	His	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	G. Gürdal and F. G. Kondev	NDS 113, 1315 (2012)	1-Aug-2011

Parent: ¹¹⁰Ag: E=0.0; $J^{\pi}=1^+$; $T_{1/2}=24.56 \text{ s } 11$; $Q(\beta^-)=2892.9 \ 15$; $\%\beta^-$ decay=99.70 3 1972Ka34: Enriched ¹⁰⁹Ag target in a metallic powder form was was irradiated by neutrons at Kyoto University reactor. γ -rays were detected using Ge(Li) and NaI(Tl) detectors. Measured: E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$. Deduced: Energy levels, J^{π} , δ . Others: 1981Ma09, 1972Ok04, 1970Va08, 1967Mo12, 1965Fr01, 1963Da03, 1963Fr07, 1962Ka07.

¹¹⁰Cd Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	0^{+}	stable	
657.51 7	2^{+}		
1473.07 11	0^{+}		J^{π} : $\gamma\gamma(\theta)$ only consistent with J=0, if J(657 keV level)=2 (1972Ka34).
1475.78 9	2^{+}		
1731.41 11	0^{+}		
1783.33 11	2+		J^{π} : $\gamma\gamma(\theta)$ only consistent with J=2, if J(657 keV level)=2 (1972Ka34).
2078.60 12	0^{+}		J^{π} : $\gamma\gamma(\theta)$ only consistent with J=0, if J(657 keV level)=2 (1972Ka34).
2078.81 9	3-		
2287.42 16	2+		
2331.79 13	(2^{+})		
2662.02 12	0^+		J^{π} : $\gamma\gamma(\theta)$ only consistent with J=0, if J(657 keV level)=2 (1972Ka34).

[†] From least-squares fit to $E\gamma's$.

[‡] From Adopted Levels.

 β^{-} radiations

E(decay)	E(level)	Ιβ ^{-†‡#}	$\log ft^{\dagger}$	Comments
(230.9 15)	2662.02	0.0063 8	4.83 6	av E β =64.45 47
(561.1 15)	2331.79	0.0089 7	5.96 4	av $E\beta = 176.6756$
(605.5 15)	2287.42	0.0022 5	6.68 10	av $E\beta = 193.08\ 57$
(814.1 15)	2078.81	0.0027 5	7.05 8	av $E\beta = 273.52\ 60$
(814.3 15)	2078.60	0.0079 15	6.59 9	av $E\beta = 273.60 \ 60$
(1109.6 15)	1783.33	0.0107 17	6.95 7	av $E\beta = 394.39 \ 64$
(1161.5 15)	1731.41	0.0010 5	8.05 22	av E β =416.28 64
(1417.1 15)	1475.78	0.0108 10	7.35 4	av $E\beta = 526.25\ 66$
(1419.8 15)	1473.07	0.0382 23	6.80 <i>3</i>	av $E\beta = 527.4366$
(2235.4 15)	657.51	4.45 24	5.524 24	av $E\beta = 894.22$ 69
				E(decay): Others: 2220 40 (1967Mo12), 2220 (1963Da03), 2180 6 (1962Ka07).
				$I\beta^-$: From 1963Fr07. $I\beta(658 \text{ keV level})/I\beta(g.s.)=0.0465\ 25\ (1963Fr07),\ 0.071$
				22 (1967Mo12), 0.21 (1963Da03) and 0.14 5 (1962Ka07).
(2892.9 15)	0.0	95.18 25	4.6596 25	av E β =1199.36 71
				E(decay): Others: 2891 4 (1967Mo12), 2860 (1963Da03), 2870 1 (1962Ka07).

[†] From total intensity balances and the level scheme, unless otherwise stated.

[±] For β^- intensity per 100 decays multiply by 1.0. [#] For absolute intensity per 100 decays, multiply by 0.9970 *3*.

$\gamma(^{110}\text{Cd})$

I γ normalization: From relative I γ and measured I β (657 keV level)= 4.45% 24 in 1963Fr07.

