			History	
	Туре	Author	Citation	Literature Cutoff Date
	Full Evaluation	G. Gürdal and F. G. K	ondev NDS 113,1315 (2012	2) 1-Aug-2011
$Q(\beta^-) = -3878 \ 12;$ Note: Current eval	$S(n)=9915.7 \ 17$; $S(p)$ uation has used the	b)=8917.8 <i>13</i> ; $Q(\alpha)$ =-286 following Q record -3878	6.3 <i>13</i> 2012Wa38 129917.3 2 <i>18919.8 15–2</i>	2870 4 2011AuZZ.
			¹¹⁰ Cd Levels	
		Cross R	eference (XREF) Flags	
	$ \begin{array}{ccc} A & {}^{110} \text{Ag } \beta \\ B & {}^{110} \text{Ag } \beta \\ C & {}^{110} \text{In } \varepsilon \\ D & {}^{110} \text{In } \varepsilon \\ D & {}^{110} \text{In } \varepsilon \\ E & (\text{HI,xn} \gamma) \\ F & {}^{108} \text{Pd} (\alpha, \beta) \\ G & {}^{109} \text{Ag} (3) \end{array} $	$\begin{array}{ccc} - & \text{decay} (24.56 \text{ s}) & \text{H} \\ \hline & - & \text{decay} (249.83 \text{ d}) & \text{I} \\ \text{decay} (69.1 \text{ min}) & \text{J} \\ \text{decay} (69.2 \text{ h}) & \text{K} \\ \hline & \text{decay} (4.92 \text{ h}) & \text{K} \\ \hline & \text{h} \\ \mu & \mu \\ \mu $		¹⁰⁹ Ag(p,p),(p,n) IAR ¹¹¹ Cd(pol d,t), ¹¹¹ Cd(d,t) ¹¹⁰ Cd(γ,γ') ¹¹⁰ Cd(α,α') ¹¹⁴ Sn(d, ⁶ Li)
E(level) [†]	J^{π} T _{1/2}	XREF		Comments
0.0 ^d 657.7623 ^d 11	0 ⁺ stable 2 ⁺ 5.42 ps <i>16</i>	ABCDEFGHIJKLMN PQR ABCDEFGHIJKLM PQR		(α') =L(p,t)=2; 657.7600γ E2 to 0 ⁺ . of 6.4 ps 4 (recoil-distance technique in ecoil-distance technique in 2001Ha09) d from the adopted B(E2)↑=0.427 3). 5.7 11 (using dynamic field technique eevaluated value based on the strength of the precession angle given at nuclear nt in ¹¹⁰ Ag β ⁻ decay (249.83 d) pted T _{1/2} =5.42 16), 0.62 14 (using technique in Coulomb excitation 20 (reevaluated value from the reference g adopted T _{1/2} =5.42 16). Other: 0.81 6 hnique in 2011Ch23. -0.39 4 (weighted average of -0.39 6 (1976Es02) and -0.42 10 (1971Be36) in nd -0.40 4 (deduced from fits to the ering cross sections within the framework ational model in ¹¹⁰ Cd(e,e') -0.55 8 (or -0.31 7 in 1971Ha08) and 'Cd in 1970St17). e of 0.45 4 (1991We15), 0.454 43 d(e,e'), 0.427 3 (weighted average of 432 6 (1972Be66 and 1971Be36) and 44 4 (1971Ha08), 0.467 19 (1969Mi07), 1 6 (1956Te26) and 0.436 22 (relative to St17), in Coulomb excitation). Others: 4, 0.444, 0.460 and 0.456 in 1965Mc05)
1473.07 ^r 3	0+	ACEFGIK NpR	XREF: G(1470)N(1440)p J ^π : E0 to g.s.; 815.31γ E	(1474). 2 to 2 ⁺ ; $\gamma\gamma(\theta)$ in ¹¹⁰ Ag β^- decay

¹¹⁰Cd Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
1475.7900 <i>14</i>	2+	0.68 ps <i>10</i>	ABCDEF HIJKL p	(24.56 s) is only consistent with J=0, with J(657 keV level)=2 (1972Ka34). B(E0; 0 ⁺ to 0 ⁺ g.s. level)/B(E2; 0 ⁺ to 657 keV, 2 ⁺ level)=0.027 4 (1990Gi01, ¹¹⁰ In ε decay (69.1 min)). B(E2) \uparrow =0.021 3 XREF: p(1474). J ^{π} : 1475.7792 γ E2 to 0 ⁺ ; 818.0244 γ M1+E2 to 2 ⁺ . B(E2) \uparrow : Weighted average of 0.021 3 (1969Mi07) and 0.023 7 (1961St02) in Coulomb excitation. Other: 0.014 3 (1991We15) in ¹¹⁰ Cd(e,e'). Tue: From adopted B(E2) \uparrow =0.021 3 and γ branching
				Others: 1.02 ps 22 (from B(E2) \uparrow =0.021 5 and γ branching. Others: 1.02 ps 22 (from B(E2) \uparrow =0.014 3 (1991We15) in ¹¹⁰ Cd(e,e')), 0.8 ps +4-2 (1995KuZX) and 0.74 <i>19</i> (1999Lo15) (using Doppler shift attenuation method in ¹⁰⁸ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ).
1542.4441 ^d 14	4+	0.80 ps +17-16	BCDEFGHIJKLM P R	XREF: G(1538)J(1543)L(1543)M(1543)R(1539). J ^{π} : L(pol d,t)=4; 884.6781 γ E2 to 2 ⁺ ; band member. T _{1/2} : Weighted average of 0.7 ps 4 (2001Ha09) (from recoil-distance method, differential decay-curve analysis in (HI,xn γ)) and 0.82 ps +22–12 (1999Lo15) (from ¹⁰⁸ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ)). Other: <2.1 ps (1993Pi16) from (HI,xn γ). μ : 5.4 +14–13.
				μ: From g-factor=1.36 +34 -33 deduced using the strength of the hyperfine field and the precession angle given at nuclear orientation measurement in ¹¹⁰ Ag β ⁻ decay (249.83 d) (1978Wa07), and adopted $T_{1/2}=0.80 + 17-16$.
1731.31 <i>3</i>	0+		AC FGIJK	$\begin{aligned} & L(4)[.\ 0.3\times10^{-5}\ (1991\text{ we15})\text{ from }^{-2}\text{ Cd}(e,e). \\ & XREF:\ G(1730)J(1735). \\ & J^{\pi}:\ E0\ to\ g.s.;\ 1073.55\gamma\ E2\ to\ 2^+;\ L(^3\text{He,d})=1. \\ & B(E0;\ 0^+\ to\ 0^+\ g.s.\ level)/B(E2;\ 0^+\ to\ 657\ keV,\ 2^+ \\ & level)<0.049\ (1990\text{Gi}01)\ from\ ^{110}\text{In}\ \varepsilon\ decay\ (69.1\ min). \\ & B(E2;\ 0^+\ to\ 657\ keV,\ 2^+\ level)\timesB(E2;\ 0^+\ to\ 0^+\ g.s. \\ & level)/B(E2;\ 0^+\ to\ 657\ keV,\ 2^+ \ level)\timesB(E2;\ 0^+\ to\ 1475 \\ & keV,\ 2^+\ level)<0.00029\ (1990\text{Gi}01)\ from\ ^{110}\text{In}\ \varepsilon\ decay \ (69.1\ min). \\ & B(E0;\ 0^+\ to\ 1473\ keV,\ 0^+\ level)/B(E2;\ 0^+\ to\ 657\ keV,\ 2^+ \\ & level)<7.2\ (1990\text{Gi}01)\ from\ ^{110}\text{In}\ \varepsilon\ decay\ (69.1\ min). \\ & B(E0;\ 0^+\ to\ 1473\ keV,\ 0^+\ level)/B(E2;\ 0^+\ to\ 657\ keV,\ 2^+ \\ & level)<7.2\ (1990\text{Gi}01)\ from\ ^{110}\text{In}\ \varepsilon\ decay\ (69.1\ min). \end{aligned}$
1783.496 ^r 15	2+	0.8 ^{&} ps +3-2	ABCDEF HIJK N QR	B(E0; 0 ⁺ to 14/3, 0 ⁺ level)/B(E2; 0 ⁺ to 14/5 keV, 2 ⁺ level)<0.042 (1990Gi01) from ¹¹⁰ In ε decay (69.1 min). XREF: N(1770)Q(1790)R(1785). J ^{π} : 1783.49 γ E2 to 0 ⁺ ; 1125.709 γ M1+E2 to 2 ⁺ ; band member; $\gamma\gamma(\theta)$ in ¹¹⁰ Ag β^- decay (24.56 s) is only
1809.48? <i>9</i>	4+		Н	consistent with J=2, with J(657 keV level)=2 (1972Ka34). B(E2) \uparrow =0.005 3 (1990We08) from ¹¹⁰ Cd(e,e'). E(level),J ^{π} : From ¹¹⁰ Cd(e,e'). E γ =1151.9 keV was assigned in ¹⁰⁸ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ) (1990Ke02) to depopulate the 1809.66-keV state (J^{π} =(2 ⁺)). However, this level was not observed in 1992Ku01, where it was stated that this
2078.548 ^k 11	3-	0.7 ps +4-2	ABCDEFG IJKL R	γ-ray belongs to ¹¹¹ Cd. XREF: G(2076)R(2076). J ^π : From L(α, α')=3; 1421.06γ E1 to 2 ⁺ . T _{1/2} : From Doppler shift attenuation method in ¹⁰⁸ Pd($\alpha, 2n\gamma$), ¹¹⁰ Pd($\alpha, 4n\gamma$) (1995KuZX and 1999Lo15).

E(level) [†]	J^{π}	T _{1/2}	XREF		Comments
2078.80 <i>5</i>	0+		ACFIK	Р	Other: 0.46 ps +15-9 in ¹¹⁰ Cd(n,n' γ) (2001Co01) (using Doppler shift attenuation method). B(E3) \uparrow =0.11 <i>1</i> (weighted average of 0.10 2 (from 1965Mc05, under assumption that only direct E3 excitation is involved) and 0.115 <i>13</i> (1985Fe05) in Coulomb excitation). Other: 0.63 (1963Ha20) in ¹¹⁰ Cd(α, α'). XREF: P(2081). J ^{π} : E0's to 0 ⁺ ; 295.30 γ E2 to 2 ⁺ ; $\gamma\gamma(\theta)$ in ¹¹⁰ Ag β^{-} decay (24.56 s) is only consistent with J=0, with
2162.8015 15	3+	0.8 ^{&} ps +6-2	BCDEF IJK	Р	J(657 keV level)=2 (1972Ka34). XREF: J(2164)P(2163). J ^π : 1505.0280γ M1+E2 to 2 ⁺ ; 620.3553γ M1+E2 to
2184# 2	(1-)#				4 ⁺ .
$2184^{+}2$ $2198^{\ddagger}2$	$(1)^{*}$ 2 ⁺ .3 ^{+‡}		L	Р	
2220.0683 14	4 ⁺	0.7 ^{&} ps +3-2	B DEF HIJK	PR	XREF: R(2221). J ^{π} : 677.6217 γ M1+E2 to 4 ⁺ ; 744.2755 γ E2 to 2 ⁺ . B(E4) \uparrow =6.2×10 ⁻³ <i>16</i> (1991We15) from ¹¹⁰ Cd(e,e').
2250.554 ^r 11	4+	0.6 ^{&} ps +5-2	B DEF HIJK		J^{π} : 467.01 γ E2 to 2 ⁺ ; 708.133 γ M1+E2 to 4 ⁺ ; band
2287.63 11	2+	0.29 ^{&} ps +7-5	ABCD FG IJK	Р	XREF: G(2279)J(2288)P(2288). J^{π} : 1629.65 γ E2(+M1) to 2 ⁺ ; assignment in ¹¹¹ Cd(pol d,t), ¹¹¹ Cd(d,t) and ¹¹⁰ Cd(re r', 110Pd(d,d')) L(³ Uc d)=(1)
2331.92 4	$(0)^{+}$		AC FGIJK	Р	XREF: G(2346)J(2330)P(2333). J ^π : 1674.15γ to 2 ⁺ and the absence of γ's to 0 ⁺ ; L(d,t)=0.
2355.792 19	2+	0.35 ^{&} ps +12-7	BC FG IJK	Р	XREF: G(2346)J(2357)P(2357). I^{π} : $L({}^{3}\text{He d})=(1)$: 624 47 χ E2 to 0 ⁺
2365 [‡] 2	2+‡			Р	· · · · · · · · · · · · · · · · · · ·
2377 [#] 2	4 ^{+#}		J		110
2381 2 2385 [#] 2 2405 [#] 2	$(2^+)^{\#}$ $(0^+ 2^-)^{\#}$		J	Р	E(level): From 110 Cd(p,p'),(d,d').
2432 [#] 2 2433.248 25	$2^{+\#}$ 3^{+}		J BC F I	Р	J^{π} : From L((pol d,t),(d,t))=2. J^{π} : 957.47 γ M1+E2 to 2 ⁺ ; 890.7 γ to 4 ⁺ .
2451 [#] 2 2477.41 5	# 2 ⁺		J C G I	PR	E(level): From 110 Cd(p,p'),(d,d'). XREF: R(2475). J ^{π} : 746.19 γ E2 to 0 ⁺ .
2479.9339 ^d 25	6+	0.6 ps 4	B DEF I M	ſ	J ^π : L(p,t)=(6); 937.485γ E2 to 4 ⁺ ; band member. $T_{1/2}$: Using recoil-distance method, differential decay-curve analysis in (HI,xnγ) (2001Ha09). Others: 0.40 ps +15-9 (in ¹⁰⁸ Pd(α,2nγ), ¹¹⁰ Pd(α,4nγ) (1999Lo15) using Doppler shift attenuation method), 0.2 ps +8-1 (in ¹¹⁰ Cd(n,n'γ) (2001Co01) using Doppler shift attenuation method), <2.1 ps (in (HI,xnγ) (1993Pi16) using recoil-distance method).
2481.606 20	$(2)^{+}$	0.46 ^{&} ps +23-12	F IJ	N	XREF: N(2490). J^{π} : 402.84 γ (E1) to 3 ⁻ ; 1823.84 γ M1+E2 to 2 ⁺ .

E(level) [†]	J^{π}	T _{1/2}	XREF		Comments
2539.691 ^k 6	5-	0.60 ps +24-14	B DEFG IJ	R	XREF: R(2544). T _{1/2} : Weighted average of 0.6 ps +4-2 (in ¹¹⁰ Cd(n,n' γ) (2001Co01), using Doppler shift attenuation method) and 0.6 ps +3-2 (in ¹⁰⁸ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ) (1995KuZX and 1999Lo15), using Doppler shift attenuation method). J ^{π} : 460.85 γ E2 to 3 ⁻ ; 997.256 γ E1 to 4 ⁺ ; L(³ He,d)=4.
2561.284 9	4+	0.9 ^{&} ps +8-3	BDFHIJ	Р	XREF: P(2563).
2566.47 6	(2 ⁻ ,3)		GI		J [*] : 1085.447 γ E2 to 2 ⁺ ; 1018.94 γ M1+E2 to 4 ⁺ . XREF: G(2570). J ^{π} : 782.8 γ and 1908.7 γ to 2 ⁺ ; branching ratios would favor dipole transitions; the absence of γ 's to 0 ⁺ would argue against J ^{π} =1 and 2 ⁺ .
2633.20 9	2+	0.139 ^{&} ps +21-14	C IJ	Р	J^{π} : 1090.83 γ to 4 ⁺ ; 1975.2 γ E2+M1 to 2 ⁺ ; assignment in ¹¹¹ Cd(pol d,t), ¹¹¹ Cd(d,t) and ¹¹⁰ Cd(p,p'),(d,d').
2649.95 6	1-	0.03 ^{&} ps <i>1</i>	GIJ	Q	XREF: G(2652). J ^{π} : 2649.92 γ E1 to 0 ⁺ . T _{1/2} : Other: 0.0203 ps 5 from ¹¹⁰ Cd(γ, γ'), deduced using ground state transition width Γ_0 and adopted branching ratios. Note that authors of 2005Ko32 only quote depopulating 2649.92 γ , but not the 1176.8 γ one resulting in T _{1/2} =0.0298 ps 8.
2659.866 ^j 7 2662.13 <i>10</i>	5- 0+		B DEF IJ AB I	Р	J ^{π} : 1117.437 γ E1 to 4 ⁺ ; 120.154 γ M1(+E2) to 5 ⁻ . J ^{π} : 2004.40 γ E2 to 2 ⁺ ; direct population in ¹¹⁰ Ag β^{-} decay (24.56 s) (J ^{π} =1 ⁺); $\gamma\gamma(\theta)$ in ¹¹⁰ Ag β^{-} decay (24.56 s) is only consistent with J=0, with J(657 keV level)=2 (1972Ka34). Note that L((pol d1) (d1))=2+4 would suggest J ^{π} =3 ⁺
2705.669 10	$(4)^{+}$		B F IJ		J^{π} : 1163.19 γ M1+E2 to 4 ⁺ ; from ¹¹¹ Cd(pol d,t), ¹¹¹ Cd(d,t).
2707.397 8 2757 [#] 3	$(4)^+$ 2 ^{-#}		BFI	Р	J^{π} : 1.60 γ M1 to 3 ⁺ ; 1164.98 γ M1(+E2) to 4 ⁺ .
2758.25 8	$(1,2,3)^+$	0.23 ps +9-6	I	Р	J^{π} : 1282.45 γ M1+E2 to 2 ⁺ ; 1 ⁺ ,2 ⁺ from ¹¹¹ Cd(pol d,t), ¹¹¹ Cd(d,t).
2787.49 4	2+	0.028 ps 7	C IJ	Р	J^{π} : L((pol d,t), ¹¹¹ Cd(d,t))=2; 2129.52 γ M1+E2 to 2 ⁺ 1314.25 α and 2788.37 α to 0 ⁺
2793.441 7 2813 <i>3</i>	$(4)^{+}$		BFI	Р	J^{π} : 573.0 γ M1+E2 to 4 ⁺ ; 630.62 γ M1(+E2) 3 ⁺ . E(level): From ¹¹¹ Cd(pol d,t), ¹¹¹ Cd(d,t).
2834 [‡] 3 2842.682 10	3 ⁺ ,4 ^{+‡} (5) ⁻		B EF IJ	Р	XREF: J(2840). J ^{π} : 182.83 γ M1+E2 to 5 ⁻ ; 1300.233 γ E1(+M2) to 4^+ : 409 36 γ to 3 ⁻
2869.144 23	1+,2+		C IJ	Р	J^{π} : 2211.33 γ M1+E2 to 2 ⁺ ; 2869.28 γ to 0 ⁺ ; direct population in ¹¹⁰ In ε decay (69.1 min) (J^{π} =2 ⁺).
2876.812 ^r 10	6+		B DEF IJ		J^{π} : 626.256 γ E2 to 4 ⁺ ; band member.
2879.185 <i>^f</i> 9	7-	0.61 ns 8	EF I		J ^{π} : 339.498 γ E2 to 5 ⁻ ; 399.254 γ E1(+M2) to 6 ⁺ . T _{1/2} : Weighted average of 0.69 ns 42 (from recoil-distance measurement in (HI,xn γ) (1993Pi16)), 0.62 ns 14 (deduced using $\gamma\gamma$ (t) in

¹¹⁰Cd Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF		Comments
					(HI,xn γ) (1994Ju04)), 0.60 ns <i>10</i> (from generalized centroid-shift method in 108 Pd(α ,2n γ), 110 Pd(α ,4n γ)(1998Ko35)). Other: <0.87 ns in (HI,xn γ) (2001Ha09).
2895.948 ^j 13	6-		EF I		J^{π} : 356.255 γ M1 to 5 ⁻ ; 415.9 γ E1 to 6 ⁺ ; band
2917.60 7	2+,3,4+		IJ	Р	XREF: $J(2915)$.
2926.7474 16	5+		BDFI		J^{π} : 763.9424 γ E2 to 3 ⁺ ; 446.812 γ M1+E2 to 4 ⁺ ; 387.075 γ to 6 ⁺ .
2938 [‡] <i>3</i> 2975.24 <i>4</i>	2 ^{+‡} 1 ⁺ ,2 ⁺		CGI	P P	XREF: G(2973)P(2972).
2984.46 14	2+,3+	0.11 ^{&} ps +20-5	IJ	R	J : 2517.41 γ M1+E2 to 2 ; 2973.29 γ to 0 . XREF: J(2982)R(2984). J ^{π} : 2326.9 γ M1+E2 to 2 ⁺ ; 905.7 γ to 3 ⁻ ; 1441.9 γ to 4 ⁺
2984.48 6	(5 ⁻)		FJ	PR	XREF: J(2982)P(2983). J ^{π} : L((pol d,t),(d,t))=5; 1442.03 γ D to 4 ⁺ .
2991 [#] 3	(5 ⁻) [#]		J	Р	XREF: P(2993).
2993.63 17	(0^{+})		I	Р	J^{π} : 1517.83 γ to 2 ⁺ in ¹¹⁰ Cd(n,n' γ).
2994.07 8	$(3^+, 4^+)$		I		J^{π} : 1451.62 γ to 4 ⁺ in ¹¹⁰ Cd(n,n' γ).
3008.4? 7	1,2+		I		J^{π} : 2350.7 γ to 2 ⁺ ; 3008.3 γ to 0 ⁺ .
3021# 3	$(1^{-})^{\#}$		J		
3029.077 ^k 12	7-	0.30 ns 10	EF		J ^π : 369.20γ E2 to 5 ⁻ ; 149.88γ M1(+E2) to 7 ⁻ ; band member.
3042.86 8	1+	31 fs 4	I	PQ	$1_{1/2}$: From centroid-snift method in 108 Pd(α ,2n γ), 110 Pd(α ,4n γ) (1998Ko35). XREF: P(3040)Q(3044).
					$T_{1/2}$: Deduced from the ground state transition width Γ_0 in 110 Cd(γ, γ') (2005Ko32) and the adopted branching ratios.
3052 [‡] 3	2 ^{+‡}			Р	
3055.703 ^{<i>j</i>} 12	8-	2.26 ns 10	EF		J ^π : 159.746γ E2 to 6 ⁻ ; 176.517γ M1+E2 to 7 ⁻ ; band member. T _{1/2} : Weighted average of 2.25 ns <i>10</i> (from centroid-shift method in 108 Pd(α,2nγ), 110 Pd(α,4nγ) (1998Ko35)) and 2.4
3064.712 <i>13</i>	6+		DEF IJ		ns 4 (from $\gamma\gamma(t)$ in (HI,xn γ) (1994Ju04)). XREF: J(3061). I ^{π} : 844 667 γ E2 to 4 ⁺ : 584 21 γ M1+E2 to 6 ⁺
3073 [‡] <i>3</i>	$(1^+,2^+)^{\ddagger}$			Р	E(level): Probably unresolved doublet in ¹¹¹ Cd(pol d t) ¹¹¹ Cd(d t)
3074.971 ^r 17	6-		EF		J^{π} : 535.269 γ M1+E2 to (5 ⁻); band member.
3078.381 <i>23</i>	1 ⁽⁺⁾	187 fs 40	CI	Q	J ^{π} : 3078.42 γ (M1) to 0 ⁺ ; 2420.51 γ to 2 ⁺ ; direct population in ¹¹⁰ In ε decay (69.1 min) (J ^{π} =2 ⁺). T _{1/2} : Deduced from the ground state transition width Γ_0 in ¹¹⁰ Cd(γ, γ') (2005Ko32) and the adopted branching ratios
3101.88 <i>3</i>	2+		C G IJ	Р	XREF: P(3098). J^{π} : 3102.00 γ to 0 ⁺ ; 1023.05 γ to 3 ⁻ ; assignment in ¹¹¹ Cd(pol d.t). ¹¹¹ Cd(d.t).
3106 [‡] <i>3</i>	3+,4+‡			Р	

¹¹⁰Cd Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF		Comments
3118 [#] 3 3121.62 3 3128.41 7	2+# 6+ 1+,2+		J DFI C	Р	J^{π} : 581.93 γ E1 to 5 ⁻ ; 560.32 γ E2 to 4 ⁺ . XREF: P(3125). J^{π} : 3128 γ to 0 ⁺ ; 1344.88 γ to 2 ⁺ ; direct population in
3135.18 7 3142 2	2 ⁺ ,3 ⁺ 2 ⁺ ,3 ⁺ ,4 ⁺		I J	Р	d_{t} , ¹¹¹ Cd(d,t). J ^π : 1592.7γ to 4 ⁺ ; 2477.39γ M1+E2 to 2 ⁺ . E(level): Weighted average of 3141 <i>3</i> (from ¹¹¹ Cd(pol d,t), ¹¹¹ Cd(d,t)) and 3143 <i>3</i> (from ¹¹⁰ Cd(p,p'),(d,d')). J ^π : From ¹¹¹ Cd(pol d,t), ¹¹¹ Cd(d,t).
3148 [‡] 3 3171.19 20 3183 [#] 3 3184.53 3	$0^{+\ddagger}$ $2^{+},3^{+},4^{+}$ $(4^{+})^{\#}$ $5^{-},6^{-}$		G I J F	P P P	J ^{π} : From ¹¹¹ Cd(pol d,t), ¹¹¹ Cd(d,t); 2513.4 γ to 2 ⁺ . XREF: P(3179). J ^{π} : 644.82 γ M1+E2 to 5 ⁻ .
3187.337 ^{<i>u</i>} 21 3193.40 4	8 ⁺ (3) ⁺	55 ^b ps 6	DEF C I	Р	J ^{π} : 707.40 γ E2 to 6 ⁺ . XREF: P(3190). J ^{π} : 1 ⁺ ,2 ⁺ ,3 ⁺ in ¹¹¹ Cd(pol d,t), ¹¹¹ Cd(d,t); 1030.0 γ to 3 ⁺ and 1410.08 γ to 2 ⁺ . The absence of γ 's to 0 ⁺
3199 [#] 3 3203 3	(2 ⁻) [#]		J	Р	E(level): Probably $J^{\pi} = 0^+$ component of unresolved
3208.69 7	2+,3+		С	Р	acublet in ¹¹¹ Cd(pol d,t), ¹¹¹ Cd(d,t). XREF: P(3203). E(level): Probably a component of unresolved doublet in ¹¹¹ Cd(pol d,t), ¹¹¹ Cd(d,t). J ^{π} : 1666.23 γ to 4 ⁺ ; direct population in ¹¹⁰ In ε Decay (69.1 min) (J ^{π} =2 ⁺); assignment in ¹¹¹ Cd(pol
3239.56 5	6+		D F		d,t), ¹¹¹ Cd(d,t). J ^{π} : 360.7 γ E1 to 7 ⁻ ; 397.18 γ E1 to (5) ⁻ ; 1018.99 γ to 4 ⁺
3251 [#] 3 3256.49 <i>14</i>	3 ^{-#} 1 ⁺ ,2 ⁺ ,3 ⁺		G J I	Р	 XREF: G(3247). XREF: P(3253). J^π: 2598.69γ to 2⁺; assignment in ¹¹¹Cd(pol d.t).
3262 [‡] 3	1+,2+,3+‡			Р	
3275.449 ^d 17	8+	0.70 ps <i>19</i>	DEF M	I	J ^{π} : L(p,t)=(8); 795.5 γ E2 to 6 ⁺ ; band member. T _{1/2} : Weighted average of 0.62 ps 2 <i>I</i> in ¹⁰⁸ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ) (using Doppler shift attenuation method (1995KuZX)) and 1.0 ps 4 in (HI,xn γ) (using recoil-distance method, differential decay-curve analysis (2001Ha09)). Others: <2.8 ps in (HI,xn γ) (1993Pi16), (using recoil-distance method), >0.83 ps in (1999Lo15) (using Doppler shift attenuation method)
3277.86 14	(1 ⁺)	37.4 fs 1	IJ	PQ	The function interformation interformatio interformation interformation interformation interfor
3298.13 20	1-	134 fs 12	IJ	Q	only 3281 γ depopulate this level. XREF: J(3302). J ^{π} : 3298.1 γ D to 0 ⁺ ; 2640.1 γ to 2 ⁺ ; assignment in ¹¹⁰ Cd(p,p'), ¹¹⁰ Cd(d,d'). T _{1/2} : From ¹¹⁰ Cd(γ,γ') (2005Ko32), by assuming that

¹¹⁰Cd Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF		Comments
3314.334 24	2+		C IJ	Р	only 3298 γ depopulate this level. XREF: J(3309)P(3309). J ^{π} : 1235.67 γ to 3 ⁻ ; 1583.18 γ to 0 ⁺ ; 1151.70 γ to 3 ⁺ ; direct population in ¹¹⁰ In ε Decay (69.1 min) ($I^{\pi}-2^{+}$)
3329 17	(1 ⁻ ,2 ⁻ ,3 ⁻)		G		(J = 2). E(level): unresolved doublet in ¹⁰⁹ Ag(³ He,d).
3334.85 ^r 3	7-		EF		J [*] : L(³ He,d)=(2). J ^{π} : 456.0 γ M1+E2 to 7 ⁻ ; 279.142 γ M1(+E2) to 8 ⁻ ; band member.
3340 [#] <i>3</i> 3340.83 <i>14</i>	$(5^-, 6^+)^{\text{\#}}$		J I		
3345.810 ^{<i>f</i>} 15	9-	49 ^b ps 3	EF 1	М	J^{π} : 290.09 γ M1+E2 to 8 ⁻ ; 466.624 γ E2 to 7 ⁻ ; band member.
3353 [‡] <i>3</i>	2+,3+‡			Р	
3359.06 20	1-	11.7 fs 2	I	Q	J ^π : 3359.0γ E1 to 0 ⁺ . T _{1/2} : Deduced from Γ ₀ in ¹¹⁰ Cd(γ,γ') (2005Ko32).
3366.8 4	1+,2+,3+,4+		I	Р	XREF: P(3362). J ^π : 2709.0γ to 2 ⁺ ; assignment in ¹¹¹ Cd(pol d,t), ¹¹¹ Cd(d,t).
3373 [#] 3	4 ^{+#}		J	Р	
3391.177 <i>16</i> 3403.29 <i>6</i>	$(7)^{-}$ (1^{-})		EF C GI	Р	J^{π} : 912.2 γ (E1) to 6 ⁺ ; 495.227 γ M1+E2 to 6 ⁻ . XREF: G(3410)P(3397).
					J ^{π} : L(³ He,d)=2, 3403.48 γ to 0 ⁺ ; 2745.45 γ to 2 ⁺ . However, assignment in ¹¹¹ Cd(pol d,t), ¹¹¹ Cd(d,t) suggests J ^{π} =1 ⁺ , 2 ⁺ , 3 ⁺ .
3413 [#] 3	4 ^{+#}		J	Р	XREF: P(3412).
3427 [‡] <i>3</i>	$0^{+\ddagger}$			Р	
3427.27 ⁸ 11	8-	6.0 ^b ps 6	EF I		J ^π : 371.6γ M1+E2 to 8 ⁻ ; 548.2γ M1+E2 to 7 ⁻ ; 531γ to 6 ⁻ ; band member.
3439.719 10	8+	0.45 ps +28-17	EF		J ^π : 959.785γ E2 to 6 ⁺ ; 164.26γ M1(+E2) to 8 ⁺ . T _{1/2} : From Doppler shift attenuation method in ¹⁰⁸ Pd(α ,2nγ), ¹¹⁰ Pd(α ,4nγ) (1995KuZX). Others: <2.8 ps in (HI,xnγ) (from recoil distance method (1993Pi16)) and >1.11 ps from Doppler shift attenuation method in ¹⁰⁸ Pd(α ,2mγ), ¹¹⁰ Pd(α ,4mγ)(1990I o15)
3449.6 <i>3</i>	(1,2)		IJ	Р	XREF: J(3447)P(3442). J^{π} : 1 ⁻ in ¹¹⁰ Cd(p,p'),(d,d'), but J^{π} =1 ⁺ ,2 ⁺ in ¹¹¹ Cd(pd) d, t) ¹¹¹ Cd(d,t); 1073 Secto 2 ⁺
2460 4	1+ 2+ ±		C 1	P	Cd(por d,t), Cd(d,t), 1975.89 to 2.
3466.39 <i>4</i>	1,2,3		C I	Р	J^{π} : 2808.59 γ to 2 ⁺ ; direct population in ¹¹⁰ In ε
3475.416 24	1+	72 fs 4	C IJ	PQ	Decay (69.1 min) $(J^{\pi}=2^{-1})$. XREF: J(3476)P(3471). J ^π : 3475.34γ (M1) to 0 ⁺ ; direct population in ¹¹⁰ In ε Decay (69.1 min) $(J^{\pi}=2^{+})$. Note that $J^{\pi}=1^{-1}$ in ¹¹⁰ Cd(p,p'),(d,d').
• · · · · · # -	(a))#				$T_{1/2}$: Deduced from Γ_0 in $\Pi^0 Cd(\gamma, \gamma')$ (2005Ko32), by assuming that only 3475 γ depopulate this level.
3489 [#] 3 3492.64 6	$(0^+)^{\pi}$ (5 ⁻ ,6 ⁻)		J F	Р	XREF: P(3487).

