2926.7465	5+	2659.857	5-	[E1]		0.01057	$\alpha(N)=0.000358 5; \alpha(O)=1.410\times10^{-3} 20$ $\alpha(K)=0.00922 13; \alpha(L)=0.001100 16; \alpha(M)=0.000210 3;$ $\alpha(N+)=3.92\times10^{-5} 6$
295.42 18	0.00110 7	2078.485	3-	1783.491	2+	(E1)		0.00805	$\alpha(N)=3.72\times10^{-5} 6; \ \alpha(O)=2.04\times10^{-6} 3$ $\alpha(K)=0.00702 \ 10; \ \alpha(L)=0.000836 \ 12; \ \alpha(M)=0.0001597 \ 23;$ $\alpha(N+)=2.98\times10^{-5} 5$
310.4 6	0.00009 4	1783.491	2+	1475.7900	2+	[E2]		0.0290	$\begin{aligned} &\alpha(N) = 2.83 \times 10^{-5} \ 4; \ \alpha(O) = 1.563 \times 10^{-6} \ 22 \\ I_{\gamma}: \ From adopted gammas. \\ &E_{\gamma}, Mult.: \ From adopted gammas. \\ &\alpha(K) = 0.0246 \ 4; \ \alpha(L) = 0.00357 \ 6; \ \alpha(M) = 0.000692 \ 11; \\ &\alpha(N+) = 0.0001257 \ 20 \\ &\alpha(N) = 0.0001203 \ 19; \ \alpha(O) = 5.38 \times 10^{-6} \ 9 \end{aligned}$
341.3 ^c 1	0.0023 5	2561.284	4+	2220.0680	4+	[M1]		0.01715	E _γ ,I _γ : From adopted gammas. α (K)=0.01493 21; α (L)=0.00181 3; α (M)=0.000347 5; α (N+)=6.55×10 ⁻⁵ 10
x356.42 7 360.23 8	0.0045 <i>3</i> 0.008 <i>5</i>	2793.420	(4)+	2433.23	3+	[M1]		0.01496	$\alpha(N)=6.19\times10^{-5} \ 9; \ \alpha(O)=3.61\times10^{-6} \ 5$ $\alpha(K)=0.01303 \ 19; \ \alpha(L)=0.001575 \ 22; \ \alpha(M)=0.000302 \ 5; \ \alpha(N+)=5.71\times10^{-5} \ 8$
365.448 11	0.098 5	2926.7465	5+	2561.284	4+	[M1]		0.01443	α (N)=5.39×10 ⁻⁵ 8; α (O)=3.15×10 ⁻⁶ 5 α (K)=0.01257 18; α (L)=0.001519 22; α (M)=0.000291 4;