E_{γ}^{\ddagger}	I_{γ} ^{‡&}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	δ	α^{\dagger}	Comments
255.4 3	0.0023 11	1731.41	0+	1475.78 2+	E2		0.0556	$\begin{aligned} &\alpha(\text{K}) = 0.0467 \ 7; \ \alpha(\text{L}) = 0.00719 \ 11; \ \alpha(\text{M}) = 0.001397 \ 21; \\ &\alpha(\text{N}+) = 0.000251 \ 4 \\ &\alpha(\text{N}) = 0.000241 \ 4; \ \alpha(\text{O}) = 9.98 \times 10^{-6} \ 15 \end{aligned}$
258.3 [#] 1		1731.41	0^{+}	1473.07 0+	E0 [#]			E_{γ} , I_{γ} , Mult.: From adopted gammas.
295.30 8	0.17 3	2078.60	0+	1783.33 2+	E2		0.0342	$\alpha(K)=0.0290 \ 4; \ \alpha(L)=0.00426 \ 6; \ \alpha(M)=0.000826 \ 12; \ \alpha(N+)=0.0001496 \ 21$
								$\alpha(N)=0.0001433\ 21;\ \alpha(O)=6.29\times10^{-6}\ 9$ Mult.: A ₂ =0.259 17, A ₄ =0.753 26, 1783.6 γ gated (0-2-0 spin sequence)
295.42 18	0.0019 4	2078.81	3-	1783.33 2+	(E1)		0.00805	$\alpha(K)=0.00702 \ 10; \ \alpha(L)=0.000836 \ 12; \ \alpha(M)=0.0001597 \ 23; \ \alpha(N+)=2.98\times10^{-5} \ 5$
								$\alpha(N)=2.83\times10^{-5}$ 4; $\alpha(O)=1.563\times10^{-6}$ 22 I _y ,Mult., δ : From adopted gammas.
310.4 6	0.0010 5	1783.33	2+	1473.07 0+	[E2]		0.0290	α (K)=0.0246 4; α (L)=0.00357 6; α (M)=0.000692 11; α (N+)=0.0001257 20
54842	0.028.6	2221 70	(2^{+})	1792 22 2+	FM(1)		0.00522	$\alpha(N)=0.0001203 \ I9; \ \alpha(O)=5.38\times10^{-6} \ 9$ E _y ,I _y : From adopted gammas.
348.4 2	0.038 0	2331.79	(2)	1765.55 2			0.00555	$\alpha(\mathbf{N}) = 0.004057, \ \alpha(\mathbf{L}) = 0.00055538, \ \alpha(\mathbf{M}) = 0.000100515, \ \alpha(\mathbf{N}+) = 2.01 \times 10^{-5} 3$
								E_{γ}, I_{γ} : From adopted gammas.
603.03 4	0.0077 16	2078.81	3-	1475.78 2+	E1(+M2)	-0.14 22	0.0016 11	$\alpha(K)=0.0014 \ 10; \ \alpha(L)=0.00017 \ 12; \ \alpha(M)=3.2\times10^{-5} \ 24; \ \alpha(N+)=6.E-6 \ 5$
								$\alpha(N)=6.E-6.5; \alpha(O)=3.2\times10^{-7} 24$ I _y ,Mult., δ : From adopted gammas.
605.4 [#] 3		2078.60	0^{+}	1473.07 0+	E0 [#]			
657.50 8	100	657.51	2+	0.0 0+	E2		0.00314	α (K)=0.00272 4; α (L)=0.000342 5; α (M)=6.57×10 ⁻⁵ 10; α (N+)=1.225×10 ⁻⁵ 18
815.50 11	0.85 2	1473.07	0^+	657.51 2+	E2		0.00183	$\alpha(N)=1.165\times10^{-5} I/; \ \alpha(O)=6.2/\times10^{-5} 9$ $\alpha(K)=0.001591 \ 23; \ \alpha(L)=0.000195 \ 3; \ \alpha(M)=3.74\times10^{-5} 6;$ $\alpha(N+)=7.01\times10^{-6} I0$
								$\alpha(N)=6.64 \times 10^{-6} \ 10; \ \alpha(O)=3.69 \times 10^{-7} \ 6$ Mult.: A ₂ =0.277 30, A ₄ =0.990 50, 657.51 γ gated (0-2-0 spin
010 00 10	0.20 1	1 475 79	2+	(57.51.0+	M1 - E2	1266	0.00101	sequence). $(K) = 0.0016(5, 24, -(L), 0.000201, 2, -(M), 2.85)(10^{-5})$
818.20 12	0.20 1	14/3./8	2.	057.51 21	MII+E2	-1.30 0	0.00191	$\alpha(\mathbf{N}) = 0.001005 \ 24; \ \alpha(\mathbf{L}) = 0.000201 \ 3; \ \alpha(\mathbf{M}) = 3.85 \times 10^{-5} \ 6; \\ \alpha(\mathbf{N}+) = 7.25 \times 10^{-6} \ 11 \\ (\mathbf{N}) = 6.96 \times 10^{-6} \ 10 = (\mathbf{O}) = 2.01 \times 10^{-7} \ 6$
								$\alpha(1N)=0.80\times10^{\circ}$ 10; $\alpha(O)=3.91\times10^{\circ}$ 0