¹¹⁰Cd Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XR	EF	Comments
					J^{π} : 952.9 γ to 5 ⁻ ; 1012.70 γ to 6 ⁺ ; assignment in ¹¹¹ Cd(pol d,t), ¹¹¹ Cd(d,t).
3493.1 4			I		
3499 [‡] 4	$1^+, 2^+$		J	Р	
3510 [‡] 4	1+,2+‡			Р	
3517 18	0-,1-		G		E(level): From 109 Ag(³ He,d). J ^{π} : L(³ He,d)=0.
3525.34 5	6+		DF		J^{π} : 460.85 γ E2(+M1) to 6 ⁺ ; 1982.77 γ to 4 ⁺ ; direct population in ¹¹⁰ In ε decay (4.92 h) (J^{π} =7 ⁺).
3536 [‡] 4 3581 4	1+,2+,3+‡		J	P P	J^{π} : Other:(0 ⁺) from ¹¹⁰ Cd(p,p'), ¹¹⁰ Cd(d,d'). F(level): From ¹¹¹ Cd(nol d t) ¹¹¹ Cd(d t)
3598.0 7	1+	71 fs 6	I	PQ	J^{π} : 3596.9 γ M1 to 0 ⁺ .
					T _{1/2} : Deduced using ground state transition width Γ ₀ in 110 Cd(γ, γ') (2005Ko32).
3604 [#] 4	3 ^{-#}		J		
3611.041 ^{<i>d</i>} 15	10+	0.487 ns 24	EF		μ =-1.0 4 T _{1/2} : Weighted average of 0.45 ns <i>10</i> (from generalized centroid shift method in ¹⁰⁸ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ) (1998Ko35)), 0.56 ns 3 (from recoil distance method
					in (HI,xn γ) (1993Pi16)), 0.49 ns <i>14</i> (from $\gamma\gamma$ (t) in (HI,xn γ)(1994Ju04)) and 0.464 ns <i>17</i> (using recoil-distance method, differential decay-curve analysis in (HI,xn γ) (2001Ha09)).
					J ^{<i>n</i>} : 335.596 γ E2 to 8 ⁺ ; 265.218 γ E1(+M2) to 9 ⁻ . μ : From g-factor=-0.09 3 in 1995Re15, deduced using the perturbed angular-correlation technique and T _{1/2} =0.56 ns 3, and the adopted T _{1/2} =0.487 ns 24.
3614 18	0-,1-		G	Р	E(level): From ¹⁰⁹ Ag(³ He,d). J ^{π} : L(³ He,d)=0. Note that J ^{π} =1 ⁺ ,2 ⁺ ,3 ⁺ in ¹¹¹ Cd(pol
3634.57 12	2+		C J	Р	d,t),11Cd(d,t). XREF: J(3632)P(3630).
2641.10 ^m 4	Q-		E.E.		J [*] : Assignment in 110 Cd(p,p'),(d,d'); 1555.76 γ to 3 ; 1851.15 γ to 2 ⁺ .
3041.10*** 4	8 1+ 0+ 0+ ⁺		EF	_	$J^{*}: 300.02\gamma$ (E2) 10 0 ; 701.93 M1+E2 10 7 .
365/+ 4	1,2,3,+		GJ	Р	
3668+ 4	1+,2+,3++			Р	
3683.15 ^k 5	9-		EF		J^{π} : 654.00 γ E2 to 7 ⁻ ; 627.59 γ M1+E2 to 8 ⁻ ; band member.
3686 [‡] 4 3689 [#] 4	1 ⁺ ,2 ⁺ ,3 ^{+‡} 3 ^{-#}		J	Р	
3696				Р	E(level): From 111 Cd(pol d,t), 111 Cd(d,t).
3713				Р	E(level): From 111 Cd(pol d,t), 111 Cd(d,t).
3726.58 18	1,2+		C	N	XREF: N(3730). J ^{π} : 3726.51 γ to 0 ⁺ ; direct population in ¹¹⁰ In ε Decay (69.1 min) (I^{π} -2 ⁺); L (³ He n)=0+2
3736 [#] 4	2+#		GJ	Р	J^{π} : Other: 1 ⁺ ,2 ⁺ ,3 ⁺ in ¹¹¹ Cd(pol d,t), ¹¹¹ Cd(d,t).
3760 [‡] 4	1+,2+,3+			Р	
3772.77 4	1+	12.8 fs <i>1</i>	C IJ	PQ	XREF: J(3776)P(3773). J ^π : 3772γ M1 to 0 ⁺ . Note, that 1 ⁺ ,2 ⁺ ,3 ⁺ in ¹¹¹ Cd(pol d,t), ¹¹¹ Cd(d,t) and (2 ⁺ ,3 ⁻) ¹¹⁰ Cd(p,p'),(d,d'). T _{1/2} : Deduced using ground state transition width Γ_0

¹¹⁰Cd Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	У	KREF		Comments
3782.13 ⁿ 4 3791.62 5	9 ⁻ 8 ⁺		EF F			given in ¹¹⁰ Cd(γ, γ') (2005Ko32) and the adopted branching ratios. J ^{π} : 902.90 γ E2 to 7 ⁻ ; 726.43 γ M1+E2 to 8 ⁻ . J ^{π} : 914.50 γ E2 to 6 ⁺ ; 351.93 γ M1(+E2) to 8 ⁺ ;
4	4					band member.
3808+ 4 3812 <i>19</i>	$2^+, 3^+, 1^-, 2^-, 3^-$		G		Р	E(level): From 109 Ag(3 He,d).
3823.247 ^j 21	10-	3.5 ^b ps 3	EF	J		XREF: J(3824). J ^π : 767.532γ E2 to 8 ⁻ ; 477.45γ M1 to 9 ⁻ ; band member. T _{1/2} : Other: >2.1 ps from Doppler shift attenuation method in ¹⁰⁸ Pd(α ,2nγ), ¹¹⁰ Pd(α ,4nγ) ((1995KuZX) and (1999Lo15)).
3830 [‡] 4	1+,2+,3+‡			J	Р	XREF: J(3824).
3854.1 10	(1+)	46 fs 6		J	PQ	XREF: J(3847)P(3850). E(level): From ¹¹¹ Cd(pol d,t), ¹¹¹ Cd(d,t). J ^{π} : 3854 γ (M1) to 0 ⁺ ; 1 ⁺ ,2 ⁺ ,3 ⁺ assignment in ¹¹¹ Cd(pol d t) ¹¹¹ Cd(d t)
3861.9 7	(1+)	13.3 fs 5			PQ	XREF: P(3866). J^{π} : 3862γ (M1) to 0 ⁺ ; 1 ⁺ ,2 ⁺ ,3 ⁺ assignment in ¹¹¹ Cd(pol d,t), ¹¹¹ Cd(d,t). T _{1/2} : Deduced using ground state transition width Γ ₀
						given in ¹¹⁰ Cd(γ, γ') (2005Ko32) and adopted branching ratios.
3866 [‡] 4	1+,2+,3+‡				Р	
3888 [‡] 4 3897 19	2 ⁺ ,3 ⁺ [‡] 0 ⁻ ,1 ⁻		G	J	Р	XREF: J(3891). E(level): From 109 Ag(³ He,d). J ^{π} : L(³ He,d)=0.
3924 [‡] <i>4</i> 3957 <i>4</i>	$1^+, 2^+, 3^+$ (2,3,4,5)		G	J J	Р	XREF: J(3920). XREF: G(3950).
						E(level): From 110 Cd(p,p'), 110 Cd(d,d'). J ^{π} : L(3 He,d)=(3,4).
3968 [‡] 4	1+,2+,3+‡				Р	
3988 [‡] 4	$1^+, 2^+, 3^{+\ddagger}$		_		Р	
3992.79 ⁺ 15	(9)		F		Б	J^{n} : From 1113.60 γ (E2) to 7; band member.
$4003^{\circ} 4$ $4024^{\ddagger} 4$	$^{1},^{2},^{1}$			J	P	AREF: J(5997).
$4042^{\ddagger} 4$	$1^+.2^+.3^{+\ddagger}$			J	P	XREF: J(4034).
4067 5	- ,_ ,-			J		E(level): From 110 Cd(p,p'), 110 Cd(d,d').
4077.176 ^e 23	10+	0.72 ps +21-13	EF			J ^π : 801.724 E2 to 8 ⁺ . T _{1/2} : Weighted average of 0.69 ps 21 (from recoil-distance method in (HI,xnγ) (1993Pi16)) and 0.8 ps +4-2 (from Doppler shift attenuation method in ¹⁰⁸ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ) (1999Lo15)). Others: >1.4 ps (from Doppler shift attenuation method in ¹⁰⁸ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ) (1995KuZX)), <3.5 ps (from recoil-distance Doppler shift technique, using the differential decay curve method in (HI,xn γ) (2001Ha09)).
4078 [‡] 4	$1^+, 2^+, 3^+$				Р	

¹¹⁰Cd Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XI	REF		Comments
4104 [‡] 4	1+,2+,3+‡			J	Р	XREF: J(4098).
4128 [‡] 4	$0^{+\ddagger}$				Р	
4154 [‡] 4	1+,2+,3+‡			J	Р	XREF: J(4143).
4171 [‡] 4	1+,2+,3+‡			J	Р	XREF: J(4170).
4172.076 ^d 18	12+	8.1 ps <i>3</i>	EF			J^{π} : 561.034 γ E2 to 10 ⁺ ; band member. T _{1/2} : Weighted average of 8.3 ps 4 (from recoil-distance method in (HI,xn γ) (1993Pi16)) and 7.9 ps 4 (from recoil-distance Doppler shift technique, using the differential decay curve method in (HI,xn γ) (2001Ha09)).
4172.706 ^{<i>f</i>} 24	11-	2.08 ^b ps 14	EF			J ^{π} : 826.893 γ E2 to 9 ⁻ ; band member. T _{1/2} : Other: 1.7 ps +14–7 from Doppler shift attenuation method in ¹⁰⁸ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ) (1995KuZX and 1999Lo15).
4181 4		1			Р	E(level): From 111 Cd(pol d,t), 111 Cd(d,t).
4181.96 ⁸ 9	10-	1.04 ⁰ ps 14	EF			J^{π} : 836.13 γ M1+E2 to 9 ⁻ ; 754.69 γ E2 to 8 ⁻ ; band member.
4200 [#] 5	2+#			J		109 2
4290	0+,1+				N	E(level): From ¹⁰⁸ Pd(³ He,n). J^{π} : L(³ He,n)=0.
4334.26 ^m 7	10-		EF			J^{π} : 988.44 γ M1 to 9 ⁻ ; band member.
4421.62 20	(10^+)		F			J^{π} : From 1075.8 γ D to 9 ⁻ .
4430.377	9 11 ⁻	$1.7 m_0 + 14.7$	EF			J : 1251.057 M1+E2 to 8 . I^{π}_{*} 726 7a M1 to 10^{-1}_{*} 877 0a E2 to 0^{-1}_{*} hand member
+559.12 5	11	1.7 ps +17-7	LI			T _{1/2} : From Doppler shift attenuation method in ¹⁰⁸ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ) (1995KuZX and 1999Lo15).
4620.2 ^{<i>u</i>} 4	10^{+}		EF			J^{π} : 1433.0 γ to 8 ⁺ ; band member.
4660	$0^+, 1^+$				N	E(level): From ¹⁰⁸ Pd(³ He,n). J ^{π} : L(³ He,n)=0.
4736.81 ⁿ 19	11-	,	EF			J^{π} : 954.64 γ E2 to 9 ⁻ ; band member.
4888.27 ^e 3	12+	1.39 ^b ps <i>14</i>	EF			J^{π} : 811.093 γ E2 to 10 ⁺ ; band member. Other: $J^{\pi}=12^+$ in ¹⁰⁸ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ), interpreted as a member of the g.s. band.
4930.26 ^j 19	12-		E			J^{π} : 1107.0 γ E2 to 10 ⁻ ; 757.7 γ M1 to 11 ⁻ ; band member.
5026.32 ^d 7	14+	1.39 ^b ps <i>14</i>	EF			J ^{π} : 854.25 γ E2 to 12 ⁺ ; band member. T _{1/2} : Other: <2.8 ps (from recoil-distance method, differential decay-curve analysis in (HI,xn γ) (2001Ha09)).
5092.56 ^g 22	12-	3.3 ^b ps 4	Е			J^{π} : 910.6 γ E2 to 10 ⁻ ; band member.
5113.6° 3	12+		E			J^{π} : 1036.7 γ E2 to 10 ⁺ .
5212.7^{m} 3 5215.5^{m} 7	12 (11 ⁺)		E			J^{n} : 8/8.2 γ E2 to 10 ; band member. J^{π} : 595 3 γ to 10 ⁺ ; band member
5213.5 7 5248.93f 20	(11) 13 ⁻	$<1.4^{b}$ ps	F			I^{π} : 1076 1y E2 to 11 ⁻ ; band member
5497.29 25	13-	х1.т ро	Ē			J^{π} : 937y to 11 ⁻ ; 1325.6y to 12 ⁺ .
5500.00 ^s 24	13+		Е			J^{π} : 1327.9 γ M1 to 12 ⁺ .
5675.5 ^p 3	14+		E			J^{π} : 787.1 γ E2 to 12 ⁺ .
5758.52 ¹ 18	13-		Е			J ^{<i>a</i>} : 828.0γ M1 to 12 ⁻ ; 1198.9γ E2 to 11 ⁻ ; 1586.8γ E1 to 12 ⁺ .
5789.95 <mark>4</mark> 25	14+		E			J^{n} : 1617.9 γ E2 to 12 ⁺ .

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF		Comments
5856.3 ^e 3	14+		Е		J^{π} : 967.7 γ E2 to 12 ⁺ ; band member.
5892.9 ^u 8	$(12^+, 13^+)$		Е		J^{π} : 677.4 γ to 11 ⁺ ; band member.
5914.5 ° 3	14+		E		J^{π} : 1026.2 γ E2 to 12 ⁺ ; band member.
5966.98 <mark>8</mark> 21	14-		E		J^{π} : 874.4 γ E2 to 12 ⁻ ; band member.
5984.2 ⁱ 4	14-		Е		J^{π} : 225.6 γ M1 to 13 ⁻ ; band member.
6079.8 ^u 10			Е		
6100.87 ^d 19	16+	0.250 ^a ps 21	Е		J^{π} : 1074.6 γ E2 to 14 ⁺ ; band member.
6101.4 ^j 3	14-		Е		J^{π} : 1171.3 γ E2 to 12 ⁻ ; band member.
6178.5 ^s 3	15+		Е		J^{π} : 678.5 γ E2 to 13 ⁺ ; 1152.1 γ M1 to 14 ⁺ ; band member.
6181.45 ^{<i>f</i>} 19	15-		Е		J^{π} : 1155.2 γ E1 to 14 ⁺ ; 932.3 γ E2 to 13 ⁻ ; band member.
6216.9 ^{<i>l</i>} 3	(14)		Е		J^{π} : 1190.6 γ D to 14 ⁺ .
6354.3 ⁱ 5	15-		Е		J^{π} : 370.0 γ M1 to 14 ⁻ : band member.
6489.9 6	(1)			Q	J^{π} : 6490 γ D to 0 ⁺ .
6543.9 11	(15-)		E		J^{π} : 1295 γ to 13 ⁻ .
6568.8 <i>4</i>	14		E		J^{π} : From a probable $\Delta J=0$ 1542.4 γ d to 14 ⁺ .
6575.6 ^p 4	16+		E		J^{π} : 900.1 γ E2 to 14 ⁺ ; band member.
6584.5 ^V 4	14		E		J ^{π} : From a very probable $\Delta J=0$ 1558.1 γ D to 14 ⁺ .
6646.19 6	(16+)		E		J^{n} : 856.1 γ E2 to 14 ⁺ .
6671.1 ^{<i>k</i>} 5	(15 ⁻)		E		J^{π} : 1422 γ to 13 ⁻ , 1645 γ to 14 ⁺ ; band structure.
6672.6 ⁸ 3	16-		E		J^{π} : 705.7 γ E2 to 14 ⁻ ; band member.
6798.0° 6	16		E		J^{π} : 941.7 γ E2 to 14 ⁺ ; band member.
6836.2° 0	10		E		J ^{α} : 921.7 γ E2 to 14 ^{α} ; band member.
$60679.0^{\circ} 4$	15		E		J^{*} . 293.07 D to 14, band member.
$6902.8^{\circ}0$	10		E		J^{T} : 008.57 MI to 15; band member.
6993.1^{j} 3	1/		E		J ^{α} : 811.6 γ E2 to 15 ; 892.2 γ E1 to 16 ^{α} ; band member.
7047.67 4	16 ⁻		E		J^{π} : 946.3 γ E2 to 14 ⁻ ; band member.
7184.5° 3 7281 0 ^V 5	1/		E		J ^T : 1003.87 E2 to 15°; band member. I^{π} : 401 Az D to 15; band member
7201.0 5	10		E		$\bar{J} = 401.4\gamma D = 1013$, band member.
7285.8 5	(10)	0.1500 01	E		J^{*} : 1008.97 (Q) to (14); band member.
7325.3ª 3	18	0.159 ^a ps 21	E		J^* : 1224.5 γ E2 to 16 ⁺ ; band member.
7341.6" 9			E		
7443.3 ^{<i>k</i>} 4	(17 ⁻)		E		J^{π} : 1261 γ to 15 ⁻ ; 770.7 γ to 16 ⁻ ; band member.
7523.28 5	18-		E		J^{π} : 850.6 γ E2 to 16 ⁻ ; band member.
7575.26	17-		E		J^{π} : 612.4 γ M1 to 16 ⁻ ; band member.
7594.2 ⁿ 8			E		
7653.1 ^P 5	18+		E		J^{π} : 1077.4 γ E2 to 16 ⁺ ; band member.
7/59.0 6	17		E		J^{n} : 477.9 γ D to 16; band member.
7777.9 ^{<i>n</i>} 6			E		
7/97.76	(17)		E		J^{n} : 516.8 γ D to 16.
7801.14 12	(18)		E		J^{*} : 1155 γ (E2) to (10°); band member.
7945.9 ^{<i>j</i>} 4	19		E		J^{n} : 952.8 γ E2 to 17; band member.
7970.3J 7	18-		E		J^{π} : 922.7 γ E2 to 16 ⁻ ; band member.
8016.5 ^t 6	17		E		J": From band structure in (HI,xn γ).
8278.0 ⁴	18		E		$J^{\mu}: 952.8\gamma$ D to 18^+ ; band member.
8292.5 5	(18)		E		$J^{*}: 90/.0\gamma$ to 18'.
83/2.8" 8			E		
8405.3 ^{<i>k</i>} 11	(19^{-})		E		J^{π} : 962 γ E2 to (17 ⁻); band member.
8481.33 11	(19 ⁺)		E		J [*] : $129/\gamma$ (E2) to $1/^{+}$; band member.
8530.7 ^{<i>l</i>} 7	(18)		E		J^{π} : 1244.9 γ to (16); band member.

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XRI	EF	Comments
8595.6 ^t 5	19		E		J^{π} : 317.6 γ D to 18; band member.
8629.7 <mark>8</mark> 6	20^{-}		Е		J^{π} : 1106.5 γ E2 to 18 ⁻ ; band member.
8648.3 ^d 4	20^{+}	0.118 ^a ps 21	Е		J^{π} : 1323.0 γ E2 to 18 ⁺ ; band member.
8861.6 ^p 5	20^{+}		E		J^{π} : 1208.5 γ E2 to 18 ⁺ ; band member.
8967.9 ^t 6	20	0.127 ^c ps +12-15	E		J^{π} : 372.3 γ D to 19; band member.
9106.8 ^f 5	21-		Е		J^{π} : 1160.9 γ E2 to 19 ⁻ ; band member.
9430.4 ^t 7	21	0.070 ^c ps +10-12	E		J^{π} : 462.5 γ D to 20; band member.
9574.3 ^k 15	(21 ⁻)		Е		J^{π} : From band structure in (HI,xn γ).
9962.3 ^d 5	22+	0.15 ps 5	Ε		J ^{π} : 1314.1 γ E2 to 20 ⁺ ; band member. T _{1/2} : From Doppler shift attenuation method using the line-shape analysis in (HI,xn γ) (2011Ro01). The quoted uncertainty does not include additional systematics error in the stopping powers that may be as large as 20%. Note that T _{1/2} =0.11 ps <i>4</i> was deduced by including 1100 γ . However, authors of 2011Ro01 stated that 1100-keV γ was not confirmed in their $\gamma\gamma$ -coincidence gated spectra (see XUNDL compilation dated on January 5th, 2011) and they reported T _{1/2} =0.15 ps 5.
9971.7 <mark>8</mark> 12	22^{-}		E		J^{π} : 1342 γ E2 to 20 ⁻ ; band member.
9991.4 ^t 12	22	0.065 ^c ps +10-12	E		J^{π} : 561 γ D to 21; band member.
10228.7 ^{<i>p</i>} 12	(22^{+})		E		J^{π} : From band structure in (HI,xn γ).
10495.8 ^J 12	23-		E		J^{π} : 1389 γ E2 to 21 ⁻ ; band member.
10665.2^{t} 13	23	0.064° ps $+12-16$	E		J^{π} : 673.8 γ D to 22; band member.
11320.3 ^d 6	24+	0.19 ^a ps 5	E		J^{π} : 1358.0 γ E2 to 22 ⁺ ; band member.
11451.2 ^t 16	24		E		J^{π} : 786 γ D to 23; band member.
11454.8 ^g 15	(24 ⁻)		E		J^{π} : From band structure in (HI,xn γ).
12081.8 ^{<i>f</i>} 15	(25 ⁻)		E		J^{π} : From band structure in (HI,xn γ).
12763.3 ^d 12	26+	0.24 ps	Е		J ^{π} : 1443 γ E2 to 24 ⁺ ; band member. T _{1/2} : Effective T _{1/2} from Doppler shift attenuation method using the line-shape analysis in (HI,xn γ) (2011Ro01). 1443 γ which depopulate 12763 keV J ^{π} =26 ⁺ and 14206 keV J ^{π} =28 ⁺ levels was used to deduce the effective T _{1/2} .
13032.8 <mark>8</mark> 18	(26 ⁻)		E		J^{π} : From band structure in (HI,xn γ).
14206.4 ^d 16	28^{+}		E		J^{π} : 1443 γ E2 to 26 ⁺ ; band member.
15356 [@]		31 keV		0	E(p)(c.m) = 6437 keV.
15586 [@]		36 keV		0	E(p)(c.m)=6667 keV. Possible IAS of ¹¹⁰ Ag(236.9) level.
15644 [@]		≈15 keV		0	E(p)(c.m)=(6725) keV.
15679 [@]		17 keV		0	E(p)c.m)=6760 keV. Possible IAS of ¹¹⁰ Ag(338.9) level.
15737 [@]		23 keV		0	E(p)(c.m)=6818 keV.Possible IAS of ¹¹⁰ Ag(381.2) level.
15780 [@]		25 keV		0	E(p)(c.m)=6861 keV. Possible IAS of ¹¹⁰ Ag(424.7) level.
15877 [@]		45 keV		0	E(p)(c.m)=6958 keV. Possible IAS of ¹¹⁰ Ag(525.7 or 527.5) level.
15943 [@]		15 keV		0	E(p)(c.m)=7024 keV. Possible IAS of ¹¹⁰ Ag(594) level.
16004 [@]		10 keV		0	E(p)(c.m)=7085 keV. Possible IAS of ¹¹⁰ Ag(653.9) level.

- [†] From least-squares fit to $E\gamma's$, unless otherwise stated.
- [‡] From ¹¹¹Cd(pol d,t),¹¹¹Cd(d,t).
- [#] From ¹¹⁰Cd(p,p'),(d,d').
- [@] From 109 Ag(p,p),(p,n) IAR.
- & From Doppler shift attenuation method in $^{110}Cd(n,n'\gamma)$ (2001Co01).
- ^{*a*} From Doppler shift attenuation method using the line-shape analysis in (HI,xn γ) (2011Ro01). The quoted uncertainties do not include additional systematics error in the stopping powers that may be as large as 20%.
- ^b From recoil-distance method in (HI,xn γ) (1993Pi16).
- ^{*c*} From Doppler shift attenuation method in (HI,xn γ) (1999Cl03).
- ^d Band(A): g.s. rotational band.
- ^e Band(B): band based on 10⁺, 4077.176-keV.
- ^f Band(C): band based on 7⁻, 2879.185-keV.
- ^g Band(D): band based on 8-, 3427.27-keV.
- ^h Band(E): band based on 7341.6-keV.
- ⁱ Band(F): band based on 13-, 5758.52-keV.
- j Band(G): band based on 5⁻, 2659.866-keV.
- ^k Band(H): band based on 3^- , 2078.548-keV.
- l Band(I): band based on (14), 6216.9-keV.
- ^m Band(J): band based on (11), 62100 keV.
- ⁿ Band(K): band based on 9-, 3782.13-keV.
- ^o Band(L): band based on 2^+ , 5102.13-keV.
- p Band(M): band based on 12⁺, 5115.0-keV.
- ^{*q*} Band(N): band based on 14^+ , 5075.5-keV.
- ^{*r*} Band(O): band based on 1^+ , 5769.95^- keV.
- ^s Band(P): band based on 13^+ , 5500.0-keV.
- t Band(Q): band based on 17, 8016.5-keV.
- ^u Band(R): band based on 8^+ , 3187.337-keV.
- ^{ν} Band(S): band based on 14, 6584.5-keV.

					Adopt	ed Levels, G	ammas (cont	inued)
						$\gamma(^{11}$	¹⁰ Cd)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\ddagger}$	I_{γ} ‡	E_{f} .	\mathbf{J}_{f}^{π} Mult. ^b	δ^{C}	α^{\dagger}	Comments
657.7623	2+	657.7600 [#] 11	100#	0.0 0) ⁺ E2		0.00314	$\begin{aligned} &\alpha(\text{K}) = 0.00272 \ 4; \ \alpha(\text{L}) = 0.000342 \ 5; \ \alpha(\text{M}) = 6.57 \times 10^{-5} \ 10; \\ &\alpha(\text{N}+) = 1.224 \times 10^{-5} \ 18 \\ &\alpha(\text{N}) = 1.161 \times 10^{-5} \ 17; \ \alpha(\text{O}) = 6.26 \times 10^{-7} \ 9 \\ &\text{B(E2)(W.u.)} = 27.0 \ 8 \\ &\text{Mult.:} \ \alpha(\text{K}) \text{exp} = 0.00264 \ 10 \ (1964\text{Ne05}), \ \text{K/L} = 8.1 \ 7, \\ &(\text{M}+\text{N})/\text{L} = 0.23 \ 6 \ \text{in}^{-110} \text{Ag} \ \beta^{-} \ \text{decay} \ (249.83 \ \text{d}) \\ &(1993\text{Ka37}). \ \text{Other:} \ \text{A}_2 = +0.23 \ 2, \ \text{A}_4 = -0.15 \ 3 \ (1992\text{Ku01}) \\ &\text{from}^{-108} \text{Pd}(\alpha, 2n\gamma), ^{110} \text{Pd}(\alpha, 4n\gamma). \end{aligned}$
1473.07	0+	815.31 ^{&} 4	100 ^{&}	657.7623 2	2 ⁺ E2		0.00183	α(K)=0.001592 23; α(L)=0.000195 3; α(M)=3.74×10-5 6; α(N+)=7.01×10-6 10 α(N)=6.64×10-6 10; α(O)=3.69×10-7 6 Mult.: α(K)exp=0.0016 2, sum of 815.31 keV and 818.05 keV transitions in 110In ε decay (69.1 min) (1992Ku01). Other: A2=0.277 30, A4=0.990 50, 657.76γ gated (0-2-0 spin sequence) in 110Ag β- decay (24.56 s) (1972Ka34).
		1473.1 11		0.0 () ⁺ E0			E _y ,Mult.: From ¹¹⁰ In ε decay (69.1 min) (1990Gi01). The uncertainty of the electron energy was estimated by the evaluators based on the energy resolution (2.6 keV at 1450 keV electron energy) given by the authors. Mult. from ce. I γ (1473 γ)/Ice(K)(1473 γ)<3.4 \times 10 ⁻⁴ (1990Gi01).
1475.7900	2+	818.0244 [#] <i>18</i>	100.0 [#] 5	657.7623 2	2 ⁺ M1+E2	-1.36 6	0.00191	$\begin{aligned} &\alpha(\mathbf{K}) = 0.001666\ 24;\ \alpha(\mathbf{L}) = 0.000201\ 3;\ \alpha(\mathbf{M}) = 3.86 \times 10^{-5}\ 6;\\ &\alpha(\mathbf{N}+) = 7.25 \times 10^{-6}\ 11\\ &\alpha(\mathbf{N}) = 6.86 \times 10^{-6}\ 10;\ \alpha(\mathbf{O}) = 3.91 \times 10^{-7}\ 6\\ &B(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) = 0.0134\ 22;\ B(E2)(\mathbf{W}.\mathbf{u}.) = 30\ 5\\ &Mult.:\ From\ \alpha(\mathbf{K}) \exp = 0.00172\ 19\ (1967Mo12).\\ &Other: 0.00191\ 15\ (1980Ba58)\ from\ ^{110}\text{In}\ \varepsilon\ decay\ (4.92\ h);\ A_2 = -0.23\ 1,\ A_4 = -0.10\ 1\ (1992Ku01).\\ &\delta:\ Weighted\ average\ of\ -1.20\ 15\ (1970Kr03),\ -1.36\ 10\\ &(1973Jo08),\ -1.2\ 5\ (1978Wa07),\ -1.25\ +22\ -10\ (1979Ve03),\\ ∧\ -1.44\ 10\ (1980Ru03)\ (from\ ^{110}\text{Ag}\ \beta^-\ decay\ (249.83\ d)),\ -1.5\ +9\ -4\ (1969Mi07)\ (from\ ^{110}\text{Coulombe excitation},\ -1.4\ +10\ -4\ (1992De41),\ -1.4\ +4\ -10\ (1990Ar20),\ 1.5\ +3\ -4\ (2001Co01)\ (from\ ^{110}\text{Cd}(n,n'\gamma)),\ and\ -1.5\ 4\ (1990Ke02)\ (from\ ^{108}\text{Pd}(\alpha,2n\gamma),^{110}\text{Pd}(\alpha,4n\gamma)). \end{aligned}$
		1475.7792 [#] 23	55.0 [#] 6	0.0 () ⁺ E2		5.77×10 ⁻⁴	$\begin{aligned} &\alpha(\mathrm{K}) = 0.000440 \ 7; \ \alpha(\mathrm{L}) = 5.16 \times 10^{-5} \ 8; \ \alpha(\mathrm{M}) = 9.87 \times 10^{-6} \ 14; \\ &\alpha(\mathrm{N}+) = 7.51 \times 10^{-5} \ 11 \\ &\alpha(\mathrm{N}) = 1.760 \times 10^{-6} \ 25; \ \alpha(\mathrm{O}) = 1.029 \times 10^{-7} \ 15; \\ &\alpha(\mathrm{IPF}) = 7.32 \times 10^{-5} \ 11 \\ &\mathrm{B(E2)(W.u.)} = 1.35 \ 20 \end{aligned}$