						110 Ag β^- de	ecay (249.83 o	d) (continued	<u>)</u>
						<u>γ(</u>	¹¹⁰ Cd) (contin	nued)	
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\#a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	$\delta^{\&}$	α^{\dagger}	Comments
387.075 9	0.0549 9	2926.7465	5+	2539.672	5-	[E1]		0.00399	$\begin{aligned} &\alpha(\text{N}+)=5.50\times10^{-5} \ 8\\ &\alpha(\text{N})=5.20\times10^{-5} \ 8; \ \alpha(\text{O})=3.03\times10^{-6} \ 5\\ &\alpha(\text{K})=0.00348 \ 5; \ \alpha(\text{L})=0.000412 \ 6; \ \alpha(\text{M})=7.88\times10^{-5} \ 11; \\ &\alpha(\text{N}+)=1.476\times10^{-5} \ 21 \end{aligned}$
396.894 22	0.039 4	2876.808	6+	2479.933	6+	M1+E2		0.0125 8	$\alpha(N)=1.398\times10^{-5} \ 20; \ \alpha(O)=7.86\times10^{-7} \ 11$ $\alpha(K)=0.0108 \ 6; \ \alpha(L)=0.00139 \ 17; \ \alpha(M)=0.00027 \ 4;$ $\alpha(N+)=5.0\times10^{-5} \ 6$ $\alpha(N)=4.7\times10^{-5} \ 6; \ \alpha(O)=2.50\times10^{-6} \ 5$
409.38 ^b 4	0.0067 ^b 7	2659.857	5-	2250.549	4+	E1(+M2)	-0.029 23	0.00350 9	Mult.: From adopted gammas. $\alpha(K)=0.00305 \ 8; \ \alpha(L)=0.000361 \ 10; \ \alpha(M)=6.90\times10^{-5} \ 18; \ \alpha(N+)=1.29\times10^{-5} \ 4 \ \alpha(N)=1.23\times10^{-5} \ 4; \ \alpha(O)=6.91\times10^{-7} \ 18 \ Mult \ \delta:$ From adopted gammas
409.6 ^b 1	0.0041 ^b 5	2842.62	(5)-	2433.23	3+	[M2]		0.0396	$\alpha(K)=0.0340 5; \alpha(L)=0.00452 7; \alpha(M)=0.000877 13; \alpha(N+)=0.0001649 24 \alpha(N)=0.0001561 22; \alpha(O)=8.77\times10^{-6} 13 I_{\gamma}$: Component of doublet. Placement proposed by 1981Ma09.
446.812 <i>3</i>	3.87 5	2926.7465	5+	2479.933	6+	M1+E2	-0.39 2	0.00883	Iγ from adopted gammas. $\alpha(K)=0.00768 \ 11; \ \alpha(L)=0.000936 \ 14; \ \alpha(M)=0.000180 \ 3; \ \alpha(N+)=3.38\times10^{-5} \ 5$ $\alpha(N)=3.20\times10^{-5} \ 5; \ \alpha(O)=1.83\times10^{-6} \ 3$ Mult.: $\alpha(K)$ exp=0.0070 11 . δ : Weighted average of -0.40 6 (1978Wa07), -0.39 +2-1
460.85 8	0.0054 16	2539.672	5-	2078.485	3-	E2		0.00845	(1979Ve03), -0.35 5 (1980Ru03) and -0.45 20 (1970Kr03). $\alpha(K)=0.00726 \ 11; \ \alpha(L)=0.000965 \ 14; \ \alpha(M)=0.000186 \ 3; \ \alpha(N+)=3.43\times10^{-5} \ 5$ $\alpha(N)=3.27\times10^{-5} \ 5; \ \alpha(O)=1.641\times10^{-6} \ 23$
467.01 4	0.0264 <i>19</i>	2250.549	4+	1783.491	2+	E2		0.00812	E _γ ,Mult.: From adopted gammas. $\alpha(K)=0.00698 \ 10; \ \alpha(L)=0.000926 \ 13; \ \alpha(M)=0.0001785 \ 25; \ \alpha(N+)=3.29\times10^{-5} \ 5 \ \alpha(N)=3.14\times10^{-5} \ 5; \ \alpha(O)=1.580\times10^{-6} \ 23$ Mult : From adopted gammas
493.38 5	0.0101 11	2926.7465	5+	2433.23	3+	[E2]		0.00692	$\alpha(K)=0.00596 \ 9; \ \alpha(L)=0.000782 \ 11; \ \alpha(M)=0.0001507 \ 22; \ \alpha(N+)=2.79\times10^{-5} \ 4 \ \alpha(D)=1.252\times10^{-6} \ 10$
544.56 <i>4</i>	0.019 3	2707.397	(4)+	2162.8012	3+	M1+E2	+0.21 11	0.00541	$\alpha(N)=2.05\times10^{-5} 4; \ \alpha(O)=1.353\times10^{-5} 19$ $\alpha(K)=0.00472 7; \ \alpha(L)=0.000565 8; \ \alpha(M)=0.0001083 \ 16;$ $\alpha(N+)=2.05\times10^{-5} 3$ $\alpha(N)=1.93\times10^{-5} 3; \ \alpha(O)=1.131\times10^{-6} \ 17$ Mult., δ : From adopted gammas.
573.0 4	0.0183 <i>13</i> 0.018 <i>1</i>	2793.420	(4)+	2220.0680	4+	M1+E2	-0.3 3	0.00478 9	α (K)=0.00416 8; α (L)=0.000499 7; α (M)=9.57×10 ⁻⁵ 14; α (N+)=1.81×10 ⁻⁵ 3