 \mathbf{N}

 $^{110}_{48}\text{Cd}_{62}$ -2

					110 Ag β^{-}	decay (24.56	5 s) 1972Ka34	(continued)
γ ⁽¹¹⁰ Cd) (continued)								
E_{γ}^{\ddagger}	Ι _γ ‡ &	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_j^{\pi}$	Mult. [@]	δ	α^{\dagger}	Comments
								Mult., δ : From adopted gammas. A ₂ =0.416 <i>41</i> , A ₄ =0.075 <i>50</i> (1979Ve03) and A ₂ =0.481 <i>82</i> , A ₄ =0.155 <i>112</i> (1970Kr03), 657.51 γ gated.
1074.00 12	0.02 1	1731.41	0+	657.51 2*	E2		9.74×10 ⁻⁴	$\alpha(K)=0.000849 \ 12; \ \alpha(L)=0.0001016 \ 15; \ \alpha(M)=1.95\times10^{-5} \ 3; \ \alpha(N+)=3.66\times10^{-6} \ 6 \ \alpha(N)=3.46\times10^{-6} \ 5; \ \alpha(O)=1.98\times10^{-7} \ 3$
1125.80 <i>11</i>	0.34 1	1783.33	2+	657.51 2 ⁺	M1+E2	+0.28 4	1.01×10^{-3}	Mult.: From adopted gammas. $\alpha(K)=0.000886 \ 13; \ \alpha(L)=0.0001037 \ 15; \ \alpha(M)=1.98\times10^{-5} \ 3;$
								α (N+)=4.78×10 ⁻⁶ 7 α (N)=3.55×10 ⁻⁶ 5; α (O)=2.11×10 ⁻⁷ 3; α (IPF)=1.023×10 ⁻⁶ 16 δ : From adopted gammas. δ =-0.06 +7-12 (1972Ka34) from $\gamma\gamma(\theta)$ in ¹¹⁰ Ag β ⁻ Decay (24.56 s). Mult.: A ₂ =0.21 10, A ₄ =-0.07 14, 657.51 γ gated (2-2-0 spin sequence).
1186.30 <i>12</i>	0.060 13	2662.02	0^{+}	1475.78 24	[E2]		7.92×10^{-4}	$\alpha(K) = 0.000687 \ 10; \ \alpha(L) = 8.16 \times 10^{-5} \ 12; \ \alpha(M) = 1.561 \times 10^{-5} \ 22; \ \alpha(N+) = 8.44 \times 10^{-6} \ 12$
1421.40 <i>13</i>	0.05 1	2078.81	3-	657.51 2*	E1(+M2)	+0.01 8	4.32×10 ⁻⁴ 10	$\begin{aligned} \alpha(N) &= 2.78 \times 10^{-6} \ 4; \ \alpha(O) &= 1.603 \times 10^{-7} \ 23; \ \alpha(IPF) &= 5.50 \times 10^{-6} \ 8 \\ \alpha(K) &= 0.000226 \ 9; \ \alpha(L) &= 2.59 \times 10^{-5} \ 10; \ \alpha(M) &= 4.94 \times 10^{-6} \ 19; \\ \alpha(N+) &= 0.000176 \ 3 \\ \alpha(N) &= 8.8 \times 10^{-7} \ 4; \ \alpha(O) &= 5.22 \times 10^{-8} \ 20; \ \alpha(IPF) &= 0.000175 \ 3 \end{aligned}$