From ENSDF

					A	dopted Lev	vels, Gamm	as (continued	<u>)</u>
						$\gamma(^{11}$	¹⁰ Cd) (conti	nued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{\ddagger}	E_f	J_f^{π}	Mult. <mark>b</mark>	δ^{C}	α^{\dagger}	Comments
	_				<u> </u>				Mult.: From α (K)exp=0.00043 6 (1967Mo12) in ¹¹⁰ Ag β^{-} decay (249.83 d) and 0.00036 7 (1980Ba58) from ¹¹⁰ In ε decay (4.92 h)). Other: A ₂ =0.18 3, A ₄ =-0.11 4 (1992Ku01) from ¹⁰⁸ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ).
1542.4441	4+	884.6781 [#] 13	100#	657.7623	2+	E2		1.51×10 ⁻³	$\begin{aligned} &\alpha(\text{K})=0.001313 \ 19; \ \alpha(\text{L})=0.0001597 \ 23; \ \alpha(\text{M})=3.06\times10^{-5} \\ &5; \ \alpha(\text{N}+)=5.74\times10^{-6} \ 8 \\ &\alpha(\text{N})=5.44\times10^{-6} \ 8; \ \alpha(\text{O})=3.05\times10^{-7} \ 5 \\ &\text{B(E2)(W.u.)=42 } 9 \\ &\text{Mult.: From } \alpha(\text{K})\text{exp}=0.00126 \ 6 \ (1964\text{Ne05}) \text{ and} \\ &\text{K/L=7.6 } \ (1963\text{Su07}) \text{ in } {}^{110}\text{Ag } \beta^{-} \text{ decay } (249.83 \text{ d}). \\ &\text{K/(L+M)=7.7 } \ 13 \ (1962\text{Ka08}) \text{ from } {}^{110}\text{In } \varepsilon \text{ decay } (4.9 \\ &\text{h). Other: } \text{A}_2=0.289, \ \text{A}_4=-0.069 \ 10 \text{ in } (\text{HI,xn}\gamma) \\ &(1974\text{Lu01}). \end{aligned}$
1731.31	0+	255.4 ^{&} 3	11.3 ^{&} 19	1475.7900	2+	E2		0.0556	$\alpha(K)=0.0467 \ 7; \ \alpha(L)=0.00719 \ 11; \ \alpha(M)=0.001397 \ 21; \ \alpha(N+)=0.000251 \ 4 \ \alpha(N)=0.000241 \ 4; \ \alpha(O)=9.98\times10^{-6} \ 15 \ Mult.: From \ \alpha(K)exp=0.023 \ 7 \ in \ ^{110}In \ \varepsilon \ decay \ (69.1 \ min) \ (1992Ku01) \ and \ from \ decay \ pattern.$
		258.3 1		1473.07	0+	E0			 E_γ: From ¹¹⁰In ε decay (69.1 min) (1992Ku01). The uncertainty of the electron energy was estimated from another close transition given by the authors. Iγ(258γ)/Ice(K)(258γ)<6.5×10⁻³ from ¹¹⁰In ε decay (69.1 min) (1990Gi01). Mult.: From ¹¹⁰In ε decay (69.1 min) (1990Gi01).
		1073.55 ^{&} 4	100 & 5	657.7623	2+	E2		9.75×10 ⁻⁴	$\alpha(K)=0.000850 \ 12; \ \alpha(L)=0.0001017 \ 15; \ \alpha(M)=1.95\times10^{-5} \ 3; \ \alpha(N+)=3.66\times10^{-6} \ 6 \ \alpha(N)=3.47\times10^{-6} \ 5; \ \alpha(O)=1.98\times10^{-7} \ 3 \ Mult.: \ \alpha(K)exp=0.00085 \ 8 \ (1992Ku01) \ in \ ^{110}In \ \varepsilon \ decay \ (69.1 \ min).$
		1731.4 11	0.00 ⁰	0.0	0+	E0			E _γ : From ¹¹⁰ In ε decay (69.1 min) (1992Ku01). The uncertainty of the electron energy was estimated by the evaluators based on the energy resolution (2.6 keV at 1450 keV electron energy) given by the authors. Iγ(1731γ)/Ice(K)(1731γ)<2.1×10 ⁻⁴ (1990Gi01). Mult.: From ¹¹⁰ In ε decay (69.1 min) (1990Gi01).
1783.496	2*	310.4 6 1125.709 [#] 20	$0.29 \ 14$ $100^{\#} 5$	657.7623	0+ 2+	M1+E2	+0.28 4	1.01×10^{-3}	$\alpha(K)=0.000886 \ 13; \ \alpha(L)=0.0001038 \ 15; \ \alpha(M)=1.98\times 10^{-5}$
									3; α (N+)=4.78×10 ⁻⁶ 7

	Adopted Levels, Gammas (continued)												
						2	γ(¹¹⁰ Cd) (con	ntinued)					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$\mathrm{I}_{\gamma}^{\ddagger}$	E_f	\mathbf{J}_{f}^{π}	Mult. ^b	δ^{C}	α^{\dagger}	Comments				
1783.496	2+	1783.49 [#] <i>3</i>	33.2 [#] 16	0.0	0+	E2		5.49×10 ⁻⁴	$\alpha(K)=0.000306 5; \alpha(L)=3.56\times10^{-5} 5; \alpha(M)=6.79\times10^{-6} 10; \alpha(N+)=0.000201 3 \alpha(N)=1.212\times10^{-6} 17; \alpha(O)=7.15\times10^{-8} 10; \alpha(IPF)=0.000200 3 B(E2)(W.u.)=0.31 +8-12 Mult.: From A2=+0.29 3, A4=-0.07 4 (1992De41) in 110Cd(n,n'\gamma) and from \alpha(K)exp=0.00018 3$				
2078.548	3-	295.42 ^{<i>a</i>} 18	3.77 ^a 22	1783.496	2+	(E1)		0.00805	(1992Ku01) in ¹¹⁰ In ε decay (69.1 min). $\alpha(K)=0.00702 \ 10; \ \alpha(L)=0.000836 \ 12;$ $\alpha(M)=0.0001597 \ 23; \ \alpha(N+)=2.98\times10^{-5} \ 5$ $\alpha(N)=2.83\times10^{-5} \ 4; \ \alpha(O)=1.563\times10^{-6} \ 22$ B(E1)(W.u.)=0.00052 +15-30 Mult.: From A ₂ =0.04 5 (1990Ke02) in ¹⁰⁸ Pd(α .2ny). ¹¹⁰ Pd(α .4ny).				
		603.03 ^{<i>a</i>} 4	15.4 ^a 9	1475.7900	2+	E1(+M2)	-0.14 22	0.0016 11	$\alpha(K)=0.0014 \ 10; \ \alpha(L)=0.00017 \ 12; \ \alpha(M)=3.2\times10^{-5} 24; \ \alpha(N+)=6.E-6 \ 5 \alpha(N)=6.E-6 \ 5; \ \alpha(O)=3.2\times10^{-7} \ 24 B(E1)(W.u.)=(0.00024 \ +8-14); B(M2)(W.u.)=(6.E+1 \ +19-6) Mult.: From A_2=-0.3 \ 2, \ A_4=-0.3 \ 3 \ (1992Ku01) \ in \ ^{108}Pd(\alpha,2n\gamma), ^{110}Pd(\alpha,4n\gamma).$				
		1421.06 ^{<i>a</i>} 4	100.0 ^{<i>a</i>} 22	657.7623	2+	E1(+M2)	+0.01 8	4.32×10 ⁻⁴ 10	$\alpha(K)=0.000226 \ 9; \ \alpha(L)=2.59\times 10^{-5} \ 10;$				

 $^{110}_{48}$ Cd₆₂-16

						A	Adopted Le	evels, Gammas	(continued)
							$\gamma($	¹¹⁰ Cd) (continue	ed)	
	E_i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. ^b	δ^{c}	α^{\dagger}	Comments
	2078.80	0+	295.30 8	100	1783.496	2+	E2		0.0342	$\begin{aligned} &\alpha(M) = 4.94 \times 10^{-6} \ 19; \ \alpha(N+) = 0.000175 \ 3 \\ &\alpha(N) = 8.8 \times 10^{-7} \ 4; \ \alpha(O) = 5.23 \times 10^{-8} \ 20; \ \alpha(IPF) = 0.000174 \ 3 \\ &B(E1)(W.u.) = (0.00012 \ +4-7) \\ &Mult.: \ \alpha(K) exp = 0.00019 \ 2 \ (1992Ku01) \ in \ ^{110}In \ \varepsilon \ decay \\ &(69.1 \ min) \ and \ from \ A_2 = -0.28 \ 3, \ A_4 = -0.04 \ 5 \ (1992Ku01) \\ ∈ \ ^{108}Pd(\alpha, 2n\gamma), \ ^{110}Pd(\alpha, 4n\gamma). \\ &\delta: \ From \ 1990Ke02. \\ &\alpha(K) = 0.0290 \ 4; \ \alpha(L) = 0.00426 \ 6; \ \alpha(M) = 0.000826 \ 12; \\ &\alpha(N+) = 0.0001496 \ 21 \\ &\alpha(N) = 0.0001433 \ 21; \ \alpha(O) = 6.29 \times 10^{-6} \ 9 \\ &E_{\gamma}, I_{\gamma}: \ From \ ^{110}Ag \ \beta^{-} \ decay \ (24.56 \ s). \end{aligned}$
1			605.4 <i>3</i> 2078.4 <i>3</i>		1473.07 0.0	$0^+ 0^+$	E0 E0			Mult.: From α (K)exp=0.028 5 in ¹¹⁰ In ε decay (69.1 min) (1992Ku01) and A ₂ =0.259 17, A ₄ =0.753 26, 1783.6 γ gated (0-2-0 spin sequence) in ¹¹⁰ Ag β^- decay (24.56 s) (1972Ka34). E _{γ} ,Mult.: From ¹¹⁰ In ε Decay (69 min). E _{γ} ,Mult.: From ¹¹⁰ In ε Decay (69 min).
T_	2162.8015	3+	620.3553 [#] 17	20.5# 6	1542.4441	4+	M1+E2	-0.50 5	0.00391	B(M1)(W.u.)=0.011 +3-9; B(E2)(W.u.)=5.9 +18-46 α (K)=0.00341 5; α (L)=0.000410 6; α (M)=7.86×10 ⁻⁵ 11; α (N+)=1.482×10 ⁻⁵ 21 α (N)=1.401×10 ⁻⁵ 20; α (O)=8.11×10 ⁻⁷ 12 Mult.: From α (K)exp=0.0031 6 (1967Mo12). δ: Weighted average of -0.50 8 (1980Ru03), -0.8 5 (1970Kr03), -0.85 25 (1979Ve03) (from ¹¹⁰ Ag β ⁻ decay (249.83 d)) and -0.46 +7-6 (2001Co01) (from ¹¹⁰ Cd(n,n' γ)). Others: -1.2 5 or -0.7 3 (1978Wa07) (from ¹¹⁰ Ag β ⁻ decay (249.83 d)).
			687.0091 [#] 18	49.00 [#] 22	1475.7900	2+	M1+E2	-1.69 +2-4	0.00289	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00251 \ 4; \ \alpha(\mathbf{L}) = 0.000309 \ 5; \ \alpha(\mathbf{M}) = 5.93 \times 10^{-5} \ 9; \\ &\alpha(\mathbf{N}+) = 1.111 \times 10^{-5} \ 16 \\ &\alpha(\mathbf{N}) = 1.052 \times 10^{-5} \ 15; \ \alpha(\mathbf{O}) = 5.85 \times 10^{-7} \ 9 \\ &\mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) = 0.0064 + 16 - 48; \ \mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 32 + 8 - 24 \\ &\mathbf{Mult.: From } \alpha(\mathbf{K}) \exp = 0.0022 \ 5 \ \text{and from } \mathbf{A}_2 = -0.70 \ 5, \\ &\mathbf{A}_4 = -0.01 \ 2 \ (1992 \mathrm{Ku}01, \ \mathrm{in} \ ^{108} \mathrm{Pd}(\alpha, 2\mathrm{n\gamma}), ^{110} \mathrm{Pd}(\alpha, 4\mathrm{n\gamma})). \\ &\delta: \ \text{Weighted average of } -1.80 \ 5 \ (1973 \mathrm{Joo}08), -1.65 \ 9 \\ &(1978 \mathrm{Wa}07), \ \mathrm{and} \ -1.27 \ 38 \ (1980 \mathrm{Ru}03), -1.1 + 8 - 4 \\ &(1970 \mathrm{Kr}03) \ \mathrm{and} \ -1.5 + 6 - 22 \ (1979 \mathrm{Ve}03) \ (\mathrm{from} \ ^{110} \mathrm{Ag} \ \beta^{-1} \\ &\mathrm{decay} \ (249.83 \ \mathrm{d})), -1.66 \ +9 - 8 \ (2001 \mathrm{Cool}1), \ -1.48 \ 10 \\ &(1992 \mathrm{De41}), \ -1.48 \ 15 \ (1990 \mathrm{Ar}20), \ \mathrm{and} \ -1.3 \ 4 \ (1992 \mathrm{Ku}01) \end{aligned}$

 $^{110}_{48}$ Cd₆₂-17

	Adopted Levels, Gammas (continued)												
					<u>)</u>	v(¹¹⁰ Cd) (cc	ontinued)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} ‡	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^b	δ^{c}	α^{\dagger}	Comments					
	_			<u>_</u>				(from ¹⁰⁸ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ)). Others: 0.4 + <i>I</i> -2 (1976De23) (from ¹¹⁰ Cd(n,n' γ)), -0.40 4 (1992De41) (from ¹⁰⁸ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ)).					
2162.8015	3+	1505.0280 [#] 20	100.0# 12	657.7623 2+	M1+E2	-1.27 3	5.90×10 ⁻⁴	α(K)=0.000446 7; α(L)=5.20×10-5 8; α(M)=9.94×10-6 14; α(N+)=8.21×10-5 12 α(N)=1.776×10-6 25; α(O)=1.048×10-7 15; α(IPF)=8.02×10-5 12 B(M1)(W.u.)=0.0018 +5-14; B(E2)(W.u.)=1.1 +3-8 Mult.: From α(K)exp=0.00046 4 (1967Mo12). δ: Weighted average of -1.05 16 (1988Kr03), -1.24 7 (1988Kr03), -1.24 20 (1980Ru03), -1.09 9 (1978Wa07), and -1.26 6 (1973Jo08) (from 110Ag β- decay (249.83 d)), -1.37 8 (1992De41), -1.37 15 (1990Ar20), -1.52 +11-14 (2001Co01) from 110Cd(n,n'γ)), -1.48 23 (1990Ke02) (from 108Pd(α,2nγ), 110Pd(α,4nγ)). Others: -0.55 10 (1970Kr03), -0.48 3 (1973Jo08), -0.40 +9-17 (1980Ba58) (from 110Ag β- decay (249.83 d)), -0.30 7 (1980Ba58) (from 110In ε decay (4.92 h)), -0.1 1 or 3 +2-1 (1976De23) (from 108Pd(α,2nγ))110Pd(α,4nγ))					
2220.0683	4+	677.6217 [#] 12	100.0 [#] 5	1542.4441 4+	M1+E2	-0.34 2	0.00320	$\begin{aligned} \alpha(\text{K}) = 0.00279 \ 4; \ \alpha(\text{L}) = 0.000332 \ 5; \ \alpha(\text{M}) = 6.37 \times 10^{-5} \ 9; \\ \alpha(\text{N}+) = 1.203 \times 10^{-5} \ 17 \\ \alpha(\text{N}) = 1.136 \times 10^{-5} \ 16; \ \alpha(\text{O}) = 6.65 \times 10^{-7} \ 10 \\ \text{B}(\text{M}1)(\text{W.u.}) = 0.058 \ +17 - 25; \ \text{B}(\text{E}2)(\text{W.u.}) = 12 \ +4 - 6 \\ \text{Mult: From } \alpha(\text{K}) \exp = 0.0025 \ 4 \ (1967 \text{Mo12}). \\ \delta: \ \text{Unweighted average of } -0.25 \ 20 \ (1970 \text{Kr03}), \ -0.44 \ 5 \\ (1973 \text{Jo08}), \ -0.36 \ 3 \ (1978 \text{Wa07}), \ -0.25 \ 15 \ (1979 \text{Ve03}), \\ -0.28 \ 5 \ (1980 \text{Ru03}) \ \text{from } \ ^{110}\text{Ag } \ \beta^- \ \text{decay} \ (249.83 \ \text{d}), \\ -0.40 \ 7 \ (1990 \text{Ke02}) \ \text{from } \ ^{108}\text{Pd}(\alpha, 2n\gamma), \ ^{110}\text{Pd}(\alpha, 4n\gamma), \\ -0.34 \ 3 \ (1992 \text{De41}), \ -0.34 \ 4 \ (1990 \text{Ar20}), \ -0.41 \ 2 \\ (2001 \text{Co01}) \ \text{from } \ ^{110}\text{Cd}(n,n'\gamma)). \end{aligned}$					
		744.2755 [#] 18	44.6 [#] 3	1475.7900 2+	E2		0.00229	$\begin{aligned} &\alpha(\text{K})=0.00199 \ 3; \ \alpha(\text{L})=0.000246 \ 4; \ \alpha(\text{M})=4.72\times10^{-5} \ 7; \\ &\alpha(\text{N}+)=8.83\times10^{-6} \ 13 \\ &\alpha(\text{N})=8.37\times10^{-6} \ 12; \ \alpha(\text{O})=4.60\times10^{-7} \ 7 \\ &\text{B(E2)(W.u.)}=32 \ +10-14 \\ &\text{Mult.: From } \alpha(\text{K})\text{exp}=0.0021 \ 4 \ \text{in} \ {}^{110}\text{Ag} \ \beta^{-} \ \text{decay} \\ &(249.83 \ \text{d}) \ (1967\text{Mo12}); \ \text{A}_2=0.28 \ 1, \ \text{A}_4=-0.27 \ 1 \\ &(1990\text{Ke02}) \ \text{in} \ {}^{108}\text{Pd}(\alpha,2n\gamma), {}^{110}\text{Pd}(\alpha,4n\gamma). \end{aligned}$					
		1562.2940 [#] 18	11.4 [#] 3	657.7623 2+	E2		5.56×10^{-4}	α (K)=0.000394 6; α (L)=4.61×10 ⁻⁵ 7; α (M)=8.80×10 ⁻⁶ 13; α (N+)=0.0001067 15					

	Adopted Levels, Gammas (continued)												
					$\gamma(^{110}\text{Cd})$ (continued)							
E_i (level) J_i^{π}	${\rm E_{\gamma}}^{\ddagger}$	I_{γ} ‡	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^b	δ^{C}	α^{\dagger}	Comments						
							$ α(N)=1.570\times10^{-6} 22; α(O)=9.21\times10^{-8} 13; α(IPF)=0.0001050 15 B(E2)(W.u.)=0.20 +6-9 Mult.: From A2=0.22 6, A4=-0.19 8 (1992Ku01) in 108Pd(α,2nγ),110Pd(α,4nγ) and from α(K)exp=0.00046 7 (1967Mo12). Other: E2(+M3) with δ=-0.10 +2-3 from γγ(θ) in 110Ag β- Decay (249.83 d) (1979Ve03). δ= Infinite (1970Kr03). $						
2250.554 4+	467.01 [#] 4	11.0 [#] 8	1783.496 2+	E2		0.00812	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00698 \ 10; \ \alpha(\mathrm{L}) = 0.000926 \ 13; \ \alpha(\mathrm{M}) = 0.0001785 \ 25; \\ &\alpha(\mathrm{N}+) = 3.29 \times 10^{-5} \ 5 \\ &\alpha(\mathrm{N}) = 3.14 \times 10^{-5} \ 5; \ \alpha(\mathrm{O}) = 1.580 \times 10^{-6} \ 23 \\ &\mathrm{B}(\mathrm{E2})(\mathrm{W.u.}) = 1.2 \times 10^2 \ +5 - 11 \\ &\mathrm{Mult.: \ From \ A_2} = +0.22 \ 6, \ \mathrm{A_4} = -0.10 \ 8 \ (1992\mathrm{De41}) \ \mathrm{in} \\ & \ ^{110}\mathrm{Cd}(\mathrm{n},\mathrm{n}'\gamma) \ \mathrm{and \ from \ } \alpha(\mathrm{K})\mathrm{exp} = 0.013 \ 4 \ (1979\mathrm{Sy02}) \ \mathrm{in} \\ & \ ^{110}\mathrm{In} \ \varepsilon \ \mathrm{Decay} \ (4.9 \ \mathrm{h}) \ (1979\mathrm{Sy02}). \end{aligned}$						
	708.133 [#] 20	100 [#] 21	1542.4441 4+	M1+E2	-0.14 3	0.00291	$\alpha(K)=0.00254 4; \alpha(L)=0.000301 5; \alpha(M)=5.76\times10^{-5} 8; \alpha(N+)=1.090\times10^{-5} 16$ $\alpha(N)=1.029\times10^{-5} 15; \alpha(O)=6.07\times10^{-7} 9$ B(M1)(W.u.)=0.08 +4-8; B(E2)(W.u.)=2.6 +16-26 Mult: From A ₂ =+0.22 6, A ₄ =-0.10 8 (1992De41) from ¹¹⁰ Cd(n,n' γ). δ : Weighted average of -0.15 9 (1992De41), -0.15 9 (1990Ar20), 0.13 +4-3 (2001Co01) (from ¹¹⁰ Cd(n,n' γ)). Other: -0.7 3 (1990Ke02) from ¹⁰⁸ Pd(α ,2n γ). ¹¹⁰ Pd(α ,4n γ).						
	774.71 [#] 7	2.5 [#] 13	1475.7900 2+	E2		0.00207	$\alpha(K)=0.00180 \ 3; \ \alpha(L)=0.000222 \ 4; \ \alpha(M)=4.26\times10^{-5} \ 6; \\ \alpha(N+)=7.97\times10^{-6} \ 12 \\ \alpha(N)=7.55\times10^{-6} \ 11; \ \alpha(O)=4.17\times10^{-7} \ 6 \\ B(E2)(W.u.)=2.2 \ +14-22 \\ Mult.: \ From \ \gamma(\theta) \ in \ ^{110}Cd(n,n'\gamma) \ but \ A_2 \ and \ A_4 \\ coefficients \ were \ not \ given \ by \ the \ authors \ of \ 1992De41.$						
	1592.77 [#] 6	9.1# 3	657.7623 2+	E2		5.51×10 ⁻⁴	$\alpha(K)=0.000379 \ 6; \ \alpha(L)=4.43\times10^{-5} \ 7; \ \alpha(M)=8.47\times10^{-6} \ 12; \ \alpha(N+)=0.0001188 \ 17 \ \alpha(N)=1.511\times10^{-6} \ 22; \ \alpha(O)=8.87\times10^{-8} \ 13; \ \alpha(IPF)=0.0001172 \ 17 \ B(E2)(W.u.)=0.22 \ +9-19 \ Mult.: From \ \gamma(\theta) \ in \ ^{110}Cd(n,n'\gamma) \ but \ A_2 \ and \ A_4 \ coefficients \ were not given by the authors of 1992De41.$						
2287.63 2+	1629.90 [#] 14	100 [#]	657.7623 2+	M1+E2	+0.06 3	5.86×10^{-4}	$\alpha(K)=0.000407\ 6;\ \alpha(L)=4.73\times10^{-5}\ 7;\ \alpha(M)=9.03\times10^{-6}\ 13;$						

 $^{110}_{48}$ Cd₆₂-19

 $^{110}_{48}\mathrm{Cd}_{62}$ -19

Adopted Levels, Gammas (continued)												
							γ (¹¹⁰ Cd)	(continued)				
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f .	J_f^{π} Mu	ult. ^b	δ^{c}	α^{\dagger}	Comments			
					_				$\begin{aligned} \alpha(\text{N}+)=0.0001228 \ 18 \\ \alpha(\text{N})=1.615\times10^{-6} \ 23; \ \alpha(\text{O})=9.66\times10^{-8} \ 14; \\ \alpha(\text{IPF})=0.0001211 \ 17 \\ \text{B}(\text{M1})(\text{W.u.})=0.017 \ +3-5; \ \text{B}(\text{E2})(\text{W.u.})=0.019 \ +20-19 \\ \text{Mult.: From } A_2=+0.24 \ 3, \ A_4=+0.01 \ 4 \ (1992\text{De}41) \ \text{in} \\ {}^{110}\text{Cd}(n,n'\gamma). \\ \delta: \ \text{From } 1992\text{De}41 \ \text{and} \ 1990\text{Ar}20 \ \text{using} \ \gamma(\theta) \ \text{in} \\ {}^{110}\text{Cd}(n,n'\gamma). \ \text{Other: } -0.01 \ 2 \ (2001\text{Co}01) \ \text{from} \\ {}^{110}\text{Cd}(n,n'\gamma). \end{aligned}$			
2331.92	$(0)^{+}$	548.4 [@] 2	$24^{@} 6$	1783.496	2+							
2355.792	2+	16/4.15 4 624.47 9	100 6	657.7623 2 1731.31 (2+)+ E2			0.00360	$\begin{aligned} &\alpha(\text{K}) = 0.00311 \ 5; \ \alpha(\text{L}) = 0.000394 \ 6; \ \alpha(\text{M}) = 7.58 \times 10^{-5} \ 11; \\ &\alpha(\text{N}+) = 1.411 \times 10^{-5} \ 20 \\ &\alpha(\text{N}) = 1.339 \times 10^{-5} \ 19; \ \alpha(\text{O}) = 7.16 \times 10^{-7} \ 10 \\ &\text{E}_{\gamma}: \text{ From } ^{110}\text{Cd}(\text{n},\text{n}'\gamma) \ (2001\text{Cool}). \end{aligned}$ Mult.: From $\gamma(\theta) \text{ in } ^{110}\text{Cd}(\text{n},\text{n}'\gamma) \text{ but } \text{A}_2 \text{ and } \text{A}_4 \\ &\text{Model} = 0.0016 \ 0.0016 $			
		1698.02 [@] 2	100@	657.7623 2	2* M1	I+E2	+1.75 15	5.53×10 ⁻⁴	coefficients were not given by the authors of 2001Co01. $\alpha(K)=0.000345 5; \alpha(L)=4.02\times10^{-5} 6; \alpha(M)=7.67\times10^{-6} 12; \alpha(N+)=0.0001597 23$ $\alpha(N)=1.370\times10^{-6} 20; \alpha(O)=8.10\times10^{-8} 12; \alpha(IPF)=0.0001582 23$ B(M1)(W.u.)=0.0032 +8-12; B(E2)(W.u.)=2.8 +6-10 Mult.: From A ₂ =+0.27 3, A ₄ =-0.01 3 (1992De41) in ¹¹⁰ Cd(n,n' γ). δ : From 1992De41. Others: +0.11 4 (1992De41), 0.1 +2-1 or 1.7 +6-5 (1976De23), 1.8 2 or +0.10 5 (1990Ar20) in ¹¹⁰ Cd(n,n' γ).			
2433.248	3+	651.3 ^{@d} 5 890.7 [@] 5 957.38 [#] 6	29 [@] 4 9 [@] 3 100 [#] 7	1783.496 2 1542.4441 4 1475.7900 2	2 ⁺ 4 ⁺ 2 ⁺ M1	l+E2	-0.9 7	0.00137 9	$\alpha(K)=0.00120 \ 8; \ \alpha(L)=0.000142 \ 8; \ \alpha(M)=2.72\times10^{-5} \ 15; \ \alpha(N+)=5.1\times10^{-6} \ 3 \ \alpha(N)=4.9\times10^{-6} \ 3; \ \alpha(O)=2.83\times10^{-7} \ 21 \ Mult.: \ From A_2=-0.58 \ 3, \ A_4=+0.07 \ 3 \ (1992De41) \ in \ ^{110}Cd(n,n'\gamma).$ $\delta: \ Others: \ -0.45 \ 5 \ or \ -1.38 \ 14 \ (1992De41), \ -0.43 \ 8 \ or \ -1.38 \ 3 \ -1.38 \ -1$			
		1775.42 [#] 4	70 [#] 3	657.7623	2 ⁺ M1	l+E2	-0.35 10	5.69×10 ⁻⁴	20 (1990Ar20) in ¹¹⁰ Cd(n,n' γ). α (K)=0.000338 6; α (L)=3.92×10 ⁻⁵ 6; α (M)=7.49×10 ⁻⁶ 12; α (N+)=0.000184 3			

l

						Adopted	Levels, Gamm	nas (continued)
						<u>γ</u>	v(¹¹⁰ Cd) (conti	inued)
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^b	α^{\dagger}	Comments
					<u> </u>			$\begin{aligned} \alpha(\text{N}) &= 1.339 \times 10^{-6} \ 21; \ \alpha(\text{O}) &= 8.00 \times 10^{-8} \ 13; \ \alpha(\text{IPF}) &= 0.000183 \ 3 \end{aligned}$ Mult.: From A ₂ =-0.56 8, A ₄ =0.00 3 (1992De41) in ¹¹⁰ Cd(n,n' γ). δ : -0.35 10 or -1.6 3 (1992De41), -0.35 10 or -1.6 4 (1990Ar20) in ¹¹⁰ Cd(n,n' γ).
2477.41	2+	746.19 [@] 17	@	1731.31	0+	E2	0.00227	$\alpha(K)=0.00197 \ 3; \ \alpha(L)=0.000245 \ 4; \ \alpha(M)=4.69\times10^{-5} \ 7; \ \alpha(N+)=8.77\times10^{-6} \ 13 \ \alpha(N)=8.32\times10^{-6} \ 12; \ \alpha(O)=4.57\times10^{-7} \ 7 \ Mult.: From \ \gamma(\theta) \ in \ ^{110}Cd(n,n'\gamma) \ but \ A_2 \ and \ A_4 \ coefficients \ were not given by the authors of 2001Co01.$
		$1001.71^{\&} 6$	98 ^{&} 10	1475.7900	2^+			
		2477.16 ^{&} 8	100 & 4	0.0	0^{+}	E2	7.24×10 ⁻⁴	$\alpha(K)=0.0001686\ 24;\ \alpha(L)=1.94\times10^{-5}\ 3;\ \alpha(M)=3.70\times10^{-6}\ 6;\ \alpha(N+)=0.000532\ 8$
								$\alpha(N)=6.61\times10^{-7}$ 10; $\alpha(O)=3.94\times10^{-8}$ 6; $\alpha(IPF)=0.000532$ 8 Mult.: From ¹¹⁰ Cd(n,n' γ).
2479.9339	6+	229.420 ^{#d} 22	0.03 [#]	2250.554	4+	[E2]	0.0801	α (K)=0.0670 <i>10</i> ; α (L)=0.01070 <i>15</i> ; α (M)=0.00208 <i>3</i> ; α (N+)=0.000373 <i>6</i>
								α (N)=0.000358 5; α (O)=1.410×10 ⁻⁵ 20 B(E2)(W.u.)=14 10
		937.485 [#] 3	100 [#]	1542.4441	4+	E2	1.32×10^{-3}	α (K)=0.001149 <i>16</i> ; α (L)=0.0001390 <i>20</i> ; α (M)=2.66×10 ⁻⁵ <i>4</i> ; α (N+)=5.00×10 ⁻⁶ <i>7</i>
								α (N)=4.73×10 ⁻⁶ 7; α (O)=2.67×10 ⁻⁷ 4 B(E2)(Wn)=4 E+1 3
								Mult.: From α (K)exp=0.0012 & (1964Ne05) in ¹¹⁰ Ag β^- Decay (249.83 d) and 0.00114 & (1980Ba58) in ¹¹⁰ In ε Decay (4.92 h)). K/(L+M)=6.6 <i>14</i> from ¹¹⁰ In ε decay (4.92 h) (1962Ka08) and A ₂ =+0.34 2, A ₄ =-0.08 3 (1990Ke02) in ¹⁰⁸ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ).
2481.606	(2)+	402.84 [@] 17	@	2078.548	3-	(E1)	0.00361	$\alpha(K)=0.00315 5; \alpha(L)=0.000373 6; \alpha(M)=7.12\times10^{-5} 10; \alpha(N+)=1.335\times10^{-5} 19 \alpha(N)=1.263\times10^{-5} 18; \alpha(O)=7.12\times10^{-7} 10 E_{\gamma}: From {}^{110}Cd(n,n'\gamma).$ Mult.: From $\gamma(\theta)$ in {}^{110}Cd(n,n'\gamma) but A ₂ and A ₄ coefficients were not given by the authors (2001Co01)
		698.0 [@] 2	27 [@] 3	1783.496	2+			not given by the dutions (20010001).