4

From ENSDF

 $^{110}_{48}\text{Cd}_{62}\text{--}4$

					1	10 Ag β^- dec	ay (249.83 d) (continued)	
						$\gamma(^{11}$	⁰ Cd) (contin	ued)	
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\#a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	δ ^{&}	α^{\dagger}	Comments
603.08 20	0.012 8	2078.485	3-	1475.7900	2+	E1(+M2)	-0.14 22	0.0016 11	$\alpha(N)=1.707\times10^{-5} 24; \ \alpha(O)=9.96\times10^{-7} 24$ Mult., δ : From adopted gammas. $\alpha(K)=0.0014 \ 10; \ \alpha(L)=0.00017 \ 12; \ \alpha(M)=3.2\times10^{-5} \ 24; \ \alpha(N+)=6.E-6 \ 5$
620.3553 <i>17</i>	2.86 8	2162.8012	3+	1542.4438	4+	M1+E2	-0.50 5	0.00391	α(N)=6.E-6.5; α(O)=3.2×10-7 24 E _γ : ΔE _γ was increased by the evaluators to fit the level scheme. Mult.,δ: From adopted gammas. $α(K)=0.00341 5; α(L)=0.000410 6; α(M)=7.86×10^{-5} 11; α(N+)=1.482×10^{-5} 21 $ $α(N)=1.401×10^{-5} 20; α(O)=8.11×10^{-7} 12 $ Mult.: $α(K)$ exp=0.0031 6. δ: From adopted gammas. Other: -0.54 8 (weighted average of -0.50 8 (1980Ru03), -0.8 5 (1970Kr03) and -0.85 25 (1979Ve03)) and -1.2 5 or -0.7 3 (1978Wa07) in ¹¹⁰ Ag
626.256 10	0.227 17	2876.808	6+	2250.549	4+	E2		0.00357	$β^-$ Decay (249.83 d). $α(K)=0.00309 5; α(L)=0.000391 6; α(M)=7.52×10^{-5} 11;$ $α(N+)=1.400×10^{-5} 20$ $α(N)=1.329×10^{-5} 19; α(O)=7.11×10^{-7} 10$
630.62 5	0.035 5	2793.420	(4)+	2162.8012	3+	M1(+E2)	+0.02 7	0.00382	Mult.: From adopted gammas. $\alpha(K)=0.00334 5; \alpha(L)=0.000396 6; \alpha(M)=7.59\times10^{-5} 11;$ $\alpha(N+)=1.436\times10^{-5} 21$ $\alpha(N)=1.356\times10^{-5} 19; \alpha(O)=8.00\times10^{-7} 12$ Mult., δ : From adopted gammas.
x647.9 <i>4</i> 651.3 <i>5</i>	0.0185 <i>5</i> 0.0029 <i>7</i>	2433.23	3+	1783.491	2+	[M1]		0.00354	$\alpha(K)=0.00309 5; \ \alpha(L)=0.000367 6; \ \alpha(M)=7.03\times10^{-5} 10; \\ \alpha(N+)=1.330\times10^{-5} 19 \\ \alpha(N)=1.256\times10^{-5} 18; \ \alpha(O)=7.41\times10^{-7} 11$
657.7600 11	100	657.7621	2+	0.0	0+	E2		0.00314	E _γ ,I _γ : from adopted gammas. $\alpha(K)=0.00272 \ 4$; $\alpha(L)=0.000342 \ 5$; $\alpha(M)=6.57\times10^{-5} \ 10$; $\alpha(N+)=1.224\times10^{-5} \ 18$ $\alpha(N)=1.161\times10^{-5} \ 17$; $\alpha(O)=6.26\times10^{-7} \ 9$ Mult.: $\alpha(K)$ exp=0.00264 $\ 10$, directly measured by 1964Ne05.
^x 666.90 9 ^x 676.59 7 677.6217 12	0.030 <i>14</i> 0.15 <i>1</i> 11.19 <i>5</i>	2220.0680	4+	1542.4438	4+	M1+E2	-0.34 2	0.00320	K/L=8.1 7, (M+N)/L=0.23 6 (1993Ka37). I _{γ} : From 1990Me15. $\alpha(K)=0.00279 4; \alpha(L)=0.000332 5; \alpha(M)=6.37\times10^{-5} 9; \alpha(N+)=1.203\times10^{-5} 17$ $\alpha(N)=1.136\times10^{-5} 16; \alpha(O)=6.65\times10^{-7} 10$ Mult.: From $\alpha(K)\exp=0.0025 4$. δ : From adopted gammas. Others: -0.25 20 (1970Kr03), -0.44 5 (1973Jo08), -0.36 3 (1978Wa07), -0.25 15 (1979Ve03), and -0.28 5 (1980Ru03).