1473 1# 11		1473.07	0+	0.0 0	- E0 [#]			Mult., δ : From adopted gammas.
1475.80 <i>13</i>	0.110 6	1475.78	2 ⁺	0.0 0	E0 E2		5.77×10^{-4}	$\alpha(K)=0.000440\ 7;\ \alpha(L)=5.16\times10^{-5}\ 8;\ \alpha(M)=9.87\times10^{-6}\ 14;$ $\alpha(N+)=7.51\times10^{-5}\ 11$ $\alpha(N)=1.760\times10^{-6}\ 25;\ \alpha(Q)=1.020\times10^{-7}\ 15;\ \alpha(IDE)=7.22\times10^{-5}$
								$a(N)=1.700\times10^{-2.25}; a(O)=1.029\times10^{-1.55}; a(PF)=7.52\times10^{-1.10}$
								I_{γ} ,Mult.: From adopted gammas. $I_{\gamma}=0.08 \ I$ in I_{γ} Ag β decay (24.56 s).
1629.90 <i>14</i>	0.05 1	2287.42	2+	657.51 24	M1+E2	+0.06 3	5.86×10^{-4}	α (K)=0.000407 6; α (L)=4.73×10 ⁻⁵ 7; α (M)=9.03×10 ⁻⁶ 13; α (N+)=0.0001228 18
								$\alpha(N)=1.615\times10^{-6}\ 23;\ \alpha(O)=9.66\times10^{-8}\ 14;\ \alpha(IPF)=0.0001211\ 17$ Mult., δ : From adopted gammas.
1674.30 <i>13</i>	0.160 7	2331.79	(2+)	657.51 2+	[M1]		5.79×10^{-4}	$\alpha(K)=0.000386\ 6;\ \alpha(L)=4.47\times10^{-5}\ 7;\ \alpha(M)=8.54\times10^{-6}\ 12;\ \alpha(N+)=0.0001401\ 20$
1731 / [#] 11		1731 /1	0+	0.0 0	- E0 [#]			α (N)=1.528×10 ⁻⁶ 22; α (O)=9.14×10 ⁻⁸ 13; α (IPF)=0.0001385 20
1783.6 7	0.113 6	1783.33	2^+	$0.0 0^{+}$	E0 E2		5.49×10 ⁻⁴	$\alpha(K)=0.000306 5; \alpha(L)=3.56\times10^{-5} 5; \alpha(M)=6.79\times10^{-6} 10; \alpha(N+)=0.000201 3$
								$\alpha(N)=1.212\times10^{-6} I/; \alpha(O)=7.15\times10^{-6} I0; \alpha(IPF)=0.000200 3$ I _y : From adopted gammas. I _y =0.100 <i>14</i> in ¹¹⁰ Ag β^- decay (24.56 s).
2004.40 15	0.080 8	2662.02	0^{+}	657.51 2	E2		5.85×10^{-4}	$\alpha(K)=0.000246 \ 4; \ \alpha(L)=2.85\times10^{-5} \ 4; \ \alpha(M)=5.44\times10^{-6} \ 8;$

ω

L

[&] For absolute intensity per 100 decays, multiply by 0.0450 24.

 $^{110}_{48}\mathrm{Cd}_{62}\text{--}4$

¹¹⁰Ag β^- decay (24.56 s) 1972Ka34