					Adopted Le	evels, Gamma	as (continued)	
					$\gamma(1)$	¹⁰ Cd) (conti	nued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^b	δ^{C}	α^{\dagger}	Comments
2481.606	(2)+	1005.58 [@] 10	51 [@] 3	1475.7900 2+	M1(+E2)	-0.41 10	1.29×10 ⁻³ 2	
		1823.84 [@] 2	100 [@] 6	657.7623 2+	M1+E2		5.73×10 ⁻⁴	$\alpha(K)=0.000324 5; \alpha(L)=3.75\times10^{-5} 6; \\ \alpha(M)=7.16\times10^{-6} 10; \alpha(N+)=0.000204 3 \\ \alpha(N)=1.280\times10^{-6} 18; \alpha(O)=7.66\times10^{-8} 11; \\ \alpha(IPF)=0.000203 3 \\ Mult.: From A_2=-0.15 3, A_4=0.02 4 in {}^{110}Cd(n,n'\gamma) \\ (1992De41). \\ \delta: -0.70 9 or -4.9 + 24-11 (1992De41), -0.70 10 or \\ -5.2 20 (1990Ar20) in {}^{110}Cd(n n'\gamma) \\ \end{array}$
2539.691	5-	460.85 ^a 8	4.00 ^{<i>a</i>} 11	2078.548 3-	E2		0.00845	$\alpha(K)=0.00726 \ 11; \ \alpha(L)=0.000965 \ 14; \alpha(M)=0.000186 \ 3; \ \alpha(N+)=3.43\times10^{-5} \ 5 \alpha(N)=3.27\times10^{-5} \ 5; \ \alpha(O)=1.641\times10^{-6} \ 23 B(E2)(W.u.)=56 \ +13-23 Mult.: From A_2=+0.31 \ 6, A_4=-0.14 \ 9 in 108 Pd(\alpha \ 2nx)^{110}Pd(\alpha \ 4nx)$
		997.256 ^{<i>a</i>} 8	100.0 ^{<i>a</i>} 8	1542.4441 4+	E1(+M2)	-0.03 5	4.91×10 ⁻⁴ 17	$\alpha(K)=0.000430 \ 15; \ \alpha(L)=4.97\times10^{-5} \ 18; \alpha(M)=9.5\times10^{-6} \ 4; \ \alpha(N+)=1.79\times10^{-6} \ 7 \alpha(N)=1.69\times10^{-6} \ 6; \ \alpha(O)=9.9\times10^{-8} \ 4 B(E1)(W.u.)=(0.00048 \ +12-19); \ B(M2)(W.u.)=(2 +7-2) Mult.: \ \alpha(K)exp=0.00041 \ 5 \ (1980Ba58) \ in \ ^{110}In \ \varepsilon decay \ (4.92 \ h). \delta: From 1990Ke02 \ in \ ^{108}Pd(\alpha,2n\gamma), ^{110}Pd(\alpha,4n\gamma).$
2561.284	4+	341.3 ^{#d} 1	3.0 [#] 7	2220.0683 4+	[M1]		0.01715	$\alpha(K)=0.01493 \ 21; \ \alpha(L)=0.00181 \ 3; \ \alpha(M)=0.000347 5; \ \alpha(N+)=6.55\times10^{-5} \ 10 \alpha(N)=6.19\times10^{-5} \ 9; \ \alpha(O)=3.61\times10^{-6} \ 5 B(M1)(W.u.)=0.013 \ +6-12$
		1018.94 [#] 4	19.6 [#] 9	1542.4441 4+	M1+E2	-0.6 4	0.00123 5	$\alpha(K)=0.00107 \ 4; \ \alpha(L)=0.000126 \ 5; \ \alpha(M)=2.42\times10^{-5} \ 8; \ \alpha(N+)=4.57\times10^{-6} \ 16 \ \alpha(N)=4.32\times10^{-6} \ 15; \ \alpha(O)=2.54\times10^{-7} \ 11 \ B(M1)(W.u.)=0.0023 \ +12-22; \ B(E2)(W.u.)=0.7 \ 7 \ Mult.: \ From \ A_2=+0.01 \ 6 \ (1990Ke02)$

Adopted Levels, Gammas (continued)											
						$\gamma(^{110}\text{Cd})$ (cont	inued)				
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f J	\int_{f}^{π} Mult. ^b	α^{\dagger}	Comments				
2561.284	4+	1085.447 [#] 14	100 [#] 5	1475.7900 2	+ E2	9.52×10 ⁻⁴	¹⁰⁸ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ). δ : Other: -0.49 +16-19 in ¹¹⁰ Cd(n,n' γ) (2001Co01). α (K)=0.000830 12; α (L)=9.92×10 ⁻⁵ 14; α (M)=1.90×10 ⁻⁵ 3; α (N+)=3.57×10 ⁻⁶ 5 α (N)=3.38×10 ⁻⁶ 5; α (O)=1.94×10 ⁻⁷ 3				
							B(E2)(W.u.)=9 +4-9 Mult.: From A ₂ =+0.36 4, A ₄ =-0.10 5 (1992De41) in ¹¹⁰ Cd(n,n' γ) and α (K)exp=0.0008 2 in ¹¹⁰ In ε decay (4.9 h) (1980Ba58).				
		1903.53 [#] 3	22.2 [#] 9	657.7623 2	+ E2	5.65×10 ⁻⁴	$\alpha(K)=0.000271 4; \alpha(L)=3.14\times10^{-5} 5; \alpha(M)=6.00\times10^{-6} 9; \alpha(N+)=0.000256 4$ $\alpha(N)=1.071\times10^{-6} 15; \alpha(O)=6.33\times10^{-8} 9; \alpha(IPF)=0.000255 4$ B(E2)(W,u)=0.12 +5-11 Mult: From $\gamma(\theta)$ in ¹¹⁰ Cd(n,n' γ) but A ₂ and A ₄ coefficients were not				
2566.47	(2 ⁻ ,3)	$782.8^{@} 2$	$29^{@} 4$	1783.496 2	+		given by the authors of 2001Co01.				
2633.20	2+	1090.83 [@] 10	42 [@] 4	1542.4441 4	+ [E2]	9.42×10 ⁻⁴	$\alpha(K)=0.000821 \ 12; \ \alpha(L)=9.81\times10^{-5} \ 14; \ \alpha(M)=1.88\times10^{-5} \ 3; \ \alpha(N+)=3.54\times10^{-6} \ 5 \ \alpha(N)=3.34\times10^{-6} \ 5; \ \alpha(O)=1.92\times10^{-7} \ 3$				
		1157.24 17		1475.7900 2	+ [M1]	9.66×10 ⁻⁴	$\begin{array}{l} B(E2)(W.u.) = 25 + 4 - 5 \\ \alpha(K) = 0.000843 \ 12; \ \alpha(L) = 9.85 \times 10^{-5} \ 14; \ \alpha(M) = 1.88 \times 10^{-5} \ 3; \\ \alpha(N+) = 6.00 \times 10^{-6} \ 9 \\ \alpha(N) = 3.37 \times 10^{-6} \ 5; \ \alpha(O) = 2.01 \times 10^{-7} \ 3; \ \alpha(IPF) = 2.43 \times 10^{-6} \ 4 \\ E \ \epsilon \ From \ ^{110} Cd(n, n'(n)) \end{array}$				
		1975.2 [@] 3	100 [@] 9	657.7623 2	+ E2+M1	5.87×10 ⁻⁴	$\alpha(K)=0.000276 \ 4; \ \alpha(L)=3.18\times10^{-5} \ 5; \ \alpha(M)=6.08\times10^{-6} \ 9; \ \alpha(N+)=0.000274 \ 4 \ \alpha(N)=1.088\times10^{-6} \ 16; \ \alpha(O)=6.52\times10^{-8} \ 10; \ \alpha(IPF)=0.000272 \ 4 \ Mult : F2 \ from \ A_2=+0 \ 43 \ 4 \ A_4=0 \ 00 \ 4 \ (1992De41) \ in \ ^{110}Cd(n \ n' \chi)$				
2649.95	1-	1176.8 [@] 2	32 [@] 4	1473.07 0	+ [E1]	3.84×10 ⁻⁴	$\alpha(K)=0.000315 5; \alpha(L)=3.62\times10^{-5} 5; \alpha(M)=6.91\times10^{-6} 10; \alpha(N+)=2.61\times10^{-5} 4 \alpha(N)=1.232\times10^{-6} 18; \alpha(O)=7.26\times10^{-8} 11; \alpha(IPF)=2.48\times10^{-5} 4 B(E1)(Wu)=0.0015 6$				
		2649.92 [@] 6	100 [@] 9	0.0 0	+ E1	1.12×10 ⁻³	$\alpha(K) = 8.53 \times 10^{-5} \ 12; \ \alpha(L) = 9.68 \times 10^{-6} \ 14; \ \alpha(M) = 1.84 \times 10^{-6} \ 3; \alpha(N+) = 0.001026 \ 15 \alpha(N) = 3.30 \times 10^{-7} \ 5; \ \alpha(O) = 1.97 \times 10^{-8} \ 3; \ \alpha(IPF) = 0.001026 \ 15 B(E1)(W.u.) = 0.00040 \ 15$				

 $^{110}_{48}$ Cd $_{62}$ -23

l

						Adopted Lev	vels, Gammas (continued)	
						$\gamma(1)$	¹⁰ Cd) (continue	d)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. ^b	δ^{c}	α^{\dagger}	Comments
2659.866	5-	120.154 ^a 25	33.3 ^a 18	2539.691	5-	M1(+E2)	-0.1 3	0.28 7	Mult.: From A ₂ =-0.09 4, A ₄ =0.00 5 (1992De41) in ¹¹⁰ Cd(n,n' γ) and from ¹¹⁰ Cd(γ , γ') (2005Ko32), deduced using $\gamma(\theta)$ and π from linear polarization measurements. $\alpha(K)=0.24 5$; $\alpha(L)=0.031 14$; $\alpha(M)=0.006 3$; $\alpha(N+)=0.0011 5$ $\alpha(N)=0.0011 5$; $\alpha(O)=5.9\times10^{-5} 8$
				2250 554	4.4			0.00050.0	I _y : Other: 58 10 in ¹¹⁰ Cd(n,n' γ). Mult.: From A ₂ =0.26 13 (1990Ke02) in ¹⁰⁸ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ).
		409.36" 8	10.4 ^{<i>u</i>} 4	2250.554	4+	E1(+M2)	-0.029 23	0.00350 9	$\alpha(K)=0.00305 \ 8; \ \alpha(L)=0.000361 \ 10; \alpha(M)=6.90\times10^{-5} \ 18; \ \alpha(N+)=1.29\times10^{-5} \ 4 \alpha(N)=1.23\times10^{-5} \ 4; \ \alpha(O)=6.91\times10^{-7} \ 18 Mult.: From \ \alpha(K)exp=0.0027 \ 10 \ (1970Ko12) in 110In \ \varepsilon \ decay \ (4.9 \ h) \ and \ A_2=-0.25 \ 2 (1990Ke02) \ in \ ^{108}Pd(\alpha,2n\gamma),^{110}Pd(\alpha,4n\gamma) (1990Ke02).$
		1117.437 ^{<i>a</i>} 10	100.0 ^{<i>a</i>} 11	1542.4441	4+	E1		4.01×10 ⁻⁴	$\alpha(K)=0.000346 5; \alpha(L)=3.98\times10^{-5} 6;$ $\alpha(M)=7.60\times10^{-6} 11; \alpha(N+)=8.05\times10^{-6} 12$ $\alpha(N)=1.356\times10^{-6} 19; \alpha(O)=7.98\times10^{-8} 12;$ $\alpha(IPF)=6.61\times10^{-6} 10$ Mult.: From $\alpha(K)\exp=0.00033 7$ (1990Ke02) in ¹¹⁰ In ε decay (4.9 h) (1980Ba58) and $A_2=-0.18 2$ in ¹⁰⁸ Pd($\alpha, 2n\gamma$), ¹¹⁰ Pd($\alpha, 4n\gamma$).
2662.13	0+	1186.30 <i>12</i> 2004.40 <i>15</i>	75 <i>16</i> 100 <i>10</i>	1475.7900 657.7623	2+ 2+	E2		5.85×10 ⁻⁴	E _γ , I _γ : From ¹¹⁰ Ag β ⁻ decay (24.56 s). $\alpha(K)=0.000246 4; \alpha(L)=2.85\times10^{-5} 4;$ $\alpha(M)=5.44\times10^{-6} 8; \alpha(N+)=0.000305 5$ $\alpha(N)=9.72\times10^{-7} 14; \alpha(O)=5.76\times10^{-8} 8;$ $\alpha(IPF)=0.000304 5$ E _γ , I _γ : From ¹¹⁰ Ag β ⁻ decay (24.56 s). Mult.: From A ₂ =0.177 28, A ₄ =0.986 47, 657.50γ gated (0.2-0 spin sequence) (1972Ka34) in
2705.669	(4)+	1163.19 [#] 5	100#	1542.4441	4+	M1+E2	-0.03 +6-9	9.56×10 ⁻⁴	¹¹⁰ Ag β^- decay (24.56 s). $\alpha(K)=0.000834$ 12; $\alpha(L)=9.74\times10^{-5}$ 14; $\alpha(M)=1.86\times10^{-5}$ 3; $\alpha(N+)=6.34\times10^{-6}$ 9 $\alpha(N)=3.33\times10^{-6}$ 5; $\alpha(O)=1.98\times10^{-7}$ 3; $\alpha(IPF)=2.81\times10^{-6}$ 4 Mult.: From A ₂ =+0.32 5, A ₄ =-0.03 6 (1992De41) in ¹¹⁰ Cd(n,n' γ).
2707.397	$(4)^{+}$	1.60 10		2705.669	$(4)^{+}$	M1			<i>δ</i> : From $\gamma(\theta)$ in ¹¹⁰ Cd(n,n' γ) (1992De41). E _{γ} : From measured Ice in ¹¹⁰ Ag β^- decay

					Adopted Leve	els, Gammas (continued)	
					$\gamma(^{110}$	⁰ Cd) (continue	d)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^b	δ^{c}	α^{\dagger}	Comments
2707.397	(4)+	544.56 [#] 4	41 [#] 7	2162.8015 3+	M1+E2	+0.21 11	0.00541	(249.83 d). Mult.: From M1/M2/M3=10 2/1.0/0.35 10 in ¹¹⁰ Ag β^- decay (249.83 d) (1993Ka37). $\alpha(K)=0.00472$ 7; $\alpha(L)=0.000565$ 8; $\alpha(M)=0.0001083$ 16; $\alpha(N+)=2.05\times10^{-5}$ 3 $\alpha(D)=1.02\times10^{-5}$ 3
								$\begin{aligned} &\alpha(N) = 1.93 \times 10^{-6} 5; \ \alpha(O) = 1.131 \times 10^{-6} 17 \\ &I_{\gamma}: \text{ Other: } 62 \ 3 \text{ in } {}^{108}\text{Pd}(\alpha, 2n\gamma), {}^{110}\text{Pd}(\alpha, 4n\gamma), \ 56 \ 5 \\ &\text{ in } {}^{110}\text{Cd}(n, n'\gamma). \\ &\text{Mult.: From } A_2 = +0.02 \ 5 \ (1990\text{Ke02}) \text{ in } \\ & {}^{108}\text{Pd}(\alpha, 2n\gamma), {}^{110}\text{Pd}(\alpha, 4n\gamma). \\ &\delta: \text{ Other: } -0.03 \ 5 \text{ or } -5.5 \ +24 - 10 \ (1992\text{De41}) \text{ from } \\ & {}^{110}\text{Cd}(n, n'\gamma). \end{aligned}$
		1164.98 [#] 7	100 [#] 7	1542.4441 4+	M1(+E2)	<+0.3	9.48×10 ⁻⁴ 15	$\begin{aligned} &\alpha(\text{K}) = 0.000826 \ 13; \ \alpha(\text{L}) = 9.66 \times 10^{-5} \ 15; \\ &\alpha(\text{M}) = 1.85 \times 10^{-5} \ 3; \ \alpha(\text{N}+) = 6.46 \times 10^{-6} \ 9 \\ &\alpha(\text{N}) = 3.30 \times 10^{-6} \ 5; \ \alpha(\text{O}) = 1.96 \times 10^{-7} \ 3; \\ &\alpha(\text{IPF}) = 2.96 \times 10^{-6} \ 5 \\ &\text{Mult.: From } \text{A}_2 = +0.17 \ 5 \ (1990\text{Ke02}) \text{ in} \\ & 1^{08}\text{Pd}(\alpha, 2n\gamma), ^{110}\text{Pd}(\alpha, 4n\gamma). \text{ Other: } \text{A}_2 = +0.39 \ 11, \\ &\text{A}_4 = +0.02 \ 14 \ (1992\text{De}41) \ \text{from } ^{110}\text{Cd}(n, n'\gamma). \end{aligned}$
2758.25	(1,2,3)+	402.4 ^{@d} 2	45 [@] 7	2355.792 2+	[M1]		0.01135	δ: Other: $-0.07 + 10-7$ (1992De41) from ¹¹⁰ Cd(n,n'γ). α (K)=0.00988 14; α (L)=0.001191 17; α (M)=0.000228 4; α (N+)=4.31×10 ⁻⁵ 6 α (N)=4.08×10 ⁻⁵ 6; α (O)=2.38×10 ⁻⁶ 4 B(M1)(W μ)=0.37 + 12-16
		1282.45 [@] 8	100 [@] 7	1475.7900 2+	M1+E2	+0.32 5	7.80×10 ⁻⁴ 12	$\alpha(K) = 0.000667 \ lo; \ \alpha(L) = 7.78 \times 10^{-5} \ l2; \alpha(M) = 1.488 \times 10^{-5} \ 22; \ \alpha(N+) = 2.07 \times 10^{-5} \ 3 \alpha(N) = 2.66 \times 10^{-6} \ 4; \ \alpha(O) = 1.583 \times 10^{-7} \ 24; \alpha(IPF) = 1.79 \times 10^{-5} \ 3 B(M1)(W.u.) = 0.023 \ +7 - 10; \ B(E2)(W.u.) = 1.2 \ +5 - 6 Mult: From A_2 = +0.39 \ l1, \ A_4 = +0.02 \ l4 \ (1992De41) in \ ^{110}Cd(n,n'\gamma). \delta: From \alpha(\theta) in \ ^{110}Cd(n,n'\alpha). $
		2100.6 [@] 5	33 [@] 10	657.7623 2+	[M1]		6.10×10 ⁻⁴	a(K)=0.000244 4; α (L)=2.81×10 ⁻⁵ 4; α (M)=5.37×10 ⁻⁶ 8; α (N+)=0.000333 5 α (N)=9.61×10 ⁻⁷ 14; α (O)=5.76×10 ⁻⁸ 8; α (IPF)=0.000332 5 B(M1)(W µ)=0.0019 +8-10
2787.49	2+	305.8 [@] 2	16 [@] 5	2481.606 (2)+	[M1]		0.0227	$\alpha(K)=0.0197 \ 3; \ \alpha(L)=0.00240 \ 4; \ \alpha(M)=0.000460 \ 7;$
1								

						Adopted Lev	vels, Gamm	as (continued)
						$\gamma(^{11}$	¹⁰ Cd) (conti	inued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_{f}	\mathbf{J}_f^{π}	Mult. ^b	δ^{c}	α^{\dagger}	Comments
									$\alpha(N+)=8.69\times10^{-5} \ 13$ $\alpha(N)=8.21\times10^{-5} \ 12; \ \alpha(O)=4.77\times10^{-6} \ 7$ B(M1)(W.u.)=3.3 \ 14
2787.49	2+	1314.25 ^{&} 10	1.91 ^{&} 14	1473.07	0+	[E2]		6.63×10 ⁻⁴	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000555 \ 8; \ \alpha(\mathbf{L}) = 6.56 \times 10^{-5} \ 10; \\ &\alpha(\mathbf{M}) = 1.254 \times 10^{-5} \ 18; \ \alpha(\mathbf{N}+) = 2.92 \times 10^{-5} \ 4 \\ &\alpha(\mathbf{N}) = 2.23 \times 10^{-6} \ 4; \ \alpha(\mathbf{O}) = 1.298 \times 10^{-7} \ 19; \\ &\alpha(\mathbf{IPF}) = 2.68 \times 10^{-5} \ 4 \\ &\mathbf{B}(\mathbf{E2})(\mathbf{W}.\mathbf{u}.) = 2.3 \ 7 \end{aligned}$
		2129.52 [@] 5	100 [@] 7	657.7623	2+	M1+E2		6.17×10 ⁻⁴	$\alpha(K)=0.000237 4; \alpha(L)=2.74\times10^{-5} 4;$ $\alpha(M)=5.23\times10^{-6} 8; \alpha(N+)=0.000347 5$ $\alpha(N)=9.35\times10^{-7} 13; \alpha(O)=5.61\times10^{-8} 8;$ $\alpha(IPF)=0.000346 5$ Mult.: From A ₂ =-0.31 5, A ₄ =-0.02 5 (1992De41) in $^{110}Cd(n,n'\gamma)$. δ ; +0.18 +10-7 or +1.5 3 (1992De41) in $^{110}Cd(n,n'\gamma)$.
		2788.37 [@] 10	16 [@] 5	0.0	0+	[E2]		8.31×10 ⁻⁴	$\begin{aligned} \alpha(\text{K}) = 0.0001374\ 20;\ \alpha(\text{L}) = 1.575 \times 10^{-5}\ 22; \\ \alpha(\text{M}) = 3.00 \times 10^{-6}\ 5;\ \alpha(\text{N}+) = 0.000675\ 10 \\ \alpha(\text{N}) = 5.37 \times 10^{-7}\ 8;\ \alpha(\text{O}) = 3.21 \times 10^{-8}\ 5; \\ \alpha(\text{IPF}) = 0.000675\ 10 \\ \text{B}(\text{E2})(\text{W.u.}) = 0.46\ 19 \\ \text{I}_{\gamma}:\ 3.27\ 14\ \text{in}\ ^{110}\text{In}\ \varepsilon\ \text{decay}\ (69.1\ \text{min}). \end{aligned}$
2793.441	(4) ⁺	360.23 [#] 8 573.0 [#] 4	23 [#] 14 51 [#] 3	2433.248 2220.0683	3 ⁺ 4 ⁺	M1+E2	-0.3 3	0.00478 9	$\begin{split} &I_{\gamma}: \text{ Other: } 8.1 \ 12 \ \text{from } ^{108}\text{Pd}(\alpha,2n\gamma),^{110}\text{Pd}(\alpha,4n\gamma). \\ &\alpha(\text{K}) = 0.00416 \ 8; \ \alpha(\text{L}) = 0.000499 \ 7; \ \alpha(\text{M}) = 9.57 \times 10^{-5} \\ &I4 \ \alpha(\text{N}+) = 1.81 \times 10^{-5} \ 3 \\ &\alpha(\text{N}) = 1.707 \times 10^{-5} \ 24; \ \alpha(\text{O}) = 9.96 \times 10^{-7} \ 24 \\ &I_{\gamma}: \ \text{Other: } 17.4 \ 14 \ \text{in } ^{108}\text{Pd}(\alpha,2n\gamma),^{110}\text{Pd}(\alpha,4n\gamma), \\ &< 63 \ \text{in } ^{110}\text{Cd}(n,n'\gamma). \\ &\text{Mult.: } \ \text{From } \text{A}_2 = +0.10 \ 14 \ (1990\text{Ke02}) \ \text{in } \\ &I^{108}\text{Pd}(\alpha,2n\gamma),^{110}\text{Pd}(\alpha,4n\gamma). \end{split}$
		630.62 [#] 5	100 [#] 15	2162.8015	3+	M1(+E2)	+0.02 7	0.00382	$\alpha(K)=0.00334 5; \ \alpha(L)=0.000396 6; \ \alpha(M)=7.59\times10^{-5} II; \ \alpha(N+)=1.436\times10^{-5} 2I \\ \alpha(N)=1.356\times10^{-5} I9; \ \alpha(O)=8.00\times10^{-7} I2 \\ Mult.: \ From \ A_2=-0.11 4 \ (1990Ke02) \ in \\ ^{108}Pd(\alpha,2n\gamma), ^{110}Pd(\alpha,4n\gamma).$
		714.94 [#] 1	28 [#] 7	2078.548	3-				
2842 682	$(5)^{-}$	1251.06 [#] 4	$80^{\#} 9$	1542.4441	4+ 5-	$M1\pm F2$		0.0876	$\alpha(\mathbf{K}) = 0.0760 \ ll \cdot \alpha(\mathbf{I}) = 0.00030 \ ld \cdot \alpha(\mathbf{M}) = 0.00181 \ l \cdot \alpha(\mathbf{K}) = 0.00181 \ l \cdot \alpha(\mathbf$
2072.002	(3)	102.05 0	5.5 4	2039.000	5	19117152		0.0070	$\alpha(N+)=0.0003405$

From ENSDF

					A	dopted Leve	ls, Gamma	as (continued)	
						$\gamma(^{110})$	Cd) (conti	nued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. <mark>b</mark>	δ^{c}	$lpha^{\dagger}$	Comments
2012 (02	(5) -	100.260.0	20.20 7	2422.240	2+				α (N)=0.000322 5; α (O)=1.85×10 ⁻⁵ 3 Mult.: From A ₂ =+0.79 11 in ¹⁰⁸ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ).
2842.082	(5)	1300.233 ^{<i>a</i>} 10	20.34 / 100.0 ^a 21	2433.248 1542.4441	3 ⁺ 4 ⁺	E1(+M2)	+0.0 1	3.93×10 ⁻⁴ 14	$\begin{aligned} &\alpha(\text{K}) = 0.000264 \ 13; \ \alpha(\text{L}) = 3.03 \times 10^{-5} \ 15; \\ &\alpha(\text{M}) = 5.8 \times 10^{-6} \ 3; \ \alpha(\text{N}+) = 9.35 \times 10^{-5} \ 16 \\ &\alpha(\text{N}) = 1.03 \times 10^{-6} \ 6; \ \alpha(\text{O}) = 6.1 \times 10^{-8} \ 3; \\ &\alpha(\text{IPF}) = 9.24 \times 10^{-5} \ 16 \\ &\text{Mult.: From A}_2 = -0.21 \ 2 \ (1990\text{Ke02}) \text{ in} \\ & 1^{108}\text{Pd}(\alpha, 2n\gamma), ^{110}\text{Pd}(\alpha, 4n\gamma) \text{ and from } \gamma(\theta) \text{ in} \\ & 1^{10}\text{Cd}(n, n'\gamma) \ (2001\text{Co01}). \end{aligned}$
2869.144	1+,2+	1085.57 ^{&} 4	2.2 ^{&} 7	1783.496	2+	E2+M1		1.11×10 ⁻³	$\alpha(K)=0.000969 \ 14; \ \alpha(L)=0.0001135 \ 16; \ \alpha(M)=2.17\times10^{-5} \ 3; \ \alpha(N+)=4.11\times10^{-6} \ 6 \ \alpha(N)=3.88\times10^{-6} \ 6; \ \alpha(O)=2.31\times10^{-7} \ 4 \ Mult.: From \ \gamma(\theta) \ in \ ^{110}Cd(n,n'\gamma), \ but \ A_2 \ and \ A_4 \ coefficients \ were \ not \ given \ by \ the \ authors \ (2001Co01).$
		1393.63 ^{&} 7	3.03 ^{&} 22	1475.7900	2^{+}				():
		2211.33 ^{&} 3	100 ^{&} 2	657.7623	2+	M1+E2		6.38×10 ⁻⁴	$\begin{aligned} &\alpha(\text{K}) = 0.000220 \ 3; \ \alpha(\text{L}) = 2.54 \times 10^{-5} \ 4; \\ &\alpha(\text{M}) = 4.85 \times 10^{-6} \ 7; \ \alpha(\text{N}+) = 0.000387 \ 6 \\ &\alpha(\text{N}) = 8.67 \times 10^{-7} \ 13; \ \alpha(\text{O}) = 5.20 \times 10^{-8} \ 8; \\ &\alpha(\text{IPF}) = 0.000386 \ 6 \\ &\text{Mult.: From } \gamma(\theta) \text{ in } ^{110}\text{Cd}(n,n'\gamma) \text{ but } \text{A}_2 \text{ and } \text{A}_4 \\ &\text{ coefficients were not given by the authors} \\ &(1992\text{De}41). \\ &\delta: +1.8 \ 7 \text{ or } +0.10 \ +22-13 \ (1992\text{De}41). \end{aligned}$
	- 1	2869.28 ^{&} 10	1.85 ^{&} 11	0.0	0+				I _{γ} : Other: 14 6 from ¹¹⁰ Cd(n,n' γ).
2876.812	6*	396.894 [#] 22	17.2 [#] 18	2479.9339	6+	M1+E2		0.01174	$\alpha(K)=0.01023 \ 15; \ \alpha(L)=0.001233 \ 18; \ \alpha(M)=0.000236 4; \ \alpha(N+)=4.47\times10^{-5} \ 7 \alpha(N)=4.22\times10^{-5} \ 6; \ \alpha(O)=2.47\times10^{-6} \ 4 Mult.: \ From \ A_2=+0.29 \ 6 \ in 108 Pd(\alpha,2n\gamma), 110 Pd(\alpha,4n\gamma).$
		626.256 [#] 10	100 [#] 8	2250.554	4+	E2		0.00357	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00309 \ 5; \ \alpha(\mathbf{L}) = 0.000391 \ 6; \ \alpha(\mathbf{M}) = 7.52 \times 10^{-5} \\ &11; \ \alpha(\mathbf{N}+) = 1.400 \times 10^{-5} \ 20 \\ &\alpha(\mathbf{N}) = 1.329 \times 10^{-5} \ 19; \ \alpha(\mathbf{O}) = 7.11 \times 10^{-7} \ 10 \\ &\text{Mult.: From } \alpha(\mathbf{K}) \exp = 3.0 \times 10^{-3} \ 4 \ (1980\text{Ba58}) \ \text{in} \ ^{110}\text{In} \\ &\varepsilon \ \text{decay} \ (4.92 \ \text{h}) \ \text{and from } \mathbf{A}_2 = +0.35 \ 2, \ \mathbf{A}_4 = -0.04 \ 3 \\ &(1990\text{Ke}02) \ \text{in} \ ^{108}\text{Pd}(\alpha, 2n\gamma), ^{110}\text{Pd}(\alpha, 4n\gamma). \end{aligned}$

I

l						Adopted I	evels, Gam	mas (continu	ued)
						<u> </u>	(¹¹⁰ Cd) (co	ntinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. ^b	δ^{c}	α^{\dagger}	Comments
2876.812	6+	1334.348 [#] 16	66.1 [#] 22	1542.4441	4+	E2		6.48×10 ⁻⁴	$\alpha(K)=0.000539 \ 8; \ \alpha(L)=6.35\times10^{-5} \ 9; \\ \alpha(M)=1.214\times10^{-5} \ 17; \ \alpha(N+)=3.37\times10^{-5} \ 5 \\ \alpha(N)=2.16\times10^{-6} \ 3; \ \alpha(O)=1.259\times10^{-7} \ 18; \\ \alpha(IPF)=3.14\times10^{-5} \ 5 \\ Mult.: \ From \ A_2=+0.33 \ 4 \ in \\ {}^{108}Pd(\alpha,2n\gamma), {}^{110}Pd(\alpha,4n\gamma) \ and \ DCO=1.02 \ 14 \ in \\ (HI \ xn\gamma)$
2879.185	7-	219.31 ^{<i>a</i>} 2	1.94 ^{<i>a</i>} 6	2659.866	5-	E2		0.0935	$\alpha(K)=0.0780 \ 11; \ \alpha(L)=0.01268 \ 18; \ \alpha(M)=0.00247 \ 4; \ \alpha(N+)=0.000441 \ 7 \ \alpha(N)=0.000424 \ 6; \ \alpha(O)=1.632\times10^{-5} \ 23 \ B(E2)(W.u.)=0.84 \ 12 \ Mult.: From A_2=+0.37 \ 3, \ A_4=-0.09 \ 4 \ (1990Ke02) \ in \ ^{108}Pd(\alpha,2n\gamma), ^{110}Pd(\alpha,4n\gamma) \ and \ from \ DCO=1.38 \ 13 \ (1994Iu04) \ in \ (HI xn\gamma)$
		339.498 ^a 15	32.2 ^{<i>a</i>} 3	2539.691	5-	E2		0.0217	$\alpha(K) = 0.0185 \ 3; \ \alpha(L) = 0.00262 \ 4; \ \alpha(M) = 0.000507 \ 7; \alpha(N+) = 9.24 \times 10^{-5} \ 13 \alpha(N) = 8.84 \times 10^{-5} \ 13; \ \alpha(O) = 4.07 \times 10^{-6} \ 6 B(E2)(W.u.) = 1.56 \ 21 Mult.: From A_2 = +0.34 \ 2, \ A_4 = -0.08 \ 2 \ (1990 \text{Ke02}) \text{ in} 1^{108} \text{Pd}(\alpha, 2n\gamma), ^{110} \text{Pd}(\alpha, 4n\gamma).$
		399.254 ^a 15	100.0 ^{<i>a</i>} 6	2479.9339	6+	E1(+M2)	-0.01 3	0.00369 8	$\alpha(K) = 0.00323 \ 7; \ \alpha(L) = 0.000382 \ 9; \ \alpha(M) = 7.29 \times 10^{-5} \ 17; \ \alpha(N+) = 1.37 \times 10^{-5} \ 4 \ \alpha(N) = 1.29 \times 10^{-5} \ 3; \ \alpha(O) = 7.29 \times 10^{-7} \ 17 \ B(E1)(W.u.) = (5.6 \times 10^{-6} \ 8); \ B(M2)(W.u.) = (0.016 \ +97 - 16) \ Mult.: \ From \ A_2 = -0.25 \ 1 \ (1990Ke02) \ in \ ^{108}Pd(\alpha, 2n\gamma), ^{110}Pd(\alpha, 4n\gamma). \ \delta; \ Other; < 0.06 \ in \ (HI, xn\gamma).$
2895.948	6-	236.04 ^{<i>a</i>} 4	23.1 ^{<i>a</i>} 7	2659.866	5-	M1+E2	-0.09 4	0.0446	$\alpha(K)=0.0388\ 6;\ \alpha(L)=0.00477\ 8;\ \alpha(M)=0.000916\ 16;\ \alpha(N+)=0.000173\ 3$ $\alpha(N)=0.000163\ 3;\ \alpha(O)=9.40\times10^{-6}\ 14$ Mult.: From A ₂ =-0.36 1 (1990Ke02) in 108 Pd($\alpha,2n\gamma$), 110 Pd($\alpha,4n\gamma$).
		356.255 ^a 15	100.0 ^{<i>a</i>} 7	2539.691	5-	M1		0.01539	$\alpha(K) = 0.01340 \ I9; \ \alpha(L) = 0.001620 \ 23; \ \alpha(M) = 0.000311 5; \ \alpha(N+) = 5.87 \times 10^{-5} \ 9 \alpha(N) = 5.55 \times 10^{-5} \ 8; \ \alpha(O) = 3.24 \times 10^{-6} \ 5 Mult.: From DCO = 0.66 \ 5 in (HI,xn\gamma); \ A_2 = -0.35 \ I with \ \delta = -0.09 \ 4 in \ ^{108}Pd(\alpha, 2n\gamma), ^{110}Pd(\alpha, 4n\gamma).$
		415.9 ^{<i>a</i>} 1	8.59 ^{<i>a</i>} 22	2479.9339	6+	E1		0.00333	$\alpha(K)=0.00291 \ 4; \ \alpha(L)=0.000344 \ 5; \ \alpha(M)=6.57\times 10^{-5}$