S

 $^{110}_{48}\mathrm{Cd}_{62}\text{--}5$

					110 Ag β^- (decay (249.83 d)	(continued)	
					<u> </u>	(¹¹⁰ Cd) (continu	ied)	
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\#a}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [@]	δ ^{&}	α^{\dagger}	Comments
687.0091 <i>18</i>	6.83 3	2162.8012	3+	1475.7900 2+	M1+E2	-1.69 +2-4	0.00289	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00251 \ 4; \ \alpha(\mathrm{L}) = 0.000309 \ 5; \ \alpha(\mathrm{M}) = 5.93 \times 10^{-5} \\ &9; \ \alpha(\mathrm{N}+) = 1.111 \times 10^{-5} \ 16 \\ &\alpha(\mathrm{N}) = 1.052 \times 10^{-5} \ 15; \ \alpha(\mathrm{O}) = 5.85 \times 10^{-7} \ 9 \\ &\mathrm{Mult.:} \ \alpha(\mathrm{K}) \exp = 0.0022 \ 5. \\ &\delta: \ \mathrm{From \ adopted \ gammas. \ Others: \ -1.80 \ 5 \ (1973 \mathrm{Jo08}), \\ &-1.65 \ 9 \ (1978 \mathrm{Wa07}), \ -1.27 \ 38 \ (1980 \mathrm{Ru03}), \ -1.1 \ +8-4 \end{aligned}$
706.6760 15	17.46 7	2926.7465	5+	2220.0680 4+	M1+E2	-1.15 +5-6	0.00275	(1970Kr03) and $-1.5 + 6-22$ (1979Ve03) in ¹¹⁰ Ag β^- Decay (249.83 d). $\alpha(K)=0.00239 4$; $\alpha(L)=0.000291 5$; $\alpha(M)=5.58\times10^{-5}$ 8 ; $\alpha(N+)=1.048\times10^{-5} 15$ $\alpha(N)=9.92\times10^{-6} 14$; $\alpha(O)=5.61\times10^{-7} 9$ Mult.: $\alpha(K)$ exp=0.00262 23. K/L= 4.7 (1963Su07). δ : Weighted average of $-1.42 7$ (1978Wa07), $-1.0 3$ (1970Kr03), $-0.58 2$ (1973Jo08), $-1.8 + 7-9$
708.133 20	0.24 5	2250.549	4+	1542.4438 4+	M1+E2	-0.14 3	0.00291	(1979Ve03) and $-1.1 \ 3 \ (1980Ru03)$. $\alpha(K)=0.00254 \ 4; \ \alpha(L)=0.000301 \ 5; \ \alpha(M)=5.76\times10^{-5} \ 8; \ \alpha(N+)=1.090\times10^{-5} \ 16 \ \alpha(N)=1.029\times10^{-5} \ 15; \ \alpha(O)=6.07\times10^{-7} \ 9 \ E_{\gamma}$: From 1990Me15.
714.94 <i>I</i>	0.0098 24	2793.420	(4)+	2078.485 3-	[E1]		9.54×10 ⁻⁴	$\alpha(K) = 0.000835 \ 12; \ \alpha(L) = 9.73 \times 10^{-5} \ 14; \\ \alpha(M) = 1.86 \times 10^{-5} \ 3; \ \alpha(N+) = 3.50 \times 10^{-6} \ 5 \\ \alpha(N) = 3.31 \times 10^{-6} \ 5; \ \alpha(O) = 1.92 \times 10^{-7} \ 3 \\ E \ \star Weighted every eq. (f. 1081 Ma00) and 1002 K; 18$
744.2755 18	4.99 <i>3</i>	2220.0680	4+	1475.7900 2+	E2		0.00229	
763.9424 17	23.64 7	2926.7465	5+	2162.8012 3+	E2		0.00215	$\alpha(K)=0.00186 \ 3; \ \alpha(L)=0.000230 \ 4; \ \alpha(M)=4.42\times10^{-5} \ 7; \ \alpha(N+)=8.26\times10^{-6} \ 12 \ \alpha(N)=7.83\times10^{-6} \ 11; \ \alpha(O)=4.32\times10^{-7} \ 6 \ Mult.: \ From adopted gammas. \ Other: \ E2 \ from \ \alpha(K)exp=0.00184 \ 17 \ (1967Mo12). \ E2(+M3) \ from \ 1979Ve03 \ with \ \delta=-0.10 \ +2-3 \ in \ ^{110}Ag \ \beta^- \ Decay \ (249.83 \ d). \ \delta=Infinite \ (1970Kr03).$
774.71 7	0.006 3	2250.549	4+	1475.7900 2+	E2		0.00207	α (K)=0.00180 3; α (L)=0.000222 4; α (M)=4.26×10 ⁻⁵