				A	dopte	d Levels, (<mark>Gammas</mark> (contin	nued)	
						γ ⁽¹¹⁰ Cd)	(continued)		
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. ^b	δ^{c}	α^{\dagger}	Comments
									<i>10</i> ; α (N+)=1.232×10 ⁻⁵ <i>18</i> α (N)=1.166×10 ⁻⁵ <i>17</i> ; α (O)=6.59×10 ⁻⁷ <i>10</i> Mult.: From A ₂ =0.26 <i>4</i> (1990Ke02) in ¹⁰⁸ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ).
2917.60	2+,3,4+	$356.38^{(@)} 8$ 1441.9 ^(@) 2259.5 ^(@) 2	$50^{@} 7$ $100^{@} 43^{@} 7$	2561.284 1475.7900 657.7623	4 ⁺ 2 ⁺ 2 ⁺				
2926.7474	5+	$133.333^{\#} 7$ $219.348^{\#} 8$	$0.30^{\#} 1$ $0.29^{\#} 2$	2793.441 2707.397	$(4)^+$ $(4)^+$				
		221.078" 10 266 914 [#] 12	0.27'' 0.16 [#] 2	2705.669	(4)' 5				
		365.448 [#] 11	$0.37^{\#} 2$	2561.284	4 ⁺				
		387.075 [#] 9	0.2#	2539.691	5-				
		446.812 [#] 3	14.77 [#] 19	2479.9339	6 ⁺	M1+E2	-0.39 2	0.00883	$\begin{aligned} &\alpha(\text{K}) = 0.00768 \ 11; \ \alpha(\text{L}) = 0.000936 \ 14; \ \alpha(\text{M}) = 0.000180 \\ &\beta; \ \alpha(\text{N}+) = 3.38 \times 10^{-5} \ 5 \\ &\alpha(\text{N}) = 3.20 \times 10^{-5} \ 5; \ \alpha(\text{O}) = 1.83 \times 10^{-6} \ 3 \\ &\text{I}_{\gamma}: \ \text{Other}: 3.2 \ 3 \ \text{in} \ ^{108}\text{Pd}(\alpha, 2n\gamma), ^{110}\text{Pd}(\alpha, 4n\gamma). \\ &\text{Mult.: From } \alpha(\text{K})\text{exp} = 0.0070 \ 11 \ (1967\text{Mo12}). \\ &\delta: \ \text{Weighted average of } -0.40 \ 6 \ (1978\text{Wa07}), \ -0.39 \\ &+ 2 - 1 \ (1979\text{Ve03}), \ -0.35 \ 5 \ (1980\text{Ru03}) \ \text{and} \ -0.45 \ 20 \\ &(1970\text{Kr03}) \ \text{from} \ ^{110}\text{Ag} \ \beta^- \ \text{decay} \ (249.83 \ \text{d}). \end{aligned}$
		493.38" 5 706.6760 [#] 15	0.04" 66.6 [#] 3	2433.248 2220.0683	4 ⁺	M1+E2	-1.15 +5-6	0.00275	$ α(K)=0.00239 4; α(L)=0.000291 5; α(M)=5.58×10^{-5} 8; α(N+)=1.048×10^{-5} 15 α(N)=9.92×10^{-6} 14; α(O)=5.61×10^{-7} 9 Mult.: From α(K)exp=0.00262 23 (1967Mo12). K/L=4.7 (1963Su07). δ: Weighted average of -1.42 7 (1978Wa07), -1.0 3 (1970Kr03), -0.58 2 (1973Jo08), -1.8 +7-9 (1979Ve03) and -1.1 3 (1980Ru03) from 110Ag β- decay (249.83 d).$
		763.9424 [#] 17	90.2 [#] 3	2162.8015	3+	E2		0.00215	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00186 \ 3; \ \alpha(\mathbf{L}) = 0.000230 \ 4; \ \alpha(\mathbf{M}) = 4.42 \times 10^{-5} \\ &7; \ \alpha(\mathbf{N}+) = 8.26 \times 10^{-6} \ 12 \\ &\alpha(\mathbf{N}) = 7.83 \times 10^{-6} \ 11; \ \alpha(\mathbf{O}) = 4.32 \times 10^{-7} \ 6 \\ &\text{Mult.: From } \mathbf{A}_2 = +0.31 \ 1, \ \mathbf{A}_4 = -0.13 \ 1 \ (1990\text{Ke02}) \text{ in} \end{aligned}$

From ENSDF

 $^{110}_{48}$ Cd₆₂-29

 $^{110}_{48}\mathrm{Cd}_{62}$ -29

					Ad	opted Leve	ls, Gammas	(continued)	
						$\gamma(^{110}$	Cd) (continue	ed)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. ^b	δ^{c}	$lpha^\dagger$	Comments
									¹⁰⁸ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ). Other:E2(+M3) with δ =-0.10 +2-3 (1979Ve03) in ¹¹⁰ Ag β^- decay (249.83 d). Other δ =Infinite (1970Kr03).
2926.7474	5+	1384.2931# 20	100.0 [#] 19	1542.4441	4+	M1+E2	-0.44 <i>I</i>	6.82×10 ⁻⁴	$\alpha(K)=0.000562 \ 8; \ \alpha(L)=6.55\times10^{-5} \ 10; \ \alpha(M)=1.252\times10^{-5} \ 18; \ \alpha(N+)=4.25\times10^{-5} \ 6 \ \alpha(N)=2.24\times10^{-6} \ 4; \ \alpha(O)=1.331\times10^{-7} \ 19; \ \alpha(IPF)=4.01\times10^{-5} \ 6 \ Mult.: From \ \alpha(K)exp=0.00055 \ 4 \ (1967Mo12). \ \delta: Weighted average of -0.37 \ 3 \ (1970Kr03), -0.46 \ 1 \ (1973Jo08), -0.39 \ 2 \ (1978Wa07), -0.42 \ +7-6 \ (1979Ve03), \ and \ -0.44 \ 2 \ (1980Ru03) \ in \ ^{110}Ag \ \beta^- \ decay \ (249 \ 83 \ d)$
2975.24	1+,2+	2317.41 ^{&} 4	100.0 ^{&} 17	657.7623	2+	M1+E2	-0.16 12	6.67×10 ⁻⁴	
		2975.29 ^{&} 6	8.5 <mark>&</mark> 3	0.0	0^+				I_{γ} : 15 5 in ¹¹⁰ In ε decay (69.1 min).
2984.46	2+,3+	905.7 [@] 2	27 [@] 7	2078.548	3-	[E1]		5.88×10 ⁻⁴	$\alpha(K)=0.000515 \ 8; \ \alpha(L)=5.97\times10^{-5} \ 9; \ \alpha(M)=1.138\times10^{-5}$ $I6; \ \alpha(N+)=2.15\times10^{-6} \ 3$ $\alpha(N)=2.03\times10^{-6} \ 3; \ \alpha(O)=1.187\times10^{-7} \ 17$ $B(E1)(W.u.)=0.0006 \ +3-6$
		1441.9 [@] 6	100 [@]	1542.4441	4+	[M1,E2]		6.56×10 ⁻⁴	$\alpha(K) = 0.000526 \ 8; \ \alpha(L) = 6.12 \times 10^{-5} \ 9; \ \alpha(M) = 1.170 \times 10^{-5} \ 17; \ \alpha(N+) = 5.73 \times 10^{-5} \ 9 \ \alpha(N) = 2.09 \times 10^{-6} \ 3; \ \alpha(O) = 1.249 \times 10^{-7} \ 18; \ \alpha(PF) = 5.51 \times 10^{-5} \ 8$
		2326.9 [@] 2	40 [@] 7	657.7623	2+	M1+E2		6.70×10 ⁻⁴	$\alpha(M^{2}) = 0.000199 \ 3; \ \alpha(L) = 2.30 \times 10^{-5} \ 4; \ \alpha(M) = 4.38 \times 10^{-6} \ 7; \ \alpha(N+) = 0.000443 \ 7 \ \alpha(N) = 7.84 \times 10^{-7} \ 11; \ \alpha(O) = 4.71 \times 10^{-8} \ 7; \ \alpha(IPF) = 0.000442 \ 7 \ Mult.: From A_{2} = -0.50 \ 18, \ A_{4} = +0.02 \ 18 \ (1992De41) \ in \ ^{110}Cd(n,n'\gamma).$ $\delta: \ -1.9 + 1/2 - 7 \ or \ -0.3 + 3 - 2 \ (1992De41) \ in \ ^{110}Cd(n,n'\gamma).$
2984.48	(5 ⁻)	1442.03 ^{<i>a</i>} 6	100 ^{<i>a</i>}	1542.4441	4+	D			Mult: From $A_2 = -0.17 \ 4 \ (1990 \text{Ke}02)$ in $^{108}\text{Pd}(\alpha, 2n\gamma), ^{110}\text{Pd}(\alpha, 4n\gamma).$
2993 63	(0^{+})	1517 83 [@] 17	100@	1475 7900	2+				<i>ο</i> : -0.01 9 (1990Ke02) in ¹⁰⁰ Pd(<i>α</i> ,2nγ), ¹¹⁰ Pd(<i>α</i> ,4nγ).
		1017.00 17	100	11,5.,700	-				

Adopted	Levels,	Gammas	(continued)
---------	---------	--------	-------------

γ (¹¹⁰Cd) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_{f}	\mathbf{J}_f^{π}	Mult. ^b	δ^{c}	α^{\dagger}	Comments
2994.07 3008.4?	$(3^+,4^+)$ 1,2 ⁺	1451.62 [@] 8 2350.7 [@] 10 3008.3 [@] 10	$100^{@}$ $100^{@}$ 40 $80^{@}$ 40	1542.4441 657.7623 0.0	$\frac{1}{4^{+}}$ 2^{+} 0^{+}				
3029.077	7-	149.88 [@] 30	15.7 [@] 10	2879.185	7-	M1(+E2)	-0.08 22	0.152 16	$\alpha(K)=0.131 \ l2; \ \alpha(L)=0.016 \ 3; \ \alpha(M)=0.0032 \ 6; \ \alpha(N+)=0.00059 \ l1 \ \alpha(N)=0.00056 \ l0; \ \alpha(O)=3.20\times10^{-5} \ 20 \ B(M1)(W.u.)=(0.0016 \ 6); \ B(E2)(W.u.)=(0.4 \ +21-4) \ Mult.: \ From \ A_2=0.33 \ 5 \ (1990Ke02) \ in \ 1^{10}Bd(\alpha \ 4m)$
		369.20 [@] 10	14.4 [@] 16	2659.866	5-	E2		0.01662	$\alpha(K)=0.01420 \ 20; \ \alpha(L)=0.00197 \ 3; \\ \alpha(M)=0.000381 \ 6; \ \alpha(N+)=6.98\times10^{-5} \ 10 \\ \alpha(N)=6.66\times10^{-5} \ 10; \ \alpha(O)=3.15\times10^{-6} \ 5 \\ B(E2)(W.u.)=0.61 \ 22 \\ Mult.: \ From \ A_2=+0.60 \ 9, \ A_4=-0.35 \ 10 \\ (1990Ke02) \ in \ ^{108}Pd(\alpha,2n\gamma), ^{110}Pd(\alpha,4n\gamma).$
		489.382 [@] 15	75.0 [@] 7	2539.691	5-	E2		0.00708	$\begin{aligned} &\alpha(K) = 0.00610 \; 9; \; \alpha(L) = 0.000802 \; 12; \\ &\alpha(M) = 0.0001545 \; 22; \; \alpha(N+) = 2.86 \times 10^{-5} \; 4 \\ &\alpha(N) = 2.72 \times 10^{-5} \; 4; \; \alpha(O) = 1.384 \times 10^{-6} \; 20 \\ &B(E2)(W.u.) = 0.8 \; 3 \\ &Mult.: \; From \; A_2 = +0.34 \; 2, \; A_4 = -0.08 \; 3 \\ &(1990Ke02) \; in \; {}^{108}Pd(\alpha, 2n\gamma), {}^{110}Pd(\alpha, 4n\gamma). \end{aligned}$
		549.141 [@] 17	100.0 [@] 20	2479.9339	6+	E1(+M2)	-0.04 6	0.00174 13	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00152 \ 11; \ \alpha(\mathbf{L}) = 0.000178 \ 14; \\ &\alpha(\mathbf{M}) = 3.4 \times 10^{-5} \ 3; \ \alpha(\mathbf{N}+) = 6.4 \times 10^{-6} \ 6 \\ &\alpha(\mathbf{N}) = 6.1 \times 10^{-6} \ 5; \ \alpha(\mathbf{O}) = 3.5 \times 10^{-7} \ 3 \\ &\mathbf{B}(\mathbf{E}1)(\mathbf{W}.\mathbf{u}.) = (2.8 \times 10^{-6} \ 10); \ \mathbf{B}(\mathbf{M}2)(\mathbf{W}.\mathbf{u}.) = (0.07 \\ &+ 2I - 7) \\ &\mathbf{Mult.: From } \mathbf{A}_2 = -0.27 \ 3 \ (1990\text{Ke02}) \ \text{in} \\ &10^8 \text{Pd}(\alpha, 2n\gamma), 110 \text{Pd}(\alpha, 4n\gamma). \\ &\delta: \text{ From } 10^8 \text{Pd}(\alpha, 2n\gamma), 110 \text{Pd}(\alpha, 4n\gamma) \ (1990\text{Ke02}). \end{aligned}$
3042.86	1+	1566.92 <i>10</i> 2385.22 <i>11</i>	18.3 24	1475.7900 657.7623	2^+ 2^+				E_{γ} : From ¹¹⁰ Cd(n,n'γ). E_{γ} , I_{γ} : Eγ from ¹¹⁰ Cd(n,n'γ), Iγ from ¹¹⁰ Cd(γ, γ')
		3042.98 28	100	0.0	0+	M1		9.12×10 ⁻⁴	$\alpha(K)=0.0001198 \ 17; \ \alpha(L)=1.374\times10^{-5} \ 20; \alpha(M)=2.62\times10^{-6} \ 4; \ \alpha(N+)=0.000775 \ 11 \alpha(N)=4.69\times10^{-7} \ 7; \ \alpha(O)=2.82\times10^{-8} \ 4; \alpha(IPF)=0.000775 \ 11 B(M1)(W.u.)=0.021 \ 3$

						Adopted Lev	vels, Gammas	(continued)	
						$\gamma(^1$	¹⁰ Cd) (continu	ued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^b	δ^{c}	α^{\dagger}	Comments
									$E_{\gamma}, I_{\gamma}: E\gamma \text{ from } {}^{110}\text{Cd}(n,n'\gamma), I\gamma \text{ from } {}^{110}\text{Cd}(\gamma,\gamma').$ Mult.: From γ(θ) and linear polarization in ${}^{110}\text{Cd}(\gamma,\gamma')$ (2005Ko32).
3055.703	8-	159.746" <i>15</i>	42.2 ^{<i>a</i>} 7	2895.948	6-	E2		0.283	$\begin{aligned} &\alpha(\mathbf{K}) = 0.230 \ 4; \ \alpha(\mathbf{L}) = 0.0435 \ 6; \ \alpha(\mathbf{M}) = 0.00853 \ 12; \\ &\alpha(\mathbf{N}+) = 0.001493 \ 21 \\ &\alpha(\mathbf{N}) = 0.001447 \ 21; \ \alpha(\mathbf{O}) = 4.59 \times 10^{-5} \ 7 \\ &\mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 19.2 \ 11 \\ &\mathbf{M}ult.: \ From \ \mathbf{A}_2 = +0.34 \ 2, \ \mathbf{A}_4 = -0.08 \ 3 \ (1990\text{Ke02}) \\ &\text{in} \ ^{108}\text{Pd}(\alpha, 2n\gamma), ^{110}\text{Pd}(\alpha, 4n\gamma). \end{aligned}$
		176.517 ^{<i>a</i>} 12	100.0 ^{<i>a</i>} 11	2879.185	7-	M1+E2	-1.03 54	0.15 4	$\begin{aligned} &\alpha(\mathbf{K}) = 0.12 \ 3; \ \alpha(\mathbf{L}) = 0.020 \ 6; \ \alpha(\mathbf{M}) = 0.0039 \ 12; \\ &\alpha(\mathbf{N}+) = 0.00070 \ 21 \\ &\alpha(\mathbf{N}) = 0.00067 \ 20; \ \alpha(\mathbf{O}) = 2.7 \times 10^{-5} \ 5 \\ &\mathbf{B}(\mathbf{M}1)(\mathbf{W}.u.) = 0.0005 \ 3; \ \mathbf{B}(\mathbf{E}2)(\mathbf{W}.u.) = 14 \ 8 \\ &\mathbf{Mult.: From } \mathbf{A}_2 = -0.96 \ 1, \ \mathbf{A}_4 = +0.17 \ 2 \ (1990 \text{Ke02}) \\ &\text{in } \ ^{108}\text{Pd}(\alpha, 2n\gamma), \ ^{110}\text{Pd}(\alpha, 4n\gamma). \end{aligned}$
3064.712	6+	270.4 [@] 2	70 [@] 20	2793.441	$(4)^{+}$				
		584.21 ^{&} 8	100 3	2479.9339	6+	M1+E2	+0.0 3	0.00458	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00400 \ 6; \ \alpha(\mathbf{L}) = 0.000476 \ 7; \\ &\alpha(\mathbf{M}) = 9.12 \times 10^{-5} \ 13; \ \alpha(\mathbf{N}+) = 1.725 \times 10^{-5} \ 25 \\ &\alpha(\mathbf{N}) = 1.629 \times 10^{-5} \ 23; \ \alpha(\mathbf{O}) = 9.59 \times 10^{-7} \ 16 \\ &\text{Mult.: } \mathbf{K}/(\mathbf{L}+\mathbf{M}) = 9 \ 3 \ \text{in} \ ^{110}\text{In} \ \varepsilon \ \text{decay} \ (4.9 \\ &\text{h})(1962\text{Ka08}). \ \text{Other: } \mathbf{A}_2 = + 0.29 \ 2, \ \mathbf{A}_4 = + 0.19 \ 4 \\ &(1990\text{Ke02}) \ \text{in} \ ^{108}\text{Pd}(\alpha, 2n\gamma), ^{110}\text{Pd}(\alpha, 4n\gamma). \\ &\delta: \ \text{From} \ \gamma\gamma(\theta) \ \text{in} \ ^{110}\text{In} \ \varepsilon \ \text{decay} \ (4.92 \ \text{h}) \\ &(1980\text{Ba58}). \end{aligned}$
		844.667 ^{&} 13	50.0 ^{&} 15	2220.0683	4+	E2		1.68×10 ⁻³	$\begin{split} &\alpha(\mathbf{K}){=}0.001463\ 21;\ \alpha(\mathbf{L}){=}0.000179\ 3;\\ &\alpha(\mathbf{M}){=}3.43{\times}10^{-5}\ 5;\ \alpha(\mathbf{N}{+}){=}6.43{\times}10^{-6}\ 9\\ &\alpha(\mathbf{N}){=}6.09{\times}10^{-6}\ 9;\ \alpha(\mathbf{O}){=}3.40{\times}10^{-7}\ 5\\ &\mathrm{Mult.:}\ \alpha(\mathbf{K}){\mathrm{exp}}{=}0.00146\ 8\ \mathrm{in}\ ^{110}\mathrm{In}\ \varepsilon\ \mathrm{decay}\ (4.92\\ &\mathrm{h})\ (1980\mathrm{Ba58}). \end{split}$
3074.971	6-	1521.66 ^{cc} 20 232.30 ^a 4	2.6 ^{cc} 5 40.7 ^a 12	1542.4441 2842.682	4 ⁺ (5) ⁻	M1(+E2)	-0.044 50	0.0463	α (K)=0.0403 6; α (L)=0.00494 8; α (M)=0.000950 15; α (N+)=0.000179 3 α (N)=0.000169 3; α (O)=9.78×10 ⁻⁶ 14 Mult.: From A ₂ =-0.28 2 (1990Ke02) in ¹⁰⁸ Pd(α 2n γ) ¹¹⁰ Pd(α 4n γ)
		535.269 ^a 18	100.0 ^{<i>a</i>} 23	2539.691	5-	M1+E2	+1.4 7	0.00554 10	$\alpha(K)=0.00480 \ 10; \ \alpha(L)=0.000605 \ 12;$

					Α	dopted Leve	ls, Gammas	(continued)	
						$\gamma(^{110}$	Cd) (continue	ed)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. ^b	δ^{c}	α^{\dagger}	Comments
					ř				$\begin{aligned} &\alpha(M) = 0.0001162 \ 24; \ \alpha(N+) = 2.17 \times 10^{-5} \ 4 \\ &\alpha(N) = 2.06 \times 10^{-5} \ 4; \ \alpha(O) = 1.11 \times 10^{-6} \ 4 \\ &\text{Mult.: From } A_2 = +0.63 \ 2, \ A_4 = +0.14 \ 4 \ (1990\text{Ke02}) \ \text{in} \\ & {}^{108}\text{Pd}(\alpha, 2n\gamma), {}^{110}\text{Pd}(\alpha, 4n\gamma). \end{aligned}$
3074.971	6-	595.49 ^a 14	30.2 ^{<i>a</i>} 12	2479.9339	6+				
3078.381	1 ⁽⁺⁾	790.81 ^{&} 18	3.4 ^{&} 6	2287.63	2+	[M1]		0.00226	$\alpha(K)=0.00197 \ 3; \ \alpha(L)=0.000233 \ 4; \ \alpha(M)=4.46\times10^{-5} \ 7; \ \alpha(N+)=8.44\times10^{-6} \ 12 \ \alpha(N)=7.97\times10^{-6} \ 12; \ \alpha(O)=4.72\times10^{-7} \ 7 \ B(M1)(W.u.)=0.0046 \ 13 \ L_{*}: \ Other: \ 55 \ 18 \ in \ ^{110}Cd(n \ n'\gamma)$
		1602.57 ^{&} 4	23.0 ^{&} 8	1475.7900	2+	[M1]		5.93×10 ⁻⁴	$\alpha(K)=0.000422 \ 6; \ \alpha(L)=4.90\times10^{-5} \ 7; \ \alpha(M)=9.36\times10^{-6} \ 14; \\ \alpha(N+)=0.0001123 \ 16 \\ \alpha(N)=1.674\times10^{-6} \ 24; \ \alpha(O)=1.001\times10^{-7} \ 14; \\ \alpha(IPF)=0.0001105 \ 16 \\ B(M1)(W.u.)=0.0037 \ 9$
		2420.51 ^{&} 4	100 ^{&} 2	657.7623	2+	[M1]		6.98×10 ⁻⁴	$\alpha(K)=0.000185 \ 3; \ \alpha(L)=2.13\times10^{-5} \ 3; \ \alpha(M)=4.06\times10^{-6} \ 6; \ \alpha(N+)=0.000488 \ 7 \ \alpha(N)=7.26\times10^{-7} \ 11; \ \alpha(O)=4.36\times10^{-8} \ 7; \ \alpha(IPF)=0.000487 \ 7 \ R(M)(W_{\rm H})=0.0047 \ 11 \ \alpha(O)=4.36\times10^{-8} \ 7; \ \alpha(IPF)=0.000487 \ 7 \ R(M)(W_{\rm H})=0.0047 \ 11 \ \alpha(O)=4.36\times10^{-8} \ 7; \ \alpha(IPF)=0.000487 \ 7 \ R(M)(W_{\rm H})=0.0047 \ 11 \ \alpha(O)=4.36\times10^{-8} \ 7; \ \alpha(IPF)=0.000487 \ 7 \ R(M)(W_{\rm H})=0.0047 \ 11 \ \alpha(O)=4.36\times10^{-8} \ 7; \ \alpha(IPF)=0.000487 \ 7 \ R(M)(W_{\rm H})=0.0047 \ 11 \ \alpha(O)=4.36\times10^{-8} \ 7; \ \alpha(IPF)=0.000487 \ 7 \ R(M)(W_{\rm H})=0.0047 \ R(M)(W_$
		3078.42 ^{&} 4	49.5 ^{&} 15	0.0	0+	(M1)		9.24×10 ⁻⁴	
3101.88	2^{+}	$184.4^{\textcircled{0}}2$	77 [@] 15	2917.60	$2^+.3.4^+$				E_{γ} : Only observed in ¹¹⁰ Cd(n,n' γ).
		1023.05 ^{&} 5	21 ^{&} 4	2078.80	0^{+}				
		1626.17 <mark>&</mark> 6	18.4 <mark>&</mark> 13	1475,7900	2+				
		2444.05 ^{&} 4	$100^{\&} 2$	657.7623	2+				
		3102.00 ^{&} 18	1.7 & 3	0.0	-0^{+}				
121.62	6+	461.80 ^{&} 13	18&	2659 866	5-				
	-	560.32 ^{&} 11	7.2 ^{&} 4	2561.284	4+	E2		0.00483	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00417 \ 6; \ \alpha(\mathrm{L}) = 0.000536 \ 8; \ \alpha(\mathrm{M}) = 0.0001032 \ 15; \\ &\alpha(\mathrm{N}+) = 1.92 \times 10^{-5} \ 3\\ &\alpha(\mathrm{N}) = 1.82 \times 10^{-5} \ 3; \ \alpha(\mathrm{O}) = 9.54 \times 10^{-7} \ 14\\ &\mathrm{Mult.:} \ \alpha(\mathrm{K}) \exp = 3.8 \times 10^{-3} \ 5 \ (1980\mathrm{Ba58}) \ \mathrm{from}^{\ 110}\mathrm{In} \ \varepsilon \ \mathrm{decay} \\ &(4.9 \ \mathrm{h}). \end{aligned}$
		581.93 ^{&} 9	33.0 ^{&} 11	2539.691	5-	E1(+M2)	-0.01 10	0.00150 <i>15</i>	

					A	Adopted Levels	, Gammas	(continued)	
						γ (¹¹⁰ C	d) (continu	ed)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Ιγ [‡]	E_f	J_f^π	Mult. ^b	δ^{c}	α^{\dagger}	Comments
		641.68 ^{&} 5	100.0 ^{&} 23	2479.9339	6+	M1(+E2)		0.00367	$\alpha(K)=0.00320\ 5;\ \alpha(L)=0.000380\ 6;\ \alpha(M)=7.28\times10^{-5}\ 11;$

					Adop	ted Levels,	Gammas (continued)	
						γ (¹¹⁰ Cd) (continued	1)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} ‡	E_f	\mathbf{J}_f^{π}	Mult. ^b	δ^{c}	α^{\dagger}	Comments
									$\frac{\alpha(\text{N}+)=1.378\times10^{-5}\ 20}{\alpha(\text{N})=1.301\times10^{-5}\ 19;\ \alpha(\text{O})=7.68\times10^{-7}\ 11}$ Mult.: $\alpha(\text{K})\text{exp}=2.96\times10^{-3}\ 21\ (1980\text{Ba58})$ from ¹¹⁰ In ε decay (4.9 h). Other: From A ₂ =+0.39 5, A ₄ =+0.11 8 (1990\text{Ke02}) in ¹⁰⁸ Pd(α ,2ny), ¹¹⁰ Pd(α ,4ny).
3121.62	6+	871.08 ^{&} 5 901.53 ^{&} 5	$1.21^{\&} 15$ $7.6^{\&} 4$	2250.554 2220.0683	4+ 4+				
3128 /1	1+ 2+	$15/9.07 \times 12$ 1344.88×15	$0.98^{\circ} 23$	1542.4441	4' 2+				
)120.41	1,2	$1652.70^{\&} 9$	$93^{\&} 10$	1475 7900	2^{+}				
		3128.25 ^{&} 10	100 ^{&} 7	0.0	0^{+}				
3135.18	$2^+, 3^+$	1592.7 [@] 3	30 [@] 7	1542.4441	4+				
	7-	2477.39 [@] 7	100 [@] 7	657.7623	2+	M1+E2		7.16×10 ⁻⁴	α (K)=0.0001766 25; α (L)=2.03×10 ⁻⁵ 3; α (M)=3.88×10 ⁻⁶ 6; α (N+)=0.000515 8 α (N)=6.94×10 ⁻⁷ 10; α (O)=4.17×10 ⁻⁸ 6; α (IPF)=0.000514 8 Mult.: From A ₂ =+0.31 7, A ₄ =-0.02 7 (2001Co01) is 110Cd(α +(α))
3171 10	2+ 2+ 4+	$2513.4^{@}$ 2	100@	657 7623	2+				$\lim_{t\to\infty} Cu(n,n \gamma).$
3184.53	2 ,3 ,4 5-,6-	342.02 ^{<i>a</i>} 9	42.5 ^{<i>a</i>} 13	2842.682	2 (5) ⁻	M1+E2	+0.23 5	0.0173 3	$\alpha(K)=0.01501\ 23;\ \alpha(L)=0.00184\ 3;$ $\alpha(M)=0.000353\ 6;\ \alpha(N+)=6.64\times10^{-5}\ 11$ $\alpha(N)=6.28\times10^{-5}\ 11;\ \alpha(O)=3.61\times10^{-6}\ 6$ Mult.: From A ₂ =+0.08 3 (1990Ke02) in 108 B(α 2m) 110 B(α 4m)
		644.82 ^{<i>a</i>} 3	100 ^{<i>a</i>} 4	2539.691	5-	M1+E2	+0.26 7	0.00361 6	$\alpha(K)=0.00315 \ 5; \ \alpha(L)=0.000375 \ 6; \\ \alpha(M)=7.18\times10^{-5} \ 11; \ \alpha(N+)=1.358\times10^{-5} \ 20 \\ \alpha(N)=1.282\times10^{-5} \ 18; \ \alpha(O)=7.53\times10^{-7} \ 11 \\ \text{Mult.: From } A_2=+0.11 \ 6 \ (1990\text{Ke}02) \text{ in} \\ ^{108}\text{Pd}(\alpha,2n\gamma),^{110}\text{Pd}(\alpha,4n\gamma).$
3187.337	8+	707.40 ^{&} 2	100 ^{&}	2479.9339	6+	E2		0.00260	$\alpha(K)=0.00226 \ 4; \ \alpha(L)=0.000281 \ 4; \ \alpha(M)=5.40\times10^{-5} \ 8; \ \alpha(N+)=1.008\times10^{-5} \ 15 \ \alpha(N)=9.56\times10^{-6} \ 14; \ \alpha(O)=5.21\times10^{-7} \ 8 \ B(E2)(W.u.)=1.85 \ 21 \ Mult.: \ \alpha(K)exp=2.61\times10^{-3} \ 16 \ (1980Ba58), \ 2.9\times10^{-3} \ 6 \ (1970Ko12). \ K/(L+M)=6.0 \ 5 \ (1962Ka08). \ DCO=1.47 \ 6 \ (1994Ju04).$
3193.40	(3)+	1030.0 [@] 5	50 [@] 17	2162.8015	3+				E_{γ} : Only observed in ¹¹⁰ Cd(n,n' γ).
		1410.08 ^{&} 8	15.1 <mark>&</mark> 18	1783.496	2^{+}				, <u>-</u>
		1717.70 ^{&} 10	13.7 ^{&} 14	1475.7900	2^{+}				

From ENSDF

					Adop	ted Levels,	Gammas (c	ontinued)	
						γ (¹¹⁰ Cd) (continued)	
E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. ^b	δ^{c}	α^{\dagger}	Comments
3193.40 3208.69 3239.56	$(3)^+$ $2^+, 3^+$ 6^+	2535.55 ^{&} 4 1666.23 ^{&} 7 360.7 ^a 4	$100.0^{\&} 23$ $100^{\&}$ $8.8^{a} 13$	657.7623 1542.4441 2879.185	2 ⁺ 4 ⁺ 7 ⁻	E1		0.00478	$\alpha(K)=0.00417\ 6;\ \alpha(L)=0.000494\ 7;$ $\alpha(M)=9.44\times10^{-5}\ 14;\ \alpha(N+)=1.77\times10^{-5}\ 3$
		- 1							$\alpha(N) = 1.674 \times 10^{-5} \ 24; \ \alpha(O) = 9.38 \times 10^{-7} \ 14$ Mult.: From A ₂ =-0.02 9 (1990Ke02) in ¹⁰⁸ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ).
		397.18 ^{<i>aa</i>} 15	52 ^{<i>a</i>} 3	2842.682	(5)-	E1		0.00374	$\alpha(\mathbf{K})=0.00327 \ 5; \ \alpha(\mathbf{L})=0.000386 \ 6; \\ \alpha(\mathbf{M})=7.38\times10^{-5} \ 11; \ \alpha(\mathbf{N}+)=1.383\times10^{-5} \\ 20 \\ (\mathbf{M})=1.200\times10^{-5} \ 10 \\ (\mathbf{M})=1.200\times10^{-5} \ 10 \\ (\mathbf{M})=1.200\times10^{-5} \ 10^{-5}$
			1000 2	2470 0220		M1. F2	. 0. 20. 10	0.00245	$\alpha(N)=1.309\times10^{-9} f_{2}^{\alpha}(O)=7.37\times10^{-1} II$ Mult.: From A ₂ =+0.29 6 (1990Ke02) in ¹⁰⁸ Pd(α ,2ny), ¹¹⁰ Pd(α ,4ny).
		/60.04 6	100** 3	2479.9339	0,	M1+E2	+0.29 10	0.00245	$\alpha(K)=0.00214 4; \alpha(L)=0.000254 4;$ $\alpha(M)=4.86\times10^{-5} 8; \alpha(N+)=9.18\times10^{-6} 14$ $\alpha(N)=8.67\times10^{-6} 13; \alpha(O)=5.11\times10^{-7} 9$ Mult.: From A ₂ =+0.36 (1990Ke02) in 108 Pd(α ,2n γ), 110 Pd(α ,4n γ). M1 from $\alpha(K)$ exp=2.2×10 ⁻³ 1 (1980Ba58) in 110 In ε
		1018.99 ^a 6	39.1 ^{<i>a</i>} 16	2220.0683	4+			0.001094 16	decay (4.9 h). $\alpha(K)=0.000953 \ 14; \ \alpha(L)=0.0001145 \ 16;$ $\alpha(M)=2.19\times10^{-5} \ 3; \ \alpha(N+)=4.12\times10^{-6}$ $\alpha(N)=3.90\times10^{-6} \ 6; \ \alpha(O)=2.22\times10^{-7} \ 4$
		1697.77 <mark>&</mark> 7	8.1 ^{&} 3	1542.4441	4+				
3256.49	$1^+, 2^+, 3^+$	2598.69 [@] 14	$100^{@}$	657.7623	2^{+}				
3275.449	8+	398.5 5	1.05 14	2876.812	6+	[E2]		0.01310	$\alpha(K)=0.01122 \ 17; \ \alpha(L)=0.001534 \ 23; \\ \alpha(M)=0.000296 \ 5; \ \alpha(N+)=5.43\times10^{-5} \ 8 \\ \alpha(N)=5.18\times10^{-5} \ 8; \ \alpha(O)=2.51\times10^{-6} \ 4 \\ P(F2)(W_{H})=27.8 $
		795.5 1	100.0 9	2479.9339	6+	E2		0.00194	$\alpha(K) = 0.001688 \ 24; \ \alpha(L) = 0.000208 \ 3; \\ \alpha(M) = 3.98 \times 10^{-5} \ 6; \ \alpha(N+) = 7.46 \times 10^{-6} \ 11 \\ \alpha(N) = 7.07 \times 10^{-6} \ 10; \ \alpha(\Omega) = 3.92 \times 10^{-7} \ 6$
									B(E2)(W.u.)=80 22 Mult.: From A_2 =0.327 14, A_4 =-0.077 21 and linear polarization measurements (1974Lu01).
3277.86	(1 ⁺)	2620.00 14		657.7623	2+	[M1]		7.63×10 ⁻⁴	$\alpha(K)=0.0001587\ 23;\ \alpha(L)=1.82\times10^{-5}\ 3;\alpha(M)=3.48\times10^{-6}\ 5;\ \alpha(N+)=0.000582\ 9\alpha(N)=6.23\times10^{-7}\ 9;\ \alpha(O)=3.74\times10^{-8}\ 6;\alpha(IPF)=0.000582\ 9$

						Adopted Le	vels, Gammas	(continued)	
						$\underline{\gamma}(^1$	¹⁰ Cd) (continu	ued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. ^b	δ^{c}	α^{\dagger}	Comments
3277.86	(1 ⁺)	3281		0.0	0+	(M1)		9.96×10 ⁻⁴	$\begin{aligned} &\alpha(\mathrm{K}) = 0.0001044 \ 15; \ \alpha(\mathrm{L}) = 1.195 \times 10^{-5} \ 17; \\ &\alpha(\mathrm{M}) = 2.28 \times 10^{-6} \ 4; \ \alpha(\mathrm{N}+) = 0.000878 \ 13 \\ &\alpha(\mathrm{N}) = 4.08 \times 10^{-7} \ 6; \ \alpha(\mathrm{O}) = 2.45 \times 10^{-8} \ 4; \\ &\alpha(\mathrm{IPF}) = 0.000877 \ 13 \\ &\mathrm{E}_{\gamma},\mathrm{Mult.: \ From \ ^{110}Cd(\gamma,\gamma') \ (2005\mathrm{Ko32}); \\ &\mathrm{POL} = +0.03 \ 6. \end{aligned}$
3298.13	1-	2640.1 [@] 7	67 [@] 22	657.7623	2+	[E1]		1.12×10 ⁻³	$\begin{aligned} &\alpha(\mathrm{K}) = 8.58 \times 10^{-5} \ I2; \ \alpha(\mathrm{L}) = 9.73 \times 10^{-6} \ I4; \\ &\alpha(\mathrm{M}) = 1.85 \times 10^{-6} \ 3; \ \alpha(\mathrm{N}+) = 0.001020 \ I5 \\ &\alpha(\mathrm{N}) = 3.31 \times 10^{-7} \ 5; \ \alpha(\mathrm{O}) = 1.98 \times 10^{-8} \ 3; \\ &\alpha(\mathrm{IPF}) = 0.001020 \ I5 \\ &\mathrm{B(E1)(W.u.)} = 4.8 \times 10^{-5} \ I9 \end{aligned}$
		3298.1 [@] 2	100 [@] 22	0.0	0+	(E1)		1.43×10 ⁻³	$\alpha(K)=6.27\times10^{-5} \; 9; \; \alpha(L)=7.09\times10^{-6} \; 10; \\ \alpha(M)=1.351\times10^{-6} \; 19; \; \alpha(N+)=0.001364 \; 19 \\ \alpha(N)=2.41\times10^{-7} \; 4; \; \alpha(O)=1.448\times10^{-8} \; 21; \\ \alpha(IPF)=0.001363 \; 19 \\ B(E1)(W.u.)=3.7\times10^{-5} \; 11 \\ Mult.: \; D \; from \; the intensity \; ratios \\ W(90^{\circ})(W(127^{\circ}) \; in \; ^{110}Cd(\gamma \; \gamma'))$
3314.334	2+	958.56 ^{&} 5 1151.70 ^{&} 6 1235.67 ^{&} 4 1583.18 ^{&} 20	$17.0^{\&} 12 \\ 12.3^{\&} 10 \\ 73.2^{\&} 20 \\ 3.2^{\&} 12 \\ \bigcirc$	2355.792 2162.8015 2078.548 1731.31	2+ 3+ 3 ⁻ 0+				W(90) // W(127) III Cu(7,7).
		$1838.2^{\textcircled{0}}4$ $2656.55^{\textcircled{0}}4$	$50^{\circ} 25$ $100^{\circ} 2$	1475.7900 657.7623	2+ 2+				E_{γ} : Only observed in ¹¹⁰ Cd(n,n' γ).
3334.85	7-	3315.2 ^{@d} 7 279.142 ^d 25	35.0 ⁶⁶ 7 82.0 ^{<i>a</i>} 16	0.0 3055.703	0+ 8-	M1(+E2)	+0.045 40	0.0287	E _γ : Only observed in ¹¹⁰ Cd(n,n'γ). α (K)=0.0250 4; α (L)=0.00304 5; α (M)=0.000585 9; α (N+)=0.0001103 16 α (N)=0.0001042 15; α (O)=6.04×10 ⁻⁶ 9 Mult.: From A ₂ =-0.205 15 (1990Ke02) in ¹⁰⁸ Ft(-2,-) ¹¹⁰ Ft(-4,-) ¹⁰⁰
		456.0 ^{<i>a</i>} 2	100 ^{<i>a</i>} 7	2879.185	7-	M1+E2	-0.28 19	0.00836 <i>13</i>	$\alpha(K) = 0.00728 \ II; \ \alpha(L) = 0.000881 \ I9; \alpha(M) = 0.000169 \ 4; \ \alpha(N+) = 3.19 \times 10^{-5} \ 7 \alpha(N) = 3.01 \times 10^{-5} \ 6; \ \alpha(O) = 1.74 \times 10^{-6} \ 3 Mult.: \ From A_2 = +0.25 \ I3 \ (1990Ke02) \ in 108 Pd(\alpha,2n\gamma), ^{110}Pd(\alpha,4n\gamma).$
3340.83 3345.810	9-	2683.03 [@] 14 290.09 ^a 3	100 [@] 10.38 ^a 23	657.7623 3055.703	2+ 8-	M1+E2	+0.54 19	0.0283 14	α (K)=0.0244 <i>11</i> ; α (L)=0.00315 <i>23</i> ;

				A	dopte	d Levels, (Gammas (co	ontinued)	
						γ ⁽¹¹⁰ Cd)	(continued)	<u>)</u>	
E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. ^b	δ^{c}	α^{\dagger}	Comments
					<u></u>				$\begin{aligned} &\alpha(M) = 0.00061 \ 5; \ \alpha(N+) = 0.000113 \ 8\\ &\alpha(N) = 0.000107 \ 8; \ \alpha(O) = 5.74 \times 10^{-6} \ 17\\ &B(M1)(W.u.) = 0.00133 \ 23; \ B(E2)(W.u.) = 3.8 \ 21\\ &Mult.: \ From \ A_2 = +0.43 \ 3, \ A_4 = +0.19 \ 3 \ in\\ &(1990Ke02)^{108} Pd(\alpha, 2n\gamma), ^{110} Pd(\alpha, 4n\gamma). \end{aligned}$
3345.810	9-	466.624 ^{<i>a</i>} 20	100.0 ^{<i>a</i>} 12	2879.185	7-	E2		0.00814	$\alpha(K)=0.00700 \ 10; \ \alpha(L)=0.000928 \ 13;$ $\alpha(M)=0.000179 \ 3; \ \alpha(N+)=3.30\times10^{-5} \ 5$ $\alpha(N)=3.14\times10^{-5} \ 5; \ \alpha(O)=1.583\times10^{-6} \ 23$ B(E2)(W.u.)=15.0 \ 10 Mult.: From A ₂ =+0.36 \ 2, A ₄ =-0.10 \ 2 (1990Ke02) in \ \ 108Pd(\alpha.2n\alpha), \ 110Pd(\alpha.4n\alpha) (1990Ke02).
3359.06	1-	3359.0 [@] 2	100@	0.0	0+	E1		1.46×10 ⁻³	$\alpha(K)=6.11\times10^{-5} \ 9; \ \alpha(L)=6.91\times10^{-6} \ 10; \alpha(M)=1.317\times10^{-6} \ 19; \ \alpha(N+)=0.001394 \ 20 \alpha(N)=2.35\times10^{-7} \ 4; \ \alpha(O)=1.412\times10^{-8} \ 20; \alpha(IPF)=0.001394 \ 20 B(E1)(W.u.)=0.000664 \ 12 Mult.: From \gamma(\theta) and POL in ^{110}Cd(\gamma,\gamma')(2005Ko32).$
3366.8	1+,2+,3+,4+	2709.0 [@] 4	100 [@]	657.7623	2^{+}				
3391.177	(7)-	316.25 ^{ad} 25	12.2 ^{<i>a</i>} 13	3074.971	6-	M1+E2		0.0208	α(K)=0.0181 3; α(L)=0.00220 4; α(M)=0.000422 6; α(N+)=7.97×10-5 12 α(N)=7.53×10-5 11; α(O)=4.38×10-6 7 Mult.: From A2=+0.30 11 (1990Ke02) in 108Pd(α,2nγ),110Pd(α,4nγ). No δ given by 1990Ke02.
		495.227 ^{<i>a</i>} 10	100.0 ^{<i>a</i>} 22	2895.948	6-	M1+E2	+0.16 2	0.00682	$\alpha(K)=0.00594 \ 9; \ \alpha(L)=0.000713 \ 10;$ $\alpha(M)=0.0001366 \ 20; \ \alpha(N+)=2.58\times10^{-5} \ 4$ $\alpha(N)=2.44\times10^{-5} \ 4; \ \alpha(O)=1.427\times10^{-6} \ 20$ Mult.: From A ₂ =+0.01 3 (1990Ke02) in 108 Pd(α 2ny) 110 Pd(α 4ny)
		512.3 7 912.2 ^{<i>a</i>} 4	54 ^a 7	2879.185 2479.9339	7- 6+	(E1)		5.80×10 ⁻⁴	$\alpha(K)=0.000508 \ 8; \ \alpha(L)=5.88\times10^{-5} \ 9; \\ \alpha(M)=1.122\times10^{-5} \ 16; \ \alpha(N+)=2.12\times10^{-6} \ 3 \\ \alpha(N)=2.00\times10^{-6} \ 3; \ \alpha(O)=1.170\times10^{-7} \ 17 \\ \text{Mult.: From } A_2=-0.19 \ 19 \ (1990\text{Ke02}) \text{ in } \\ {}^{108}\text{Pd}(\alpha.2n\gamma), {}^{110}\text{Pd}(\alpha.4n\gamma). \end{cases}$
3403.29	(1 ⁻)	2745.45 ^{&} 6 3403.48 ^{&} 15	100 ^{&} 3 24.4 ^{&} 22	657.7623 0.0	2^+ 0^+				

 $^{110}_{48}$ Cd₆₂-38

						Adopted Le	evels, Gamm	<mark>as</mark> (continued	<u>)</u>
						$\gamma(1)$	¹¹⁰ Cd) (conti	nued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. ^b	$\delta^{\mathcal{C}}$	α^{\dagger}	Comments
3427.27	8-	371.6 5	11 4	3055.703	8-	M1+E2	-0.25 15	0.0140 3	$\begin{aligned} \alpha(\text{K}) = 0.01216 \ 23; \ \alpha(\text{L}) = 0.00148 \ 5; \ \alpha(\text{M}) = 0.000285 \\ 9; \ \alpha(\text{N}+) = 5.37 \times 10^{-5} \ 15 \\ \alpha(\text{N}) = 5.07 \times 10^{-5} \ 15; \ \alpha(\text{O}) = 2.92 \times 10^{-6} \ 5 \\ \text{B}(\text{M1})(\text{W.u.}) = 0.006 \ 3; \ \text{B}(\text{E2})(\text{W.u.}) = 2.4 \ +29 - 24 \\ \text{I}_{\gamma}: \ 16.7 \ 9 \ \text{in} \ {}^{108}\text{Pd}(\alpha, 2n\gamma), {}^{110}\text{Pd}(\alpha, 4n\gamma). \\ \text{Mult.: From } \text{A}_2 = +0.28 \ 5 \ (1990\text{Ke02}) \ \text{in} \\ {}^{108}\text{Pd}(\alpha, 2n\gamma), {}^{110}\text{Pd}(\alpha, 4n\gamma). \end{aligned}$
		531 1	3.7 19	2895.948	6-	[E2]		0.00561	$\alpha(K)=0.00484 \ 8; \ \alpha(L)=0.000628 \ 10; \ \alpha(M)=0.0001208 \\ 19; \ \alpha(N+)=2.24\times10^{-5} \ 4 \\ \alpha(N)=2.13\times10^{-5} \ 4; \ \alpha(O)=1.103\times10^{-6} \ 17 \\ B(E2)(W,u)=2.3 \ 13 \\ \end{array}$
		548.2 3	100 11	2879.185	7-	M1+E2	-0.14 4	0.00533	α (K)=0.00465 7; α (L)=0.000555 8; α (M)=0.0001064 $I5$; α (N+)=2.01×10 ⁻⁵ 3 α (N)=1.90×10 ⁻⁵ 3; α (O)=1.115×10 ⁻⁶ 16 B(M1)(W.u.)=0.019 4; B(E2)(W.u.)=1.0 6 Mult : Other: DCO=0 50 5 in (HI xnz)
3439.719	8+	164.26 ^{<i>a</i>} 2	11.5 ^{<i>a</i>} 4	3275.449	8+	M1(+E2)	+0.22 27	0.123 21	$\alpha(K)=0.106 \ 16; \ \alpha(L)=0.014 \ 4; \ \alpha(M)=0.0027 \ 8; \\ \alpha(N+)=0.00050 \ 13 \\ \alpha(N)=0.00047 \ 13; \ \alpha(O)=2.6\times10^{-5} \ 3 \\ B(M1)(W.u.)=0.8 \ +4-6 \\ Mult:: \ From \ A_2=0.42 \ 4 \ (1990 \text{Ke}02) \ \text{in} \\ ^{108}\text{Pd}(\alpha,2n\gamma), ^{110}\text{Pd}(\alpha,4n\gamma) \ \text{Other:}\text{DCO}=1.39 \ 9 \ \text{in} \\ (\text{HLxny}).$
		562.907 ^{<i>a</i>} 25	30.7 ^{<i>a</i>} 7	2876.812	6+	E2		0.00477	$\alpha(K)=0.00112 \ 6; \ \alpha(L)=0.000529 \ 8; \ \alpha(M)=0.0001018$ $15; \ \alpha(N+)=1.89\times10^{-5} \ 3$ $\alpha(N)=1.80\times10^{-5} \ 3; \ \alpha(O)=9.42\times10^{-7} \ 14$ $B(E2)(W.u.)=1.5\times10^{2} \ +6-10$ Mult.: From A ₂ =+0.46 3, A ₄ =-0.08 5 (1990Ke02) in $^{108}Pd(\alpha,2n\gamma),^{110}Pd(\alpha,4n\gamma).$
		959.785 ^a 10	100.0 ^a 14	2479.9339	6+	E2		1.25×10 ⁻³	$\begin{aligned} &\alpha(\mathbf{K}) = 0.001089 \ 16; \ \alpha(\mathbf{L}) = 0.0001316 \ 19; \\ &\alpha(\mathbf{M}) = 2.52 \times 10^{-5} \ 4; \ \alpha(\mathbf{N}+) = 4.73 \times 10^{-6} \ 7 \\ &\alpha(\mathbf{N}) = 4.48 \times 10^{-6} \ 7; \ \alpha(\mathbf{O}) = 2.54 \times 10^{-7} \ 4 \\ &B(E2)(\mathbf{W}.u.) = 34 \ + 13 - 22 \\ &Mult.: \ From \ \mathbf{A}_2 = + 0.36 \ 3, \ \mathbf{A}_4 = -0.12 \ 5 \ (1990 \text{Ke02}) \ \text{in} \\ & \ 1^{08} \text{Pd}(\alpha, 2n\gamma), \ 1^{10} \text{Pd}(\alpha, 4n\gamma). \end{aligned}$
3449.6	(1,2)	1973.8 [@] 3	100 [@]	1475.7900	2+ 2+				
3466.39 3475.416	1,2,3 1 ⁺	$2808.59^{\circ\circ} 4$ 1744.10 ^{&} 7	8.5 ^{&} 5	657.7623 1731.31	2+ 0+	[M1]		5.73×10 ⁻⁴	α (K)=0.000355 5; α (L)=4.11×10 ⁻⁵ 6; α (M)=7.85×10 ⁻⁶ 11; α (N+)=0.0001690 24

From ENSDF

 $^{110}_{48}$ Cd₆₂-39

 $^{110}_{48}\text{Cd}_{62}\text{--}39$

					Α	dopted Leve	ls, Gammas (cont	tinued)	
						$\gamma(^{110}$	Cd) (continued)		
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	I_{γ} ‡	E_f	\mathbf{J}_f^{π}	Mult. ^b	δ^{c}	α^{\dagger}	Comments
									$\begin{aligned} &\alpha(\text{K}) = 0.000355 \ 5; \ \alpha(\text{L}) = 4.11 \times 10^{-5} \ 6; \\ &\alpha(\text{M}) = 7.85 \times 10^{-6} \ 11; \ \alpha(\text{N}+) = 0.0001690 \ 24 \\ &\alpha(\text{N}) = 1.403 \times 10^{-6} \ 20; \ \alpha(\text{O}) = 8.40 \times 10^{-8} \ 12; \\ &\alpha(\text{IPF}) = 0.0001675 \ 24 \\ &\text{B}(\text{M1})(\text{W.u.}) = 0.0035 \ 3 \end{aligned}$
3475.416	1+	2002.37 ^{&} 5	22.4 ^{&} 5	1473.07	0+	[M1]		5.91×10 ⁻⁴	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000268 \ 4; \ \alpha(\mathbf{L}) = 3.10 \times 10^{-5} \ 5; \\ &\alpha(\mathbf{M}) = 5.92 \times 10^{-6} \ 9; \ \alpha(\mathbf{N}+) = 0.000286 \ 4 \\ &\alpha(\mathbf{N}) = 1.058 \times 10^{-6} \ 15; \ \alpha(\mathbf{O}) = 6.34 \times 10^{-8} \ 9; \\ &\alpha(\mathbf{IPF}) = 0.000285 \ 4 \\ &\mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) = 0.0061 \ 4 \end{aligned}$
		2817.61 ^{&} 7	9.8 ^{&} 5	657.7623	2+	[M1]		8.32×10 ⁻⁴	$\alpha(K)=0.0001383\ 20;\ \alpha(L)=1.587\times10^{-5}\ 23;$ $\alpha(M)=3.03\times10^{-6}\ 5;\ \alpha(N+)=0.000675\ 10$ $\alpha(N)=5.42\times10^{-7}\ 8;\ \alpha(O)=3.26\times10^{-8}\ 5;$ $\alpha(IPF)=0.000674\ 10$ B(M1)(W,u,)=0.00095\ 8
		3475.34 ^{&} 3	100 & 3	0.0	0+	(M1)		1.06×10 ⁻³	$\alpha(K)=9.41\times10^{-5} \ 14; \ \alpha(L)=1.076\times10^{-5} \ 15; \alpha(M)=2.05\times10^{-6} \ 3; \ \alpha(N+)=0.000958 \ 14 \alpha(N)=3.67\times10^{-7} \ 6; \ \alpha(O)=2.21\times10^{-8} \ 3; \alpha(IPF)=0.000958 \ 14 B(M1)(W.u.)=0.0052 \ 4 Mult.: D from intensity ratios W(90°)/W(127°) in 110Cd(\gamma,\gamma')(2005Ko32).$
3492.64	(5 ⁻ ,6 ⁻)	566.02 ^{ad} 12 952.9 ^a 4 1012.70 ^a 6	43.9^{a} 18 100^{a} 5 42^{a} 5	2926.7474 2539.691 2479.9339	5+ 5- 6+				
3493.1 3525.34	6+	2835.3 [@] 4 460.85 ^a 8	100 [@] 100 ^a 3	657.7623 3064.712	2+ 6+	E2(+M1)		0.00812	α (K)=0.00708 <i>10</i> ; α (L)=0.000849 <i>12</i> ; α (M)=0.0001628 <i>23</i> ; α (N+)=3.08×10 ⁻⁵ <i>5</i> α (N)=2.91×10 ⁻⁵ <i>4</i> ; α (O)=1.704×10 ⁻⁶ <i>24</i> Mult.: From A ₂ =+0.31 <i>6</i> , A ₄ =-0.14 <i>9</i> (1990Ke02) in ¹⁰⁸ Pd(α .2n γ). ¹¹⁰ Pd(α .4n γ).
		648.58 ^{&} 8	17 ^{&} 4	2876.812	6+	M1+E2	+0.20 +10-12	0.00357 6	$\alpha(K)=0.00311 5; \alpha(L)=0.000370 6; \alpha(M)=7.09\times10^{-5} 10; \alpha(N+)=1.341\times10^{-5} 19 \alpha(N)=1.266\times10^{-5} 18; \alpha(O)=7.45\times10^{-7} 12 Mult.: From \alpha(K)exp=4.2\times10^{-3} 12 (1979Sy02) in 110In \varepsilon decay (4.9 h).$

						Adopted I	evels, Gamm	as (continued)	
						γ	(¹¹⁰ Cd) (conti	nued)	
E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	I_{γ}^{\ddagger}	E_f	J_f^{π}	Mult. ^b	δ^{c}	α^{\dagger}	Comments
	_				<u> </u>				$\begin{aligned} &\alpha(\text{K}) = 0.00311 \ 5; \ \alpha(\text{L}) = 0.000370 \ 6; \\ &\alpha(\text{M}) = 7.09 \times 10^{-5} \ 10; \ \alpha(\text{N}+) = 1.341 \times 10^{-5} \ 19 \\ &\alpha(\text{N}) = 1.266 \times 10^{-5} \ 18; \ \alpha(\text{O}) = 7.45 \times 10^{-7} \ 12 \\ &\text{Mult.: From } \alpha(\text{K}) \exp = 4.2 \times 10^{-3} \ 12 \ (1979 \text{Sy02}) \text{ in } \\ &1^{10} \text{In } \varepsilon \text{ decay } (4.9 \text{ h}). \\ &\delta: \text{ From } \gamma\gamma(\theta) \text{ in } ^{110} \text{In } \varepsilon \text{ decay } (4.9 \text{ h}) \\ &(1980 \text{Ba58}). \end{aligned}$
3525.34	6+	1045.24 ^{&} 9	35.7 ^{&} 17	2479.9339	6+	M1(+E2)	+0.3 3	0.00119 4	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00104 \ 4; \ \alpha(\mathbf{L}) = 0.000122 \ 4; \\ &\alpha(\mathbf{M}) = 2.34 \times 10^{-5} \ 7; \ \alpha(\mathbf{N}+) = 4.43 \times 10^{-6} \ 13 \\ &\alpha(\mathbf{N}) = 4.18 \times 10^{-6} \ 12; \ \alpha(\mathbf{O}) = 2.48 \times 10^{-7} \ 9 \\ &\text{Mult.: From } \alpha(\mathbf{K}) \exp[-1.0 \times 10^{-3} \ 2 \ (1980\text{Ba58}). \\ &\delta: \text{ From } \gamma\gamma(\theta) \text{ in } ^{110}\text{In } \varepsilon \text{ decay } (4.9 \text{ h}) \\ &(1980\text{Ba58}). \end{aligned}$
		1305.11 <mark>&</mark> 9	15.2 ^{&} 13	2220.0683	4+				
3598 0	1+	1982.77 ^{&} 18 3597 9 [@] 7	17.0° 4	1542.4441	4^+ 0 ⁺	M1		1.11×10^{-3}	$B(M1)(W_{11})=0.0067.6$
	-				0				$\alpha(M)=(M,M) \text{ or } \alpha(L)=1.011\times10^{-5} 15; \\ \alpha(M)=1.93\times10^{-6} 3; \alpha(N+)=0.001008 15; \\ \alpha(M)=3.45\times10^{-7} 5; \alpha(O)=2.08\times10^{-8} 3; \\ \alpha(IPF)=0.001007 15; \\ \text{Mult.: From } \gamma(\theta) \text{ and linear polarization} \\ \text{measurements in } 1^{10}\text{Cd}(\chi,\chi') (2005\text{Ko}32); \\ \alpha(M)=0.001007 10; \\ \text{measurements in } 1^{10}\text{Cd}(\chi,\chi') (2005\text{Ko}32); \\ \alpha(M)=0.001007 10; \\ \alpha(M)=0.00$
3611.041	10+	171.33 2	14.81 <i>11</i>	3439.719	8+	E2		0.221	$\begin{aligned} \alpha(\mathbf{K}) = 0.181 \ 3; \ \alpha(\mathbf{L}) = 0.0329 \ 5; \ \alpha(\mathbf{M}) = 0.00645 \ 9; \\ \alpha(\mathbf{N}+) = 0.001134 \ 16 \\ \alpha(\mathbf{N}) = 0.001097 \ 16; \ \alpha(\mathbf{O}) = 3.65 \times 10^{-5} \ 6 \\ \mathbf{B}(\mathbf{E2})(\mathbf{W}.\mathbf{u}) = 29.1 \ 15 \\ \mathbf{E}_{\gamma}: \ \mathrm{From} \ ^{108}\mathrm{Pd}(\alpha, 2n\gamma), ^{110}\mathrm{Pd}(\alpha, 4n\gamma). \\ \mathbf{I}_{\gamma}: \ \mathrm{From} \ (\mathrm{HI}, \mathrm{xn\gamma}). \\ \mathrm{Mult}: \ \mathrm{From} \ \mathbf{A}_{2} = +0.22 \ 2, \ \mathbf{A}_{4} = -0.08 \ 3 \ (1990\mathrm{Ke02}) \ \mathrm{in} \\ \ ^{108}\mathrm{Pd}(\alpha, 2n\gamma) \ ^{110}\mathrm{Pd}(\alpha, 4n\gamma). \end{aligned}$
		265.218 20	5.23 22	3345.810	9-	E1(+M2)	-0.014 16	0.01078 <i>19</i>	$\alpha(K)=0.00940 \ 16; \ \alpha(L)=0.001123 \ 21; \alpha(M)=0.000214 \ 4; \ \alpha(N+)=4.00\times10^{-5} \ 8 \alpha(N)=3.79\times10^{-5} \ 7; \ \alpha(O)=2.08\times10^{-6} \ 4 B(E1)(W.u.)=(1.33\times10^{-6} \ 9); \ B(M2)(W.u.)=(0.017 +39-17) E_{\gamma}: \ From \ ^{108}Pd(\alpha,2n\gamma), ^{110}Pd(\alpha,4n\gamma). I_{\gamma}: \ From \ (HI,xn\gamma). Mult.: \ From \ A_2=-0.27 \ 2 \ (1990Ke02) \ in \ ^{108}Pd(\alpha,2n\gamma), ^{110}Pd(\alpha,4n\gamma). $