6

From ENSDF

L

					1	10 Ag β^- dec	ay (249.83	d) (continued)	
						$\gamma(^{11}$	⁰ Cd) (conti	nued)	
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\#a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [@]	δ ^{&}	α^{\dagger}	Comments
818.0244 18	7.77 4	1475.7900	2+	657.7621	2+	M1+E2	-1.36 6	0.00191	$\hline 6; \ \alpha(N+)=7.97\times10^{-6} \ 12 \\ \alpha(N)=7.55\times10^{-6} \ 11; \ \alpha(O)=4.17\times10^{-7} \ 6 \\ \text{Mult.: From adopted gammas.} \\ \alpha(K)=0.001666 \ 24; \ \alpha(L)=0.000201 \ 3; \\ \alpha(M)=3.86\times10^{-5} \ 6; \ \alpha(N+)=7.25\times10^{-6} \ 11 \\ \alpha(N)=6.86\times10^{-6} \ 10; \ \alpha(O)=3.91\times10^{-7} \ 6 \\ \text{Mult.: } \ \alpha(K)\exp=0.00172 \ 19 \ (1967\text{Mo12}). \\ \hline \end{tabular}$
004 (701 12	70.4.10	1542 4420	4+	(77.7(2))	2+	52		1.51, 10-3	δ: From adopted gammas. δ =-1.20 <i>15</i> (1970Kr03), -1.36 <i>10</i> (1973Jo08), -1.2 <i>5</i> (1978Wa07), -1.25 +22-10 (1979Ve03), and -1.44 <i>10</i> (1980Ru03) in ¹¹⁰ Ag β ⁻ decay (249.83 d)) Other: -0.27 <i>10</i> (1979Ve03).
884.6781 13	78.4 12	1542.4438	4+	657.7621	2*	E2		1.51×10 ⁻⁵	$\alpha(K)=0.001313\ 19;\ \alpha(L)=0.0001597\ 23;\ \alpha(M)=3.06\times10^{-5}\ 5;\ \alpha(N+)=5.74\times10^{-6}\ 8\ \alpha(N)=5.44\times10^{-6}\ 8;\ \alpha(O)=3.05\times10^{-7}\ 5\ Mult.:\ \alpha(K)exp=0.00126\ 6,\ directly\ measured\ by\ 1964Ne05,\ K/L=7\ 6\ (1963Su07).$
890.7 5	0.0009 4	2433.23	3+	1542.4438	4+	[M1]		1.72×10^{-3}	$\alpha(K)=0.001506\ 22;\ \alpha(L)=0.0001772\ 25;\alpha(M)=3.39\times10^{-5}\ 5;\ \alpha(N+)=6.42\times10^{-6}\ 9\alpha(N)=6.06\times10^{-6}\ 9;\ \alpha(O)=3.59\times10^{-7}\ 5$ E. L: from adopted gammas
937.485 <i>3</i>	36.6 3	2479.933	6+	1542.4438	4+	E2		1.32×10 ⁻³	$\alpha(K)=0.001149 \ 16; \ \alpha(L)=0.0001390 \ 20; \ \alpha(M)=2.66\times10^{-5} \ 4; \ \alpha(N+)=5.00\times10^{-6} \ 7 \ \alpha(N)=4.73\times10^{-6} \ 7; \ \alpha(O)=2.67\times10^{-7} \ 4 \ Mult.: From adopted gammas. Other: From \ \alpha(K)exp=0.0012 \ 8 \ (1964Ne05) \ and E2 \ from \ 1967Mo12. \ M3+E2 \ with \ \delta=-0.07 \ +7-3 \ (1979Ve03) \ in \ ^{110}Ag \ \beta^- \ Decay \ (249.53 \ d). \ Other \ \delta= \ Infinite \ (1970Kr03) \ in \ ^{110}Ag \ \beta^- \ Decay \ (249.53 \ d).$
957.38 6	0.0099 19	2433.23	3+	1475.7900	2+	M1+E2	-0.9 7	0.00137 9	$\alpha(K) = 0.00120 \ 8; \ \alpha(L) = 0.000142 \ 8; \ \alpha(M) = 2.72 \times 10^{-5}$ 15; \alpha(N+) = 5.1 \times 10^{-6} \ 3 \alpha(N) = 4.9 \times 10^{-6} \ 3; \alpha(O) = 2.83 \times 10^{-7} \ 21 Mult \delta: From adopted gammas
997.246 14	0.136 4	2539.672	5-	1542.4438	4+	E1(+M2)	-0.03 5	4.91×10 ⁻⁴ 17	$\alpha(K)=0.000430 \ 15; \ \alpha(L)=4.97\times10^{-5} \ 18; \\ \alpha(M)=9.5\times10^{-6} \ 4; \ \alpha(N+)=1.79\times10^{-6} \ 7 \\ \alpha(N)=1.69\times10^{-6} \ 6; \ \alpha(O)=9.9\times10^{-8} \ 4 \\ Mult : From adopted gammas$
1018.94 4	0.0149 7	2561.284	4+	1542.4438	4+	M1+E2	-0.6 4	0.00123 5	$ α(K)=0.00107 4; α(L)=0.000126 5; α(M)=2.42×10^{-5} $ $ β; α(N+)=4.57×10^{-6} 16 $ $ α(N)=4.32×10^{-6} 15; α(O)=2.54×10^{-7} 11 $ Mult.,δ: From adopted gammas.
^x 1050.4 3 1085.447 14	0.008 <i>1</i> 0.076 <i>4</i>	2561.284	4+	1475.7900	2+	E2		9.52×10 ⁻⁴	$\alpha(K)=0.000830 \ 12; \ \alpha(L)=9.92\times 10^{-5} \ 14;$

						110 Ag β^{-}	decay (249.83 d)	(continued)	
						-	γ(¹¹⁰ Cd) (continue	ed)	
	E_{γ}^{\ddagger}	$I_{\gamma}^{\#a}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [@]	δ ^{&}	α^{\dagger}	Comments
	1117.48 <i>3</i>	0.0517 9	2659.857	5-	1542.4438 4+	E1		4.01×10 ⁻⁴	$\alpha(M)=1.90\times10^{-5} 3; \alpha(N+)=3.57\times10^{-6} 5$ $\alpha(N)=3.38\times10^{-6} 5; \alpha(O)=1.94\times10^{-7} 3$ Mult.: From adopted gammas. $\alpha(K)=0.000346 5; \alpha(L)=3.98\times10^{-5} 6; \alpha(M)=7.60\times10^{-6} 11; \alpha(N+)=8.06\times10^{-6} 12$ $\alpha(N)=1.356\times10^{-6} 19; \alpha(O)=7.98\times10^{-8} 12;$
	1125.709 20	0.0322 14	1783.491	2+	657.7621 2+	M1+E2	+0.28 4	1.01×10 ⁻³	$\alpha(\text{IPF})=6.62 \times 10^{-6} \ 10^{-6}$ Mult.: From adopted gammas. $\alpha(\text{K})=0.000886 \ 13; \ \alpha(\text{L})=0.0001038 \ 15;$ $\alpha(\text{M})=1.98 \times 10^{-5} \ 3; \ \alpha(\text{N}+)=4.78 \times 10^{-6} \ 7$ $\alpha(\text{N})=3.55 \times 10^{-6} \ 5; \ \alpha(\text{O})=2.11 \times 10^{-7} \ 3;$ $\alpha(\text{IPF})=1.020 \times 10^{-6} \ 15$
	1163.19 5	0.078 24	2705.668	(4)+	1542.4438 4+	M1+E2	-0.03 +6-9	9.56×10 ⁻⁴	Mult., δ : From adopted gammas. $\alpha(K)=0.000834 \ 12; \ \alpha(L)=9.74\times10^{-5} \ 14;$ $\alpha(M)=1.86\times10^{-5} \ 3; \ \alpha(N+)=6.34\times10^{-6} \ 9$ $\alpha(N)=3.33\times10^{-6} \ 5; \ \alpha(O)=1.98\times10^{-7} \ 3;$ $\alpha(IPF)=2.81\times10^{-6} \ 4$
þ	1164.98 7	0.046 <i>3</i>	2707.397	(4)+	1542.4438 4+	M1(+E2)	<+0.3	9.48×10 ⁻⁴ 15	Mult., δ : From adopted gammas. $\alpha(K)=0.000826 \ 13; \ \alpha(L)=9.66\times10^{-5} \ 15; \ \alpha(M)=1.85\times10^{-5} \ 3; \ \alpha(N+)=6.46\times10^{-6} \ 9 \ \alpha(N)=3.30\times10^{-6} \ 5; \ \alpha(O)=1.96\times10^{-7} \ 3; \ \alpha(IPF)=2.96\times10^{-6} \ 5$
	1186.7 <i>1</i>	0.00170 5	2662.50?	0+	1475.7900 2+	[E2]		7.92×10 ⁻⁴	Mult., δ : From adopted gammas. $\alpha(K)=0.000686 \ 10; \ \alpha(L)=8.15\times10^{-5} \ 12; \ \alpha(M)=1.560\times10^{-5} \ 22; \ \alpha(N+)=8.49\times10^{-6} \ 12 \ \alpha(N)=2.78\times10^{-6} \ 4; \ \alpha(O)=1.602\times10^{-7} \ 23; \ \alpha(DE) = 5.55\times10^{-6} \ 9$
	1251.06 4	0.028 3	2793.420	(4)+	1542.4438 4+	[M1]		8.27×10 ⁻⁴	$\alpha(\text{IPF})=5.55\times10^{-6}8$ $\alpha(\text{K})=0.000712 \ 10; \ \alpha(\text{L})=8.31\times10^{-5} \ 12;$ $\alpha(\text{M})=1.589\times10^{-5} \ 23; \ \alpha(\text{N}+)=1.571\times10^{-5} \ 22$ $\alpha(\text{N})=2.84\times10^{-6} \ 4; \ \alpha(\text{O})=1.693\times10^{-7} \ 24;$ $\alpha(\text{IPE})=1 \ 270\times10^{-5} \ 18$
	1300.07 7	0.0200 7	2842.62	(5)-	1542.4438 4+	E1(+M2)	+0.0 1	3.93×10 ⁻⁴ 14	$\alpha(\text{M}^{-1})=1.270\times10^{-16} \text{ Is}$ $\alpha(\text{K})=0.000264 \ I3; \ \alpha(\text{L})=3.03\times10^{-5} \ I5;$ $\alpha(\text{M})=5.8\times10^{-6} \ 3; \ \alpha(\text{N}+)=9.34\times10^{-5} \ I6$ $\alpha(\text{N})=1.03\times10^{-6} \ 6; \ \alpha(\text{O})=6.1\times10^{-8} \ 3;$ $\alpha(\text{IPF})=9\ 23\times10^{-5} \ I6$
	1334.348 16	0.150 5	2876.808	6+	1542.4438 4+	E2		6.48×10 ⁻⁴	$\alpha(K) = 0.000539 \ 8; \ \alpha(L) = 6.35 \times 10^{-5} \ 9; \alpha(M) = 1.214 \times 10^{-5} \ 17; \ \alpha(N+) = 3.37 \times 10^{-5} \ 5 \alpha(N) = 2.16 \times 10^{-6} \ 3; \ \alpha(O) = 1.259 \times 10^{-7} \ 18; \alpha(IPF) = 3.14 \times 10^{-5} \ 5 I_{\gamma}: \ Other: \ 0.34 \ 1 \ (1981Ma09). Mult.: From adopted gammas.$