					Adopted	Levels, Gam	mas (continu	ued)
						$\gamma(^{110}\text{Cd})$ (con	tinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. <mark>b</mark>	δ^{c}	α^{\dagger}	Comments
3611.041	10^{+}	335.596 15	100.0 10	3275.449 8+	E2		0.0225	$\alpha(K)=0.0192 3; \alpha(L)=0.00273 4; \alpha(M)=0.000528 8;$
								$\alpha(N+)=9.61\times10^{-5} 14$
								$\alpha(N)=9.19\times10^{-5}$ 13; $\alpha(O)=4.22\times10^{-5}$ 6
								B(E2)(w.u.) = 0.6.4 E : From $\frac{108}{Pd}(\alpha, 2n_2)$ $\frac{110}{Pd}(\alpha, 4n_2)$
								L_{γ} . From (HLxn γ).
								Mult.: From A ₂ =+0.35 2, A ₄ =-0.10 3 (1990Ke02) in
								108 Pd(α ,2n γ), 110 Pd(α ,4n γ) and A ₂ =0.333 11, A ₄ =-0.093
								<i>16</i> in (HI,xnγ).
		423.5 3	2.27 22	3187.337 8+	E2		0.01088	$\alpha(K)=0.00933 \ 14; \ \alpha(L)=0.001260 \ 18; \ \alpha(M)=0.000243 \ 4;$
								$\alpha(N+)=4.47\times10^{-5}$ 7
								$\alpha(N) = 4.26 \times 10^{-5} 6; \alpha(O) = 2.10 \times 10^{-6} 3$
								B(E2)(W.U.)=0.0480 Mult : DCO=1.7.4 in (HI yny)
363/ 57	2+	1555 76 & 21	28 <mark>&</mark> 0	2078 548 3-				
5054.57	2	1355.70 21 1851 15 $\& 13$	100° 0	1783 406 2+				
3641.10	8-	566.02 ^{<i>ad</i>} 12	43.1 ^{<i>a</i>} 17	3074.971 6 ⁻	(E2)		0.00469	$\alpha(K)=0.00405$ 6; $\alpha(L)=0.000521$ 8; $\alpha(M)=0.0001002$ 14;
								α (N+)=1.86×10 ⁻⁵ 3
								$\alpha(N) = 1.767 \times 10^{-5} 25; \alpha(O) = 9.28 \times 10^{-7} 13$
		(11.000.15	249 7	2020 077 7-			0.00411	I_{γ} : I γ for unresolved doublet in ¹⁰⁰ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ).
		611.80** 15	24" /	3029.077 7	MI+E2		0.00411	$\alpha(\mathbf{K}) = 0.00358 \ \text{S}; \ \alpha(\mathbf{L}) = 0.000426 \ \text{O}; \ \alpha(\mathbf{M}) = 8.16 \times 10^{-5} \ 12;$
								$\alpha(N+)=1.344\times10^{-5} 22$
								$u(\mathbf{N}) = 1.438 \times 10^{-5} 21$; $u(\mathbf{O}) = 8.39 \times 10^{-5} 12^{-5}$ Mult : From $\frac{108}{20} Pd(\alpha, 2n\alpha) \frac{110}{10} Pd(\alpha, 4n\alpha) \frac{(1000 K_{20} 2)}{10}$ but no
								δ given
		761.93 ^a 4	100^{a} 4	2879.185 7-	M1+E2	+0.057 24	0.00246	$\alpha(K)=0.00215 \ 3; \ \alpha(L)=0.000254 \ 4; \ \alpha(M)=4.86\times10^{-5} \ 7;$
		,011,0	100	20191100 1		101007 21	0100210	$\alpha(N+)=9.20\times10^{-6}$ 13
								$\alpha(N) = 8.68 \times 10^{-6} \ 13; \ \alpha(O) = 5.14 \times 10^{-7} \ 8$
								Mult.: From $A_2 = -0.14 \ 3 \ (1990 \text{Ke02})$ in
								108 Pd(α ,2n γ), 110 Pd(α ,4n γ).
3683.15	9-	255.74 ^{ad} 15	4.77 ^{<i>a</i>} 25	3427.27 8-	M1+E2	-0.12 11	0.0363 9	$\alpha(K)=0.0315 \ 7; \ \alpha(L)=0.00387 \ 14; \ \alpha(M)=0.00074 \ 3; \ \alpha(N+)=0.000140 \ 5$
								$\alpha(N)=0.000133\ 5;\ \alpha(O)=7.62\times10^{-6}\ 14$
								Mult.: From $A_2 = -0.42 \ l \ (1990 \text{Ke}02)$ in
								108 Pd(α ,2n γ), 110 Pd(α ,4n γ).
		337.40 7	15.6 5	3345.810 9-	M1+E2		0.01765	$\alpha(K)=0.01537\ 22;\ \alpha(L)=0.00186\ 3;\ \alpha(M)=0.000357\ 5;$
								α (N+)=6.75×10 ⁻⁵ 10
								$\alpha(N)=6.37\times10^{-5}$ 9; $\alpha(O)=3.71\times10^{-6}$ 6

From ENSDF

						Adopted	d Levels, Ga	ammas (conti	nued)
							$\gamma(^{110}\text{Cd})$ (continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. ^b	δ^{C}	α^{\dagger}	Comments
									Mult.: From A ₂ =+0.67 9 (1990Ke02) in 108 Pd(α ,2n γ), 110 Pd(α ,4n γ). No reliable δ could be obtained by 1990Ke02.
3683.15	9-	627.59 ^{<i>a</i>} 12	65.8 ^{<i>a</i>} 20	3055.703	8-	M1+E2	-0.21 7	0.00385	$\alpha(K)=0.00336 5; \alpha(L)=0.000400 6; \alpha(M)=7.67\times10^{-5} 11; \alpha(N+)=1.450\times10^{-5} 21 \alpha(N)=1.370\times10^{-5} 20; \alpha(O)=8.05\times10^{-7} 12$
									Mult.: From DCO=0.90 <i>10</i> in (HI,xn γ) and A ₂ =-0.57 <i>4</i> (1990Ke02), in ¹⁰⁸ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ).
		654.00 10	100.0 15	3029.077	7-	E2		0.00318	$\alpha(\mathbf{K})=0.00276 \ 4; \ \alpha(\mathbf{L})=0.000347 \ 5; \ \alpha(\mathbf{M})=6.67\times10^{-5} \ 10; \\ \alpha(\mathbf{N}+)=1.243\times10^{-5} \ 18 \\ \alpha(\mathbf{N}+)=1.243\times10^{-5} \ 18 \\ \alpha(\mathbf{N}+)=1.243\times10^{-5} \ 10^{-5} \ 10^{-7} \ 0^{$
									$\alpha(N)=1.180\times10^{-5} I/; \alpha(O)=6.35\times10^{-7} 9$ Mult.: From A ₂ =+0.37 3, A ₄ =-0.06 6 (1990Ke02) in 108 Pd(α ,2ny), 110 Pd(α ,4ny).
3726.58	$1,2^{+}$	3726.51 ^{&} 18	100 <mark>&</mark>	0.0	0^{+}				
3772.77	1+	3114	30 <i>3</i>	657.7623	2+	[M1]		9.37×10 ⁻⁴	α (K)=0.0001149 <i>16</i> ; α (L)=1.316×10 ⁻⁵ <i>19</i> ; α (M)=2.51×10 ⁻⁶ <i>4</i> ; α (N+)=0.000806 <i>12</i> α (N)=4.49×10 ⁻⁷ <i>7</i> ; α (O)=2.70×10 ⁻⁸ <i>4</i> ; α (IPF)=0.000806 <i>12</i> B(M1)(W.u.)=0.0131 <i>14</i>
									E_{γ}, I_{γ} : From ¹¹⁰ Cd(γ, γ').
		3772.70 [@] 4	100 [@]	0.0	0+	M1		1.17×10 ⁻³	$\begin{aligned} &\alpha(\mathbf{K}) = 8.13 \times 10^{-5} \ 12; \ \alpha(\mathbf{L}) = 9.29 \times 10^{-6} \ 13; \\ &\alpha(\mathbf{M}) = 1.772 \times 10^{-6} \ 25; \ \alpha(\mathbf{N}+) = 0.001076 \ 15 \\ &\alpha(\mathbf{N}) = 3.17 \times 10^{-7} \ 5; \ \alpha(\mathbf{O}) = 1.91 \times 10^{-8} \ 3; \ \alpha(\mathbf{IPF}) = 0.001076 \ 15 \\ &\mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) = 0.0246 \ 6 \\ &\mathbf{Mult.: Deduced from } \gamma(\theta) \text{ and linear polarization} \\ &\text{measurements in } \ ^{110}\mathbf{Cd}(\gamma,\gamma') \ (2005\mathbf{Ko32}). \end{aligned}$
3782.13	9-	726.43 ^{<i>a</i>} 4	100.0 ^{<i>a</i>} 22	3055.703	8-	M1+E2	+0.15 2	0.00274	$\alpha(K)=0.00239 \ 4; \ \alpha(L)=0.000283 \ 4; \ \alpha(M)=5.42\times10^{-5} \ 8; \ \alpha(N+)=1.026\times10^{-5} \ 15 \ \alpha(N)=9.69\times10^{-6} \ 14; \ \alpha(O)=5.72\times10^{-7} \ 8 \ Mult.: \ From \ A_2=-0.00 \ 2 \ (1990Ke02) \ in \ 1^{10}Pd(\alpha \ 4n\alpha)$
		902.90 ^{<i>a</i>} 15	68.9 ^a 15	2879.185	7-	E2		1.44×10 ⁻³	$\alpha(K)=0.001252 \ I8; \ \alpha(L)=0.0001521 \ 22; \ \alpha(M)=2.91\times10^{-5} 4; \ \alpha(N+)=5.47\times10^{-6} \ 8; \ \alpha(O)=2.91\times10^{-7} \ 4 I_{\gamma}: \ Other: \ 100 \ I2 \ in \ (HI,xn\gamma). Mult.: \ From \ A_2=+0.36 \ 2, \ A_4=-0.18 \ 3 \ (1990Ke02) \ in 1^{108}Pd(\alpha,2n\gamma), ^{110}Pd(\alpha,4n\gamma). $

						Adopted L	evels, Gamn	nas (continue	<u>d)</u>
						<u>γ(</u>	(¹¹⁰ Cd) (cont	inued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{\ddagger}	E_{f}	\mathbf{J}_f^{π}	Mult. ^b	$\delta^{\mathcal{C}}$	α^{\dagger}	Comments
3791.62	8+	351.93 ^{<i>a</i>} 7	25.0 ^{<i>a</i>} 16	3439.719	8+	M1(+E2)	-0.15 24	0.0159 5	$\alpha(K)=0.0139 \ 4; \ \alpha(L)=0.00169 \ 8; \ \alpha(M)=0.000324 \ 15; \\ \alpha(N+)=6.10\times10^{-5} \ 25 \\ \alpha(N)=5.77\times10^{-5} \ 25; \ \alpha(O)=3.34\times10^{-6} \ 6 \\ \text{Mult.: From } A_2=+0.30 \ 5 \ (1990\text{Ke02}) \text{ in } \\ {}^{108}\text{Pd}(\alpha.2n\gamma), {}^{110}\text{Pd}(\alpha.4n\gamma). $
		914.50 ^{<i>a</i>} 15	100 ^{<i>a</i>} 5	2876.812	6+	E2		1.40×10 ⁻³	$\alpha(K)=0.001216\ 17;\ \alpha(L)=0.0001475\ 21;\alpha(M)=2.83\times10^{-5}\ 4;\ \alpha(N+)=5.30\times10^{-6}\ 8\alpha(N)=5.02\times10^{-6}\ 7;\ \alpha(O)=2.83\times10^{-7}\ 4Mult.: From A_2=+0.42\ 11\ (1990Ke02)\ in 1^{108}Pd(\alpha,2n\gamma),^{110}Pd(\alpha,4n\gamma).$
		1311.70 ^{<i>a</i>} 6	78 ^a 3	2479.9339	6+	E2		6.65×10 ⁻⁴	$\alpha(K)=0.000558 \ 8; \ \alpha(L)=6.58\times10^{-5} \ 10; \\ \alpha(M)=1.259\times10^{-5} \ 18; \ \alpha(N+)=2.87\times10^{-5} \ 4 \\ \alpha(N)=2.24\times10^{-6} \ 4; \ \alpha(O)=1.303\times10^{-7} \ 19; \\ \alpha(IPF)=2.63\times10^{-5} \ 4 \\ Mult.: \ From \ A_2=+0.30 \ 4 \ in \ (1990Ke02) \\ {}^{108}Pd(\alpha, 2n\chi) {}^{110}Pd(\alpha, 4n\chi) $
3823.247	10-	477.45 ^a 4	20.0 ^{<i>a</i>} 6	3345.810	9-	M1+E2	-0.24 8	0.00746	$\alpha(K)=0.00650 \; 9; \; \alpha(L)=0.000783 \; 12; \; \alpha(M)=0.0001501 \\ 22; \; \alpha(N+)=2.83\times10^{-5} \; 4 \\ \alpha(N)=2.68\times10^{-5} \; 4; \; \alpha(O)=1.558\times10^{-6} \; 22 \\ B(M1)(W.u.)=0.0091 \; 9; \; B(E2)(W.u.)=1.9 \; 12 \\ I_{\gamma}: \; Other: \; 14.8 \; 9 \; in \; (HI,xn\gamma). \\ Mult.: \; From \; DCO=0.60 \; 6 \; in \; (HI,xn\gamma) \; and \; A_2=-0.61 \; 4, \\ A_4=+0.13 \; 6 \; in \; ^{108}Pd(\alpha,2n\gamma), ^{110}Pd(\alpha,4n\gamma) \\ (1990Ke02)$
		767.532 ^a 20	100.0 ^{<i>a</i>} 12	3055.703	8-	E2		0.00212	$\alpha(K)=0.00184 \ 3; \ \alpha(L)=0.000227 \ 4; \ \alpha(M)=4.36\times10^{-5} \ 7; \ \alpha(N+)=8.16\times10^{-6} \ 12 \ \alpha(N)=7.74\times10^{-6} \ 11; \ \alpha(O)=4.27\times10^{-7} \ 6 \ B(E2)(W.u.)=16.1 \ 14 \ Mult.: \ From \ A_2=-0.36 \ 3, \ A_4=-0.13 \ 4 \ (1990Ke02) \ in \ 1^{108}Pd(\alpha,2n\gamma), ^{110}Pd(\alpha,4n\gamma).$
3854.1	(1 ⁺)	3854	100	0.0	0+	(M1)		1.19×10 ⁻³	$\alpha(K)=7.83\times10^{-5} 11; \ \alpha(L)=8.95\times10^{-6} 13; \\ \alpha(M)=1.706\times10^{-6} 24; \ \alpha(N+)=0.001105 16 \\ \alpha(N)=3.05\times10^{-7} 5; \ \alpha(O)=1.84\times10^{-8} 3; \\ \alpha(IPF)=0.001105 16 \\ B(M1)(W.u.)=0.0084 11 \\ E_{\gamma},I_{\gamma}: \ From \ ^{110}Cd(\gamma,\gamma'). \\ Mult.: \ POL=+0.09 7 \ for \ the \ 3854+3862 \ keV \ doublet.$
3861.9	(1+)	3204	12 4	657.7623	2+	[M1]		9.69×10 ⁻⁴	α (K)=0.0001090 <i>16</i> ; α (L)=1.249×10 ⁻⁵ <i>18</i> ; α (M)=2.38×10 ⁻⁶ <i>4</i> ; α (N+)=0.000845 <i>12</i>

						Adopt	ed Levels, Ga	mmas (continued)
							γ ⁽¹¹⁰ Cd) (c	continued)
E _i (level)	J_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	J_f^{π}	Mult. ^b	α^{\dagger}	Comments
								$\alpha(K)=0.0001090 \ 16; \ \alpha(L)=1.249\times10^{-5} \ 18; \ \alpha(M)=2.38\times10^{-6} \ 4; \\ \alpha(N+)=0.000845 \ 12 \\ \alpha(N)=4.26\times10^{-7} \ 6; \ \alpha(O)=2.56\times10^{-8} \ 4; \ \alpha(IPF)=0.000845 \ 12 \\ B(M1)(W.u.)=0.0054 \ 19 $
3861.9	(1+)	3862	100	0.0	0+	(M1)	1.20×10 ⁻³	$E_{\gamma,I_{\gamma}}: \text{From}^{110}\text{Cd}(\gamma,\gamma').$ $\alpha(\text{K})=7.81\times10^{-5} II; \alpha(\text{L})=8.91\times10^{-6} I3; \alpha(\text{M})=1.700\times10^{-6} 24; \alpha(\text{N}+)=0.001108 I6$
								$\alpha(N)=3.04\times10^{-7}$ 5; $\alpha(O)=1.83\times10^{-6}$ 3; $\alpha(IPF)=0.00110776$ B(M1)(W.u.)=0.025674 E _y ,I _y : From ¹¹⁰ Cd(γ,γ'). Mult.: Deduced from $\gamma(\theta)$ and linear polarization measurements in 110 Cd(γ,γ') (2005Ko32).
3992.79	(9-)	1113.60 ^a 15	100 ^a	2879.185	7-	(E2)	9.01×10 ⁻⁴	$\alpha(\mathbf{K})=0.000785 \ II; \ \alpha(\mathbf{L})=9.37\times10^{-5} \ I4; \ \alpha(\mathbf{M})=1.79\times10^{-5} \ 3; \ \alpha(\mathbf{N}+)=4.19\times10^{-6} \ 6 \ \alpha(\mathbf{N})=3.19\times10^{-6} \ 5; \ \alpha(\mathbf{O})=1.83\times10^{-7} \ 3; \ \alpha(\mathbf{IPF})=8.12\times10^{-7} \ I2 \ \mathbf{M} \ \mathbf{M} = 1.000 \ \mathbf{M} \ \mathbf{M} \ \mathbf{M} = 1.000 \ \mathbf{M} \ \mathbf{M} \ \mathbf{M} \ \mathbf{M} = 1.79\times10^{-5} \ \mathbf{M} \ \mathbf{M} \ \mathbf{M} \ \mathbf{M} = 1.79\times10^{-5} \ \mathbf{M} \ \mathbf$
4077.176	10+	637.2 5	6.8 <i>9</i>	3439.719	8+	E2	0.00341	Mult.: From A ₂ =+0.53 <i>10</i> (1990Ke02) in ¹⁰⁰ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ). α (K)=0.00295 <i>5</i> ; α (L)=0.000373 <i>6</i> ; α (M)=7.17×10 ⁻⁵ <i>11</i> ; α (N+)=1.335×10 ⁻⁵ <i>19</i> α (N)=1.267×10 ⁻⁵ <i>18</i> ; α (O)=6.79×10 ⁻⁷ <i>10</i> B(E2)(W.u.)=15 +4-5
		801.724 ^{<i>a</i>} 15	100 ^{<i>a</i>} 1	3275.449	8+	E2	0.00191	Mult.: From DCO=1.5 2. $\alpha(K)=0.001657 \ 24; \ \alpha(L)=0.000204 \ 3; \ \alpha(M)=3.91\times10^{-5} \ 6; \ \alpha(N+)=7.31\times10^{-6} \ 11 \ \alpha(N)=6.93\times10^{-6} \ 10; \ \alpha(O)=3.84\times10^{-7} \ 6 \ B(E2)(W.u.)=71 \ +13-21$
4172.076	12+	561.034 ^{<i>a</i>} 10	100 ^{<i>a</i>}	3611.041	10+	E2	0.00481	Mult.: From DCO=1.40 6. $\alpha(K)=0.00415$ 6; $\alpha(L)=0.000534$ 8; $\alpha(M)=0.0001028$ 15; $\alpha(N+)=1.91\times10^{-5}$ 3 $\alpha(N)=1.81\times10^{-5}$ 3; $\alpha(O)=9.50\times10^{-7}$ 14 B(E2)(W.u.)=40.0 15 Mult.: A ₂ =+0.36 2, A ₄ =-0.09 3 (1990Ke02) from
4172.706	11-	826.893 ^{<i>a</i>} 18	100 ^{<i>a</i>}	3345.810	9-	E2	1.77×10 ⁻³	¹⁰⁸ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ). α (K)=0.001539 22; α (L)=0.000188 3; α (M)=3.61×10 ⁻⁵ 5; α (N+)=6.77×10 ⁻⁶ 10 α (N)=6.41×10 ⁻⁶ 9; α (O)=3.57×10 ⁻⁷ 5 B(E2)(W.u)=22.4 16
4181.96	10-	499.1 <i>5</i>	20 7	3683.15	9-	D		Mult.: From A ₂ =+0.37 <i>1</i> , A ₄ =-0.13 2 (1990Ke02) in 108 Pd(α ,2n γ), 110 Pd(α ,4n γ). Mult.: From DCO < 0.6.

From ENSDF

 $^{110}_{48}\text{Cd}_{62}$ -45

					Adopted	l Levels, Gar	<mark>nmas</mark> (continue	ed)
						γ ⁽¹¹⁰ Cd) (co	ontinued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^b	δ^{C}	$lpha^\dagger$	Comments
4181.96	10-	754.69 ^{<i>a</i>} 6	100 ^{<i>a</i>} 3	3427.27 8-	E2		0.00221	$\alpha(K)=0.00192 \ 3; \ \alpha(L)=0.000237 \ 4; \ \alpha(M)=4.56\times10^{-5} \ 7; \\ \alpha(N+)=8.52\times10^{-6} \ 12 \\ \alpha(N)=8.08\times10^{-6} \ 12; \ \alpha(O)=4.45\times10^{-7} \ 7 \\ B(E2)(W.u.)=43 \ 7 \\ Mult.: \ From \ A_2=+0.39 \ I, \ A_4=-0.13 \ 2 \ (1990Ke02) \ in \\ {}^{108}Pd(\alpha \ 2n\alpha) {}^{110}Pd(\alpha \ 4n\alpha) $
		836.13 ^{<i>a</i>} 10	46.3 ^{<i>a</i>} 18	3345.810 9-	M1+E2	-0.27 8	0.00197	$\alpha(K)=0.00172 \ 3; \ \alpha(L)=0.000203 \ 3; \ \alpha(M)=3.89\times10^{-5} \ 6; \\ \alpha(N+)=7.36\times10^{-6} \ 11 \\ \alpha(N)=6.95\times10^{-6} \ 11; \ \alpha(O)=4.10\times10^{-7} \ 7 \\ B(M1)(W.u.)=0.0094 \ 15; \ B(E2)(W.u.)=0.8 \ 5 \\ I_{\gamma}: \ Other: \ 33 \ 7 \ from \ (HI,xn\gamma). \\ Mult.: \ From \ DCO=0.46 \ 4 \ in \ (HI,xn\gamma) \ and \ A_{2}=-0.66 \ 4 \\ (1990Ke02) \ in \ ^{108}Pd(\alpha,2n\gamma), ^{110}Pd(\alpha,4n\gamma). \end{cases}$
4334.26	10-	694 ^{<i>d</i>} 1 988.44 ^{<i>a</i>} 6	100 ^{<i>a</i>}	3641.10 8 ⁻ 3345.810 9 ⁻	M1+E2	0.57 12	1.32×10 ⁻³ 2	α (K)=0.001150 2 <i>1</i> ; α (L)=0.0001358 2 <i>4</i> ; α (M)=2.60×10 ⁻⁵ 5; α (N+)=4.91×10 ⁻⁶ 9 α (N)=4.64×10 ⁻⁶ 8; α (O)=2.73×10 ⁻⁷ 6 Mult.: From DCO=1.6 2. Other: M1+E2 from 108 Pd(α ,2ny), 110 Pd(α ,4ny) (1990Ke02). δ =0.57 12 reported by 1990Ke02
4421.62	(10 ⁺)	1075.8 ^{<i>a</i>} 2	100 ^{<i>a</i>}	3345.810 9-	D			Mult.: From A ₂ =+0.35 6 (1990Ke02) in 108 Pd(α .2ny). 110 Pd(α .4ny).
4438.37	9+	1251.03 ^{<i>a</i>} 6	100 ^{<i>a</i>}	3187.337 8+	M1+E2		8.27×10 ⁻⁴	$\alpha(K) = 0.000712 \ 10; \ \alpha(L) = 8.31 \times 10^{-5} \ 12; \alpha(M) = 1.589 \times 10^{-5} \ 23; \ \alpha(N+) = 1.571 \times 10^{-5} \ 22 \alpha(N) = 2.84 \times 10^{-6} \ 4; \ \alpha(O) = 1.693 \times 10^{-7} \ 24; \alpha(IPF) = 1.270 \times 10^{-5} \ 18 Mult.: From A_2 = +0.06 \ 3 \ (1990 \text{Ke02}) 1^{08} \text{Pd}(\alpha, 2n\gamma), 1^{10} \text{Pd}(\alpha, 4n\gamma) \text{ but no } \delta \text{ given.}$
4559.12	11-	735.83 5	38 10	3823.247 10-	M1+E2	-0.07 5	0.00266	$\alpha(K)=0.00233 4; \alpha(L)=0.000275 4; \alpha(M)=5.27\times10^{-5} 8; \alpha(N+)=9.97\times10^{-6} 14 \alpha(N)=9.42\times10^{-6} 14; \alpha(O)=5.57\times10^{-7} 8 B(M1)(W.u.)=0.009 +5-8; B(E2)(W.u.)=0.07 +10-7 E_{\gamma}: from {}^{108}Pd(\alpha,2n\gamma),{}^{110}Pd(\alpha,4n\gamma). I_{\gamma}: From (HI,xn\gamma). Other: 17.4 14 in {}^{108}Pd(\alpha,2n\gamma),{}^{110}Pd(\alpha,4n\gamma). Mult.: From DCO=0.73 14 in (HI,xn\gamma) and A_2=-0.37 5 (1990Ke02) in {}^{108}Pd(\alpha,2n\gamma),{}^{110}Pd(\alpha,4n\gamma).$
		876.00 ^{<i>a</i>} 5	100 ^{<i>a</i>} 5	3683.15 9-	E2		1.54×10^{-3}	$\alpha(K)=0.001343 \ 19; \ \alpha(L)=0.0001636 \ 23; \ \alpha(M)=3.14\times10^{-5}$

From ENSDF

						Ado	pted Levels, (cammas (continued)
							$\gamma(^{110}\text{Cd})$	(continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. ^b	α^{\dagger}	Comments
								5; α (N+)=5.88×10 ⁻⁶ 9
								$\alpha(N)=5.57\times10^{-6} 8; \alpha(O)=3.12\times10^{-7} 5$
								B(E2)(W.u.)=15 + 7 - 13
								Mult.: From $A_2 = +0.323$, $A_4 = -0.104$ (1990Ke02) in
4620.2	10+	1344 5 5	40.20	3275 110	8+			$Pd(\alpha, 2n\gamma), Pd(\alpha, 4n\gamma).$
4020.2	10	1433.0 5	100 20	3187.337	8 ⁺			Mult.: Note that mult.=M1+E2 was suggested in
		1100100	100 20	010/100/	0			108 Pd(α ,2n γ), 110 Pd(α ,4n γ) (1990Ke02), while the decay scheme
								requires mult.=E2.
4736.81	11^{-}	954.64 ^a 20	100 ^{<i>a</i>}	3782.13	9-	E2	1.27×10^{-3}	$\alpha(K)=0.001103 \ 16; \ \alpha(L)=0.0001332 \ 19; \ \alpha(M)=2.55\times 10^{-5} \ 4;$
								$\alpha(N+)=4.79\times10^{-6}$ 7
								$\alpha(N)=4.54\times10^{-6}$ 7; $\alpha(O)=2.57\times10^{-7}$ 4
								Mult.: From DCO=1.7 4 in (HI,xn γ) and A ₂ =+0.35 5, A ₄ =-0.11 7
4000 07	10+	011 0020 20	1000	1077 176	1.0+	50	0.00105	(1990Ke02) in ¹⁰⁸ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ).
4888.27	12	811.0934 20	1004	40//.1/6	10	E2	0.00185	$\alpha(\mathbf{K})=0.001611\ 23;\ \alpha(\mathbf{L})=0.000198\ 3;\ \alpha(\mathbf{M})=3./9\times10^{-5}\ 0;$
								$\alpha(N+)=7.10\times10^{-7}10$ $\alpha(N)=6.73\times10^{-6}10$, $\alpha(O)=3.74\times10^{-7}6$
								$B(E_2)(W_{\rm H}) = 37.4$
								Mult.: From DCO=1.46 6 in (HI,xn γ) and A ₂ =+0.35 2, A ₄ =-0.10 3
								(1990Ke02) in 108 Pd(α ,2n γ), 110 Pd(α ,4n γ).
4930.26	12^{-}	757.7 5	6 1	4172.706	11^{-}	M1	0.00249	$\alpha(K)=0.00218 \ 3; \ \alpha(L)=0.000257 \ 4; \ \alpha(M)=4.92\times10^{-5} \ 7;$
								α (N+)=9.32×10 ⁻⁶ 14
								$\alpha(N)=8.80\times10^{-6}$ 13; $\alpha(O)=5.21\times10^{-7}$ 8
							1	Mult.: From DCO=0.42 13.
		1107.0 3	100 10	3823.247	10-	E2	9.13×10^{-4}	$\alpha(K) = 0.000/96 \ 12; \ \alpha(L) = 9.50 \times 10^{-3} \ 14; \ \alpha(M) = 1.82 \times 10^{-3} \ 3;$
								$\alpha(N+)=4.0/\times10^{-6}$ 6 (N) 2.24(10 ⁻⁶ 5) (0) 1.8(10 ⁻⁷ 2) (DE) (50) 10 ⁻⁷ 12
								$\alpha(IN)=5.24\times10^{-5}$; $\alpha(O)=1.80\times10^{-5}$; $\alpha(IPF)=0.50\times10^{-5}$ I/2 Mult · From DCO-1.44.9
5026.32	14^{+}	854.25 ^a 7	100 <mark>a</mark>	4172.076	12^{+}	E2	1.64×10^{-3}	$\alpha(K) = 0.001425 \ 20; \ \alpha(L) = 0.0001739 \ 25; \ \alpha(M) = 3.33 \times 10^{-5} \ 5;$
2020.32	11	001120 /	100	11,2.070			1.0 1/10	$\alpha(n) = 6.25 \times 10^{-6} 9$
								$\alpha(N) = 5.92 \times 10^{-6} 9; \alpha(O) = 3.31 \times 10^{-7} 5$
								B(E2)(W.u.)=29 3
								Mult.: From DCO=1.41 3 in (HI,xn γ) and A ₂ =+0.32 2, A ₄ =-0.14 3
							2	(1990Ke02) in ¹⁰⁸ Pd(α ,2n γ), ¹¹⁰ Pd(α ,4n γ).
5092.56	12-	910.6 3	100	4181.96	10-	E2	1.41×10^{-3}	$\alpha(K) = 0.001228 \ 18; \ \alpha(L) = 0.0001490 \ 21; \ \alpha(M) = 2.86 \times 10^{-5} \ 4;$
								$\alpha(N+)=5.36\times10^{-6} 8$
								$\alpha(N)=5.0/\times10^{-6}$ 8; $\alpha(O)=2.86\times10^{-7}$ 4
								D(E2)(W.U.)=8.771 Mult · From DCO=1.48.70

From ENSDF

$\gamma(^{110}Cd)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. ^b	α^{\dagger}	Comments
5113.6	12+	941 <i>I</i>	<13	4172.076	12^{+}			
		1036.7 <i>3</i>	100 7	4077.176	10+	E2	1.05×10 ⁻³	$\alpha(K)=0.000917 \ 13; \ \alpha(L)=0.0001101 \ 16; \ \alpha(M)=2.11\times10^{-5} \ 3; \ \alpha(N+)=3.96\times10^{-6} \ 6 \ \alpha(N)=3.75\times10^{-6} \ 6; \ \alpha(O)=2.14\times10^{-7} \ 3$
								Mult.: From DCO=1.29 11.
5212.7	12-	878.2 <i>3</i>	100	4334.26	10-	E2	1.53×10 ⁻³	$\begin{aligned} &\alpha(\mathrm{K}) = 0.001335 \ I9; \ \alpha(\mathrm{L}) = 0.0001626 \ 23; \ \alpha(\mathrm{M}) = 3.12 \times 10^{-5} \ 5; \\ &\alpha(\mathrm{N}+) = 5.85 \times 10^{-6} \ 9 \\ &\alpha(\mathrm{N}) = 5.53 \times 10^{-6} \ 8; \ \alpha(\mathrm{O}) = 3.10 \times 10^{-7} \ 5 \end{aligned}$
								Mult.: From DCO=1.46 12.
5215.5	(11^{+})	595.3 5	100	4620.2	10^{+}		4	<i>.</i>
5248.93	13-	1076.1 <i>3</i>	100	4172.706	11-	E2	9.70×10 ⁻⁴	$\alpha(K)=0.000846 \ 12; \ \alpha(L)=0.0001012 \ 15; \ \alpha(M)=1.94\times10^{-5} \ 3; \ \alpha(N+)=3.64\times10^{-6} \ 6 \ \alpha(N)=3.45\times10^{-6} \ 5; \ \alpha(O)=1.97\times10^{-7} \ 3 \ B(E2)(W.u.)>8.9 \ Mult.: From DCO=1.40 \ 8.$
5497.29	13-	937 <i>1</i> 1324.6 <i>5</i> 1325.6 <i>5</i>	100 <i>10</i> 40 <i>10</i> 80 <i>20</i>	4559.12 4172.706 4172.076	11 ⁻ 11 ⁻ 12 ⁺			
5500.00	13+	1327.9 <i>3</i>	100	4172.076	12+	M1	7.42×10 ⁻⁴	$\alpha(\mathbf{K})=0.000627 \; 9; \; \alpha(\mathbf{L})=7.30 \times 10^{-5} \; 11; \; \alpha(\mathbf{M})=1.396 \times 10^{-5} \; 20; \\ \alpha(\mathbf{N}+)=2.88 \times 10^{-5} \; 4 \\ \alpha(\mathbf{N})=2.50 \times 10^{-6} \; 4 \; \alpha(\mathbf{C})=1.480 \times 10^{-7} \; 21 \; \alpha(\mathbf{IEE})=2.62 \times 10^{-5} \; 4$
								$\alpha(N)=2.30\times10^{-4}$; $\alpha(O)=1.489\times10^{-21}$; $\alpha(PF)=2.02\times10^{-4}$ Mult : From DCO=1.05.14
5675.5	14+	787.1 3	100 4	4888.27	12+	E2	0.00199	$\alpha(K)=0.001732\ 25;\ \alpha(L)=0.000213\ 3;\ \alpha(M)=4.09\times10^{-5}\ 6;\ \alpha(N+)=7.66\times10^{-6}\ 11$
								$\alpha(N)=7.26\times10^{-6}$ 11; $\alpha(O)=4.02\times10^{-7}$ 6
							4	Mult.: From DCO=1.50 6.
		1504 <i>1</i>	48 6	4172.076	12+	E2	5.68×10^{-4}	$\alpha(K)=0.000424 \ 6; \ \alpha(L)=4.97\times10^{-5} \ 7; \ \alpha(M)=9.50\times10^{-6} \ 14; \ \alpha(N+)=8.49\times10^{-5} \ 13$
								α (N)=1.694×10 ⁻⁶ 24; α (O)=9.92×10 ⁻⁸ 14; α (IPF)=8.31×10 ⁻⁵ 13
5750 50	12-	500 8 5	21.6	5248 02	12-	M1	0.00625	Mult.: From DCO=1.7 3. $\alpha(K) = 0.00554 R_{10} \alpha(L) = 0.000662 L0_{10} \alpha(M) = 0.0001270 L8$
5758.52	15	509.8 5	51 0	5248.95	15	IMI I	0.00635	$\alpha(\mathbf{N})=0.00534, 8; \alpha(\mathbf{L})=0.000662, 10; \alpha(\mathbf{M})=0.0001270, 18; \alpha(\mathbf{N}+)=2.40\times10^{-5}, 4$
								α (N)=2.27×10 ⁻⁵ 4; α (O)=1.332×10 ⁻⁶ 19
		5 4 5 J	16.2	5010 7	10-	1.61	0.00541	Mult.: From DCO=1.32 12. (1) $0.000562.0$ (1) $0.0001070.16$ (1) 0.0011075
		545 1	16 <i>3</i>	5212.7	12	MI	0.00541	$\alpha(\mathbf{K})=0.004727; \alpha(\mathbf{L})=0.0005639; \alpha(\mathbf{M})=0.000107976; \alpha(\mathbf{N}+)=2.04\times10^{-5}3$ $\alpha(\mathbf{N})=1.03\times10^{-5}3; \alpha(\mathbf{O})=1.133\times10^{-6}17$
								$u_{(1)}=1.75\times10^{-1}$, $u_{(0)}=1.155\times10^{-1}$ Mult · From DCO=0.63.8
		666.0 5	19 6	5092.56	12-	M1	0.00336	$\alpha(K)=0.002945; \alpha(L)=0.0003485; \alpha(M)=6.67\times10^{-5}10;$