 ∞

 $^{110}_{48}\mathrm{Cd}_{62}\text{--}8$

L

					110 Ag β^- d	ecay (249.8	3 d) (continued)	
					<u> </u>	(¹¹⁰ Cd) (con	tinued)	
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\#a}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	δ ^{&}	α^{\dagger}	Comments
1384.2931 20	26.2 5	2926.7465	5+	1542.4438 4	M1+E2	-0.44 <i>I</i>	6.82×10 ⁻⁴	$\begin{aligned} &\alpha(\mathrm{K}) = 0.000562 \ 8; \ \alpha(\mathrm{L}) = 6.55 \times 10^{-5} \ 10; \ \alpha(\mathrm{M}) = 1.252 \times 10^{-5} \\ &18; \ \alpha(\mathrm{N}+) = 4.25 \times 10^{-5} \ 6 \\ &\alpha(\mathrm{N}) = 2.24 \times 10^{-6} \ 4; \ \alpha(\mathrm{O}) = 1.331 \times 10^{-7} \ 19; \\ &\alpha(\mathrm{IPF}) = 4.01 \times 10^{-5} \ 6 \\ &\mathrm{Mult.:} \ \alpha(\mathrm{K}) \exp = 0.00055 \ 4. \end{aligned}$
	0.000 (0070 405	2-			0.01.0	4.00 10-4 10	δ: Weighted average of -0.37 <i>3</i> (1970Kr03), -0.46 <i>1</i> (1973Jo08), -0.39 <i>2</i> (1978Wa07), -0.42 +7-6 (1979Ve03), and -0.44 <i>2</i> (1980Ru03).
1420.29° <i>10</i>	0.028 4	2078.485	3	657.7621 2	E1(+M2)	+0.01 8	4.32×10 · 10	$ α(K)=0.000226 9; α(L)=2.59\times10^{-5} 10; α(M)=4.95\times10^{-5} 19; α(N)=4.95\times10^{-5} 19; α(N)=8.8\times10^{-7} 4; α(O)=5.23\times10^{-8} 20; α(IPF)=0.000174 3 Eγ: ΔEγ was increased by the evaluators to fit the level scheme. Mult.: From adopted gammas.$
^x 1465.6 <i>1</i> 1475.7792 <i>23</i>	4.27 5	1475.7900	2+	0.0 0+	E2		5.77×10 ⁻⁴	$\alpha(K)=0.000440 \ 7; \ \alpha(L)=5.16\times10^{-5} \ 8; \ \alpha(M)=9.87\times10^{-6} \ 14; \\ \alpha(N+)=7.51\times10^{-5} \ 11 \\ \alpha(N)=1.760\times10^{-6} \ 25; \ \alpha(O)=1.029\times10^{-7} \ 15; \\ \alpha(IPF)=7.32\times10^{-5} \ 11 \\ Mult: \ \alpha(K)=0.00042 \ 6 \\ \alpha(M)=0.00042 \ 6 \\ \alpha(M)=0.00042$
1505.0280 20	13.94 <i>16</i>	2162.8012	3+	657.7621 2*	M1+E2	-1.27 3	5.90×10 ⁻⁴	Mult.: α (K)exp=0.00045 δ. δ: δ (E2/M1)=infinite (1979Ve03 and 1970Kr03). α (K)=0.000446 7; α (L)=5.20×10 ⁻⁵ 8; α (M)=9.94×10 ⁻⁶ 14; α (N+)=8.21×10 ⁻⁵ 12 α (N)=1.776×10 ⁻⁶ 25; α (O)=1.048×10 ⁻⁷ 15; α (IPF)=8.02×10 ⁻⁵ 12 Mult.: α (K)exp=0.00046 4. δ: From adopted gammas. Others: -1.05 16 (1988Kr03)
1562.2940 <i>1</i> 8	1.28 3	2220.0680	4+	657.7621 2 ⁺	E2		5.56×10 ⁻⁴	-1.24 7 (1988Kr03), -1.24 20 (1980Ru03), -1.09 9 (1978Wa07), -1.26 6 (1973Jo08), -0.55 10 (1970Kr03), -0.48 3 (1973Jo08), and -0.40 +9-17 (1979Ve03). α(K)=0.000394 6; α(L)=4.61×10 ⁻⁵ 7; α(M)=8.80×10 ⁻⁶ 13; α(N+)=0.0001067 15 α(N)=1.570×10 ⁻⁶ 22; α(O)=9.21×10 ⁻⁸ 13; α(IPF)=0.0001050 15 Mult.: From adopted gammas. Other: E2(+M3) (1979Ve03) with -0.10 +2-3 (1979Ve03) and (E2) from α(K)exp=0.00046 7 (1967Mo12) in ¹¹⁰ Ag β ⁻ Decay
^x 1572.35 <i>14</i> 1592.77 <i>6</i>	0.0012 <i>3</i> 0.0219 <i>8</i>	2250.549	4+	657.7621 2*	E2		5.51×10 ⁻⁴	(249.83 d). δ =Infinite (1970Kr03) in ¹¹⁰ Ag β^- Decay (249.83 d). I _{\gamma} : From 1990Me15. $\alpha(K)$ =0.000379 6; $\alpha(L)$ =4.43×10 ⁻⁵ 7; $\alpha(M)$ =8.47×10 ⁻⁶ 12; $\alpha(N+)$ =0.0001188 17 $\alpha(N)$ =1.511×10 ⁻⁶ 22; $\alpha(O)$ =8.87×10 ⁻⁸ 13;

	110 Ag β^- decay (249.83 d) (continued)													
						γ (¹¹⁰ C	d) (continued)							
E_{γ}^{\ddagger}	$I_{\gamma}^{\#a}$	E _i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Mult.@	δ ^{&}	α^{\dagger}	Comments						
1629.79 5	0.0042 5	2287.57?	2+	657.7621 2+	M1+E2	+0.06 3	5.87×10 ⁻⁴	α (IPF)=0.0001172 <i>17</i> Mult.: From adopted gammas. α (K)=0.000407 6; α (L)=4.73×10 ⁻⁵ 7; α (M)=9.03×10 ⁻⁶ <i>13</i> ; α (N+)=0.0001227 <i>18</i> (N)=0.0001227 <i>18</i> (O)=0.0001210 <i>17</i>						
1698.8 ^c 1	0.0018 <i>3</i>	2356.2?	2+	657.7621 2+	M1+E2	+1.75 15	5.53×10 ⁻⁴	$\alpha(N)=1.615\times10^{-6}23; \ \alpha(O)=9.66\times10^{-6}14; \ \alpha(IPF)=0.0001210^{-17}$ Placement proposed by 1981Ma09. Mult., δ : From adopted gammas. $\alpha(K)=0.000345^{-5}; \ \alpha(L)=4.01\times10^{-5}6; \ \alpha(M)=7.67\times10^{-6}12; \ \alpha(N+)=0.0001600^{-23}$ $\alpha(N)=1.369\times10^{-6}20; \ \alpha(O)=8.09\times10^{-8}12; \ \alpha(IPF)=0.0001586^{-23}$						
1775.42 4	0.0069 <i>3</i>	2433.23	3+	657.7621 2+	M1+E2	-0.35 10	5.69×10 ⁻⁴	Placement proposed by 1981Ma09. Mult., δ : From adopted gammas. $\alpha(K)=0.000338 \ 6; \ \alpha(L)=3.92\times10^{-5} \ 6; \ \alpha(M)=7.49\times10^{-6} \ 12; \ \alpha(N+)=0.000184 \ 3$ $\alpha(N)=1.339\times10^{-6} \ 21; \ \alpha(O)=8.00\times10^{-8} \ 13; \ \alpha(IPF)=0.000183 \ 3$						
1783.49 <i>3</i>	0.0107 5	1783.491	2+	0.0 0+	E2		5.49×10 ⁻⁴	Mult.: From adopted gammas. $\alpha(K)=0.000306\ 5;\ \alpha(L)=3.56\times10^{-5}\ 5;\ \alpha(M)=6.79\times10^{-6}\ 10;$ $\alpha(N+)=0.000201\ 3$						
1903.53 <i>3</i>	0.0169 7	2561.284	4+	657.7621 2+	E2		5.65×10 ⁻⁴	$\alpha(N)=1.212\times10^{-6} \ 17; \ \alpha(O)=7.15\times10^{-8} \ 10; \ \alpha(IPF)=0.000200 \ 3$ Mult.: From adopted gammas. $\alpha(K)=0.000271 \ 4; \ \alpha(L)=3.14\times10^{-5} \ 5; \ \alpha(M)=6.00\times10^{-6} \ 9; \ \alpha(N+)=0.000256 \ 4$						
2004.66 ^c 7	0.0013 4	2662.50?	0+	657.7621 2+	E2		5.85×10 ⁻⁴	$\alpha(N)=1.071\times10^{-7} 13; \alpha(O)=0.33\times10^{-9}; \alpha(IPF)=0.0002554$ Mult.: From adopted gammas. $\alpha(K)=0.0002464; \alpha(L)=2.85\times10^{-5}4; \alpha(M)=5.44\times10^{-6}8; \alpha(N+)=0.0003055$ $\alpha(N)=9.72\times10^{-7} 14; \alpha(O)=5.76\times10^{-8}8; \alpha(IPF)=0.0003045$ E _{\gamma} : Placement proposed by 1981Ma09. Mult.: From Adopted Levels.						

[†] Additional information 1.

[‡] From 2000He14, if available. Otherwise weighted average of values from 1993Ki18, 1990Me15, 1981Ma09 and 1979Ve03, unless otherwise stated.

[#] Weighted averages of 1976De23, 1977Ge12, 1979Ve03, 1980Ro22, 1980Yo05, 1981Ma09, 1990Me15 and 1993Ki18 computed by the Limitation of Statistical Weight method suggested in DDEP database, unless otherwise stated.

[@] From $\alpha(K)\exp(1967Mo12)$, normalized to $\alpha(K)\exp=0.00275$ for the 657.7 γ), unless otherwise stated.

[&] If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^{*a*} For absolute intensity per 100 decays, multiply by 0.9561 9.

^b Multiply placed with undivided intensity.

From ENSDF

 $^{110}\mathrm{Ag}\,\beta^-$ decay (249.83 d) (continued)

 $\gamma(^{110}\text{Cd})$ (continued)

^c Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

11

$^{110}\mathrm{Ag}\,\beta^-$ decay (249.83 d)

13

 $^{110}_{48}$ Cd₆₂-13

 $^{110}_{48}\text{Cd}_{62}\text{--}13$

From ENSDF