48

γ (¹¹⁰Cd) (continued)

E _i (level)	J_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. ^b	α^{\dagger}	Comments
								α (N+)=1.262×10 ⁻⁵ <i>18</i> α (N)=1.191×10 ⁻⁵ <i>17</i> ; α (O)=7.03×10 ⁻⁷ <i>10</i> Mult.: From DCO=0.83 <i>11</i> .
5758.52	13-	828.0 <i>3</i>	75 25	4930.26	12-	M1	0.00203	$\alpha(\mathbf{K})=0.001776\ 25;\ \alpha(\mathbf{L})=0.000209\ 3;\ \alpha(\mathbf{M})=4.01\times10^{-5}\ 6;\alpha(\mathbf{N}+)=7.59\times10^{-6}\ 11\alpha(\mathbf{N})=7.16\times10^{-6}\ 10;\ \alpha(\mathbf{O})=4.24\times10^{-7}\ 6$
		1021.5 5	16 <i>3</i>	4736.81	11-	E2	1.09×10^{-3}	Mult.: From DCO=1.0 2. $\alpha(K)=0.000948 \ 14; \ \alpha(L)=0.0001139 \ 16; \ \alpha(M)=2.18\times10^{-5} \ 3; \ \alpha(N+)=4.10\times10^{-6} \ 6$
		1198 9 5	19.6	4559 12	11-	E2	7 76×10 ⁻⁴	$\alpha(N)=5.88\times10^{-5}$ 6; $\alpha(O)=2.21\times10^{-5}$ 4 Mult.: From DCO=1.9 4. $\alpha(K)=0.000672$ 10: $\alpha(L)=7.97\times10^{-5}$ 12: $\alpha(M)=1.526\times10^{-5}$ 22:
		1190.9 5	19 0	1007.12		112		$\alpha(N) = 0.000012 \text{ IS}, \alpha(D) = 0.000012 \text{ IS}, \alpha(N) = 0.000012 \text{ IS}, \alpha(N)$
		1586 <i>1</i>	31 6	4172.706	11-	E2	5.52×10 ⁻⁴	$\alpha(K) = 0.000383 \ 6; \ \alpha(L) = 4.47 \times 10^{-5} \ 7; \ \alpha(M) = 8.54 \times 10^{-6} \ 12; \ \alpha(N+) = 0.0001161 \ 17 \ \alpha(N) = 1.524 \times 10^{-6} \ 22; \ \alpha(O) = 8.05 \times 10^{-8} \ 13; \ \alpha(IEE) = 0.0001144 \ 17$
		1586.8 <i>3</i>	100 6	4172.076	12+	E1	5.14×10 ⁻⁴	Mult.: From DCO=1.3 2. $\alpha(K)=0.000188 \ 3; \ \alpha(L)=2.15\times10^{-5} \ 3; \ \alpha(M)=4.10\times10^{-6} \ 6;$
								α (N+)=0.000300 5 α (N)=7.32×10 ⁻⁷ 11; α (O)=4.34×10 ⁻⁸ 6; α (IPF)=0.000299 5 Mult.: From DCO=0.71 9.
5789.95	14^{+}	289.9 5	13 7	5500.00	13+			
		1617.9 <i>3</i>	100 7	4172.076	12+	E2	5.48×10^{-4}	$\alpha(K)=0.000368\ 6;\ \alpha(L)=4.30\times10^{-5}\ 6;\ \alpha(M)=8.21\times10^{-6}\ 12;\ \alpha(N+)=0.0001290\ 18$
								α (N)=1.465×10 ⁻⁶ 21; α (O)=8.61×10 ⁻⁸ 12; α (IPF)=0.0001274 18 Mult.: From DCO=1.1 2.
5856.3	14+	743.5 5	24 6	5113.6	12+			
		967.7 <i>3</i>	100 12	4888.27	12+	E2	1.23×10^{-3}	α (K)=0.001069 <i>15</i> ; α (L)=0.0001291 <i>18</i> ; α (M)=2.47×10 ⁻⁵ <i>4</i> ; α (N+)=4.64×10 ⁻⁶ <i>7</i>
								$\alpha(N)=4.39\times10^{-6}$ 7; $\alpha(O)=2.49\times10^{-7}$ 4 Mult : From DCO=1.41, 10
5892.9	$(12^+, 13^+)$	677.4.5	<100	5215.5	(11^{+})			
5914.5	14 ⁺	1026.2 3	100	4888.27	12+	E2	1.08×10 ⁻³	$ \begin{aligned} &\alpha(\mathrm{K}) = 0.000938 \ 14; \ \alpha(\mathrm{L}) = 0.0001127 \ 16; \ \alpha(\mathrm{M}) = 2.16 \times 10^{-5} \ 3; \\ &\alpha(\mathrm{N}+) = 4.06 \times 10^{-6} \ 6 \\ &\alpha(\mathrm{N}) = 3.84 \times 10^{-6} \ 6; \ \alpha(\mathrm{O}) = 2.19 \times 10^{-7} \ 3 \end{aligned} $
5966.98	14-	718.1 5	15 3	5248.93	13-			Mult.: From DCO=1.51 13.

							Ado	pted Levels, (Gammas (continued)
								γ ⁽¹¹⁰ Cd)	(continued)
	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	J_f^π	Mult. ^b	α^{\dagger}	Comments
	5966.98	14-	753.8 5	21 5	5212.7	12-	E2	0.00222	$\alpha(K)=0.00193 \ 3; \ \alpha(L)=0.000238 \ 4; \ \alpha(M)=4.57\times10^{-5} \ 7; \ \alpha(N+)=8.55\times10^{-6} \ 12$
			874.4 <i>3</i>	100 16	5092.56	12-	E2	1.55×10^{-3}	$\alpha(N)=8.10\times10^{-6}$ 12; $\alpha(O)=4.46\times10^{-7}$ 7 Mult.: From DCO=1.64 8. $\alpha(K)=0.001349$ 19; $\alpha(L)=0.0001643$ 23; $\alpha(M)=3.15\times10^{-5}$ 5;
									$\alpha(N+)=5.91\times10^{-6} 9$ $\alpha(N)=5.59\times10^{-6} 8; \alpha(O)=3.14\times10^{-7} 5$ Mult From DCO=1.5.2
			1036.8 <i>3</i>	37 <i>3</i>	4930.26	12-	E2	1.05×10^{-3}	$\alpha(K)=0.000917 \ 13; \ \alpha(L)=0.0001101 \ 16; \ \alpha(M)=2.11\times10^{-5} \ 3; \\ \alpha(N+)=3.96\times10^{-6} \ 6$
	5984.2	14-	225.6 <i>3</i>	100	5758.52	13-	M1	0.0500	$\alpha(N)=3.75\times10^{-6} 6; \alpha(O)=2.14\times10^{-7} 3$ Mult.: From DCO=1.38 13. $\alpha(K)=0.0434 7; \alpha(L)=0.00533 8; \alpha(M)=0.001025 15; \alpha(N+)=0.000193 3$
			1055 /		4930.26	12-			α (N)=0.000183 <i>3</i> ; α (O)=1.056×10 ⁻⁵ <i>16</i> Mult.: From DCO=0.84 <i>3</i> .
S	6079.8		186.9 5	100	5892.9	$(12^+, 13^+)$		4	-
0	6100.87	16+	1074.6 2	100	5026.32	14+	E2	9.73×10 ⁻⁴	$\alpha(K)=0.000848 \ I2; \ \alpha(L)=0.0001015 \ I5; \ \alpha(M)=1.94\times10^{-3} \ 3; \alpha(N+)=3.66\times10^{-6} \ 6 \alpha(N)=3.46\times10^{-6} \ 5; \ \alpha(O)=1.98\times10^{-7} \ 3$
	<i></i>		1000 1	• • •		10-			B(E2)(W.u.)=50 5 Mult.: From DCO=1.47 5.
	6101.4	14-	1009 <i>1</i> 1171.3 <i>3</i>	20 4 100 23	5092.56 4930.26	12^{-} 12^{-}	E2	8.12×10^{-4}	$\alpha(K)=0.000705 \ lo: \ \alpha(L)=8.39\times10^{-5} \ l2: \ \alpha(M)=1.605\times10^{-5} \ 23:$
									α (N+)=7.03×10 ⁻⁶ 11 α (N)=2.86×10 ⁻⁶ 4; α (O)=1.647×10 ⁻⁷ 23; α (IPF)=4.01×10 ⁻⁶ 7
									B(E2)(W.u.)>6.8 Mult : From DCO=1.3.2
	6178.5	15+	388.6 5	18 5	5789.95	14+	(M1)	0.01238	$\alpha(K)=0.01078 \ 16; \ \alpha(L)=0.001300 \ 19; \ \alpha(M)=0.000249 \ 4; \ \alpha(N+)=4.71\times10^{-5} \ 7$
									α (N)=4.45×10 ⁻⁵ 7; α (O)=2.60×10 ⁻⁶ 4 Mult.: From DCO<0.7.
			678.5 <i>3</i>	100 27	5500.00	13+	E2	0.00289	$\alpha(K)=0.00251 \ 4; \ \alpha(L)=0.000314 \ 5; \ \alpha(M)=6.04\times10^{-5} \ 9; \ \alpha(N+)=1.126\times10^{-5} \ 16$
			1150 1 5	46.10	5026.22	1.4+	MI	0.75, 10-4	$\alpha(N)=1.068 \times 10^{-5} \ 15; \ \alpha(O)=5.79 \times 10^{-7} \ 9$ Mult.: From DCO=1.23 <i>10</i> .
			1152.1 5	46 18	5026.32	14'	IVI I	9./5×10 +	$\alpha(\mathbf{K})=0.000851 \ 12; \ \alpha(\mathbf{L})=9.95\times10^{-7} \ 14; \ \alpha(\mathbf{M})=1.90\times10^{-5} \ 3; \\ \alpha(\mathbf{N}+)=5.74\times10^{-6} \ 9 \\ \alpha(\mathbf{N})=3.40\times10^{-6} \ 5; \ \alpha(\mathbf{O})=2.03\times10^{-7} \ 3; \ \alpha(\mathbf{IPF})=2.13\times10^{-6} \ 4$
									Mult.: From DCO=1.2 2.

						Ado	pted Levels, (Gammas (continued)
							γ ⁽¹¹⁰ Cd)	(continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. ^b	$lpha^\dagger$	Comments
6181.45	15-	684.2 <i>3</i>	36 4	5497.29	13-	E2	0.00283	$\alpha(K)=0.00246 \ 4; \ \alpha(L)=0.000307 \ 5; \ \alpha(M)=5.90\times10^{-5} \ 9; \\ \alpha(N+)=1.101\times10^{-5} \ 16 \\ \alpha(N)=1.044\times10^{-5} \ 15; \ \alpha(O)=5.67\times10^{-7} \ 8 \\ M \ k = D \ D \ CO(2) \ 12.2 \\ (M \ N)=0.044\times10^{-5} \ 12.2 \\ (M \ N)=0.04\times10^{-5} \ 12.2 \\ (M \ N$
		932.3 <i>3</i>	91 5	5248.93	13-	E2	1.34×10^{-3}	Mult.: From DCO=1.5.2. $\alpha(K)=0.001163 \ 17; \ \alpha(L)=0.0001409 \ 20; \ \alpha(M)=2.70\times10^{-5} \ 4; \ \alpha(N+)=5.07\times10^{-6} \ 8 \ \alpha(N)=4.80\times10^{-6} \ 7; \ \alpha(O)=2.71\times10^{-7} \ 4$
		1155.2 <i>3</i>	100 7	5026.32	14+	E1	3.88×10 ⁻⁴	Mult.: From DCO=1.40 6. $\alpha(K)=0.000325 5; \alpha(L)=3.75\times10^{-5} 6; \alpha(M)=7.15\times10^{-6} 10;$ $\alpha(N+)=1.77\times10^{-5} 3$ $\alpha(N)=1.275\times10^{-6} 18; \alpha(O)=7.51\times10^{-8} 11; \alpha(IPF)=1.64\times10^{-5} 3$
6216.9 6354.3	(14) 15 ⁻	1190.6 <i>3</i> 370.0 <i>3</i>	100 100	5026.32 5984.2	14 ⁺ 14 ⁻	D M1	0.01399	Mult.: From DCO=0.81 6. Mult.: From DCO=1.39 14. $\alpha(K)=0.01218 \ 18; \ \alpha(L)=0.001472 \ 21; \ \alpha(M)=0.000282 \ 4;$ $\alpha(N+)=5.33 \times 10^{-5} \ 8$
6489.9	(1)	4707 5831 6490		1783.496 657.7623 0.0	2+ 2+ 0+	D		$\alpha(N)=5.04\times10^{-5} 8; \alpha(O)=2.94\times10^{-6} 5$ Mult.: From DCO=0.77 3. E_{γ} : From ¹¹⁰ Cd(γ, γ'). E_{γ} : From ¹¹⁰ Cd(γ, γ'). E_{γ} ,Mult.: From ¹¹⁰ Cd(γ, γ'). $I\gamma(150^{\circ})/I\gamma(90^{\circ})=1.66 8, 1.75$ expected for $\Omega(1)(1)(0)$ transition (1060Mil 2)
6543.9 6568.8 6575.6	(15 ⁻) 14 16 ⁺	1295 <i>1</i> 1542.4 <i>5</i> 900.1 <i>3</i>	100 100 100.0 <i>23</i>	5248.93 5026.32 5675.5	13 ⁻ 14 ⁺ 14 ⁺	D E2	1.45×10 ⁻³	Mult.: From DCO=1.4 2, very probably a Δ J=0 transition. $\alpha(K)=0.001261$ 18; $\alpha(L)=0.0001532$ 22; $\alpha(M)=2.94\times10^{-5}$ 5; $\alpha(N+)=5.51\times10^{-6}$ 8 $\alpha(N)=5.22\times10^{-6}$ 8; $\alpha(O)=2.93\times10^{-7}$ 5
		1549 <i>1</i>	25 5	5026.32	14+	E2	5.58×10 ⁻⁴	Mult.: From DCO=1.33 7. $\alpha(K)=0.000401\ 6;\ \alpha(L)=4.69\times10^{-5}\ 7;\ \alpha(M)=8.95\times10^{-6}\ 13;$ $\alpha(N+)=0.0001016\ 15$ $\alpha(N)=1.597\times10^{-6}\ 23;\ \alpha(O)=9.36\times10^{-8}\ 14;\ \alpha(IPF)=9.99\times10^{-5}\ 15$
6584.5 6646.1	14 (16 ⁺)	1558.1 <i>5</i> 856.1 <i>5</i>	100 100	5026.32 5789.95	14 ⁺ 14 ⁺	D (E2)	1.63×10 ⁻³	Mult.: From DCO=1.3 2. Mult.: From DCO=1.5 2, very probably a Δ J=0 transition. α (K)=0.001417 20; α (L)=0.0001730 25; α (M)=3.32×10 ⁻⁵ 5; α (N+)=6.22×10 ⁻⁶ 9 α (N)=5.89×10 ⁻⁶ 9; α (O)=3.29×10 ⁻⁷ 5
6671.1	(15 ⁻)	1422 <i>1</i> 1645 <i>1</i>	67 <i>33</i> 100 33	5248.93 5026 32	13- 14+			Mult.: From DCO=1.69 14.
6672.6	16-	491.2 5	12.1 14	6181.45	15-			

γ (¹¹⁰Cd) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. ^b	α^{\dagger}	Comments
6672.6	16-	705.7 3	100 7	5966.98	14-	E2	0.00262	$\alpha(K)=0.00227 4; \alpha(L)=0.000283 4; \alpha(M)=5.43\times10^{-5} 8; \alpha(N+)=1.015\times10^{-5}$
								$\alpha(N) = 9.62 \times 10^{-6} \ 14; \ \alpha(O) = 5.24 \times 10^{-7} \ 8$
(709.0	16+	04175	100	5056 2	1.4+	EO	1 21 10-3	Mult.: From DCO=1.40 /. $(K) = 0.001127 + (K) = 0.0001276 + 200 + (M) = 2.64 \times 10^{-5} + 4$
0798.0	10	941.7 3	100	3830.5	14	E2	1.51×10	$\alpha(\mathbf{N}) = 0.001137 \ 10, \ \alpha(\mathbf{L}) = 0.0001370 \ 20, \ \alpha(\mathbf{M}) = 2.04 \times 10^{-6} \ 4,$
								$\alpha(N) - 4.68 \times 10^{-6}$ 7: $\alpha(O) - 2.65 \times 10^{-7}$ 4
								$u(1) = 4.08 \times 10^{-7}, u(0) = 2.03 \times 10^{-4}$ Mult · From DCO=1 3 2
6836.2	16+	921.7.5	100	5914.5	14^{+}	E2	1.37×10^{-3}	$\alpha(K) = 0.001194 \ 17; \ \alpha(L) = 0.0001448 \ 21; \ \alpha(M) = 2.77 \times 10^{-5} \ 4;$
000012	10	/211/0	100	0,110			11077110	$\alpha(N+)=5.21\times10^{-6} 8$
								$\alpha(N) = 4.93 \times 10^{-6}$ 7; $\alpha(O) = 2.78 \times 10^{-7}$ 4
								Mult.: From DCO=1.3 2.
6879.6	15	295.0 <i>3</i>	100 10	6584.5	14	D		Mult.: From DCO=0.78 3.
		310.7 5	60 10	6568.8	14			, , , , , , , , , , , , , , , , , , ,
6962.8	16-	608.5 <i>3</i>	100	6354.3	15-	M1	0.00416	α (K)=0.00363 5; α (L)=0.000432 6; α (M)=8.27×10 ⁻⁵ 12; α (N+)=1.564×10 ⁻⁵ 22
								$\alpha(N)=1.477\times10^{-5} 21; \ \alpha(O)=8.71\times10^{-7} 13$
								Mult.: From DCO=0.84 6.
6993.1	17-	811.6 3	100 4	6181.45	15-	E2	0.00185	$\alpha(K)=0.001609\ 23;\ \alpha(L)=0.000197\ 3;\ \alpha(M)=3.79\times10^{-5}\ 6;\ \alpha(N+)=7.09\times10^{-6}$ 10
								$\alpha(N)=6.72\times10^{-6}\ 10;\ \alpha(O)=3.73\times10^{-7}\ 6$
								Mult.: From DCO=1.46 <i>12</i> .
		892.2 3	20.2 20	6100.87	16+	E1	6.06×10^{-4}	$\alpha(K)=0.000531 \ 8; \ \alpha(L)=6.15\times10^{-5} \ 9; \ \alpha(M)=1.173\times10^{-5} \ 17; \\ \alpha(N+)=2.21\times10^{-6} \ 4$
								$\alpha(N)=2.09\times10^{-6} 3; \alpha(O)=1.222\times10^{-7} 18$
								Mult.: From DCO=0.77 6.
7047.6	16-	946.3 <i>3</i>	100 20	6101.4	14-	E2	1.29×10^{-3}	$\alpha(K)=0.001125 \ I6; \ \alpha(L)=0.0001360 \ I9; \ \alpha(M)=2.61\times10^{-5} \ 4; \ \alpha(N+)=4.89\times10^{-6} \ 7$
								$\alpha(N)=4.63\times10^{-6}$ 7; $\alpha(O)=2.62\times10^{-7}$ 4
								Mult.: From DCO=1.7 3.
		1080.2 5	70 16	5966.98	14-			
7184.3	17+	1005.8 <i>3</i>	100	6178.5	15+	E2	1.13×10^{-3}	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.000981 \ 14; \ \alpha(\mathrm{L}) = 0.0001180 \ 17; \ \alpha(\mathrm{M}) = 2.26 \times 10^{-5} \ 4; \\ \alpha(\mathrm{N}+) = 4.25 \times 10^{-6} \ 6 \end{array} $
								$\alpha(N)=4.02\times10^{-6} 6; \alpha(O)=2.29\times10^{-7} 4$
								Mult.: From DCO=1.36 10.
7281.0	16	401.4 3	100	6879.6	15	D		Mult.: From DCO=0.87 5.
7285.8	(16)	1068.9 3	100	6216.9	(14)	(Q)	4	Mult.: From DCO=1.48 13.
7325.3	18+	1224.5 2	100	6100.87	16+	E2	7.47×10 ⁻⁴	$\alpha(K)=0.000643 \ 9; \ \alpha(L)=7.62\times10^{-3} \ 11; \ \alpha(M)=1.458\times10^{-3} \ 21; \ \alpha(N+)=1.325\times10^{-5} \ 19$

						A	dopted Level	s, Gammas (continued)			
	γ ⁽¹¹⁰ Cd) (continued)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^b	α^{\dagger}	Comments			
								$\alpha(K)=0.000643 \ 9; \ \alpha(L)=7.62\times10^{-5} \ 11; \ \alpha(M)=1.458\times10^{-5} \ 21; \\ \alpha(N+)=1.325\times10^{-5} \ 19 \\ \alpha(N)=2.60\times10^{-6} \ 4; \ \alpha(O)=1.501\times10^{-7} \ 21; \ \alpha(IPF)=1.051\times10^{-5} \ 15 \\ B(E2)(W.u.)=41 \ 6 \\ Mult.: \ From \ DCO=1.46 \ 4.$			
7341.6 7443.3	(17 ⁻)	1358 <i>1</i> 770.7 <i>3</i> 772.2 <i>5</i> 1261 <i>1</i>	100 100 <i>17</i> 17 8	5984.2 6672.6 6671.1 6181.45	14 ⁻ 16 ⁻ (15 ⁻) 15 ⁻						
7523.2	18-	850.6 3	100	6672.6	16-	E2	1.65×10 ⁻³	α (K)=0.001439 21; α (L)=0.0001758 25; α (M)=3.37×10 ⁻⁵ 5; α (N+)=6.32×10 ⁻⁶ 9 α (N)=5.98×10 ⁻⁶ 9; α (O)=3.34×10 ⁻⁷ 5 Mult.: From DCO=1.43 5.			
7575.2	17-	612.4 3	100	6962.8	16-	M1	0.00410	α (K)=0.00357 5; α (L)=0.000425 6; α (M)=8.14×10 ⁻⁵ 12; α (N+)=1.540×10 ⁻⁵ 22 α (N)=1.455×10 ⁻⁵ 21; α (O)=8.57×10 ⁻⁷ 12 Mult.: From DCO=0.87 12.			
7594.2	10+	631.4 5	100	6962.8	16 ⁻	EO	0.67×10^{-4}	$\alpha(W) = 0.000843, 12; \alpha(U) = 0.0001000, 15; \alpha(W) = 1.02 \times 10^{-5}$ 2;			
/035.1	18	1077.4 5	100	0373.0	10	E2	9.07×10	$\alpha(N)=0.000843 \ 12; \ \alpha(L)=0.0001009 \ 13; \ \alpha(M)=1.95\times 10^{-5} \ 3; \ \alpha(N)=3.63\times 10^{-6} \ 5; \ \alpha(O)=1.97\times 10^{-7} \ 3$ Mult.: From DCO=1.5 2.			
7759.0 7777.9	17	477.9 5 437 <i>I</i> 815 <i>I</i> 1423.5 5	100 67 33 100 33 57 13	7281.0 7341.6 6962.8 6354.3	16 16 ⁻ 15 ⁻	D		Mult.: From DCO=0.73 <i>3</i> .			
7797.7	(17)	516.8 5	100	7281.0	16	D	1	Mult.: From DCO=0.64 <i>6</i> .			
7801.1	(18+)	1155 1	100	6646.1	(16 ⁺)	(E2)	8.35×10 ⁻⁴	$\alpha(\mathbf{K})=0.000727 \ 11; \ \alpha(\mathbf{L})=8.65\times10^{-5} \ 13; \ \alpha(\mathbf{M})=1.655\times10^{-5} \ 24; \\ \alpha(\mathbf{N}+)=5.83\times10^{-6} \ 11 \\ \alpha(\mathbf{N})=2.95\times10^{-6} \ 5; \ \alpha(\mathbf{O})=1.696\times10^{-7} \ 24; \ \alpha(\mathbf{IPF})=2.71\times10^{-6} \ 8 \\ \mathbf{Mult}: \ \text{From (HL xnz)}.$			
7945.9	19-	952.8 <i>3</i>	100	6993.1	17-	E2	1.27×10 ⁻³	$\alpha(K)=0.001107 \ 16^{\circ} \ \alpha(L)=0.0001338 \ 19; \ \alpha(M)=2.56\times 10^{-5} \ 4; \\ \alpha(N+)=4.82\times 10^{-6} \ 7 \\ \alpha(N)=4.56\times 10^{-6} \ 7; \ \alpha(O)=2.58\times 10^{-7} \ 4 \\ M_{\rm M}(k) = 5 \ {\rm Form} \ DCO = 1.41 \ 0 \\ M_{\rm M}(k) = 5 \ {\rm Form} \ DCO = 1.41 \ 0 \\ M_{\rm M}(k) = 5 \ {\rm Form} \ DCO = 1.41 \ 0 \\ M_{\rm M}(k) = 5 \ {\rm Form} \ DCO = 1.41 \ 0 \\ M_{\rm M}(k) = 5 \ {\rm Form} \ DCO = 1.41 \ 0 \\ M_{\rm M}(k) = 5 \ {\rm Form} \ DCO = 1.41 \ 0 \\ M_{\rm M}(k) = 5 \ {\rm Form} \ DCO = 1.41 \ 0 \\ M_{\rm M}(k) = 5 \ {\rm Form} \ M_{\rm M}($			
7970.3	18-	922.7 5	100	7047.6	16-	E2	1.37×10^{-3}	$\alpha(K)=0.001191 \ 17; \ \alpha(L)=0.0001444 \ 21; \ \alpha(M)=2.77\times10^{-5} \ 4; \\ \alpha(N+)=5.19\times10^{-6} \ 8 \\ \alpha(N)=4.92\times10^{-6} \ 7; \ \alpha(O)=2.77\times10^{-7} \ 4 \\ \alpha(N)=4.92\times10^{-6} \ 7; \ \alpha(O)=2.7\times10^{-7} \ 4 \\ \alpha(N)=4.92\times10^{-6} \ 7; \ \alpha(O)=2.7\times10^{-7} \ 4 \\ \alpha(N)=4.9\times10^{-6} \ 10^{-6} $			
8016.5	17	735.2 5	100	7281.0	16			Mult.: From DCO=1.37 13.			

 $^{110}_{48}$ Cd $_{62}$ -53

γ (¹¹⁰Cd) (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. ^b	α^{\dagger}	Comments
8278.0	18	261.2 5 480.5 5 519.0 5 952.8 5	29 <i>14</i> 71 <i>14</i> 43 <i>14</i> 100 <i>14</i>	8016.5 7797.7 7759.0 7325.3	17 (17) 17 18 ⁺	D D D D		Mult.: From DCO=0.91 6. Mult.: From DCO=0.77 6. Mult.: From DCO=0.80 5. Mult.: From DCO=1.46 10, very probably a $\Delta J=0$ transition.
8292.3 8372.8	(18)	967.0 5 594.9 5	100 100	7325.3 7777.9	18+			
8405.3	(19 ⁻)	962 1	100	7443.3	(17 ⁻)	E2	1.24×10 ⁻³	$\alpha(\mathbf{K})=0.001084 \ 16; \ \alpha(\mathbf{L})=0.0001308 \ 19; \ \alpha(\mathbf{M})=2.51\times10^{-5} \ 4; \\ \alpha(\mathbf{N}+)=4.71\times10^{-6} \ 7 \\ \alpha(\mathbf{N})=4.46\times10^{-6} \ 7; \ \alpha(\mathbf{O})=2.52\times10^{-7} \ 4 \\ \mathbf{M} = 10^{-10} \ \mathbf{M} = 1$
8481.3	(19+)	1297 <i>1</i>	100	7184.3	17+	(E2)	6.77×10 ⁻⁴	Mult.: From DCO=1.4 2. $\alpha(K)=0.000571 \ 8; \ \alpha(L)=6.74\times10^{-5} \ 10; \ \alpha(M)=1.289\times10^{-5} \ 19; \ \alpha(N+)=2.56\times10^{-5} \ 5 \ \alpha(N)=2.30\times10^{-6} \ 4; \ \alpha(O)=1.333\times10^{-7} \ 19; \ \alpha(IPF)=2.32\times10^{-5} \ 4 \ Mult.: From (HI,xny).$
8530.7 8595.6	(18) 19	1244.9 5 303.3 5 317.6 3	100 5.6 <i>19</i>	7285.8 8292.3	(16) (18)	D		Mult : From $DCO=0.87.5$
8629.7	20-	1106.5 3	100 7	7523.2	18 ⁻	E2	9.14×10 ⁻⁴	$\alpha(K) = 0.000796 \ 12; \ \alpha(L) = 9.51 \times 10^{-5} \ 14; \ \alpha(M) = 1.82 \times 10^{-5} \ 3; \alpha(N+) = 4.06 \times 10^{-6} \ 6 \alpha(N) = 3.24 \times 10^{-6} \ 5; \ \alpha(O) = 1.86 \times 10^{-7} \ 3; \ \alpha(IPF) = 6.38 \times 10^{-7} \ 12 $
8648.3	20+	1323.0 <i>3</i>	100	7325.3	18+	E2	6.56×10 ⁻⁴	Mult.: From DCO=1.50 <i>14</i> . $\alpha(K)=0.000548 \ 8; \ \alpha(L)=6.47\times10^{-5} \ 9; \ \alpha(M)=1.236\times10^{-5} \ 18; \ \alpha(N+)=3.11\times10^{-5} \ 5$ $\alpha(N)=2.20\times10^{-6} \ 3; \ \alpha(O)=1.281\times10^{-7} \ 18; \ \alpha(IPF)=2.88\times10^{-5} \ 4$ B(E2)(W.u.)=38 7 Multi BCO 1.144 (
8861.6	20+	1208.5 <i>3</i>	100	7653.1	18+	E2	7.65×10 ⁻⁴	Mult.: From DCO=1.44 6. $\alpha(K)=0.000660 \ 10; \ \alpha(L)=7.84 \times 10^{-5} \ 11; \ \alpha(M)=1.500 \times 10^{-5} \ 21; \ \alpha(N+)=1.105 \times 10^{-5} \ 16 \ \alpha(N)=2.67 \times 10^{-6} \ 4; \ \alpha(O)=1.542 \times 10^{-7} \ 22; \ \alpha(IPF)=8.23 \times 10^{-6} \ 13$
8967.9	20	372.3 3	100	8595.6	19	(M1)	0.01377	Mult.: From DCO=1.7 2. $\alpha(K)=0.01200 \ 17; \ \alpha(L)=0.001449 \ 21; \ \alpha(M)=0.000278 \ 4; \ \alpha(N+)=5.25\times10^{-5}$
9106.8	21-	1160.9 <i>3</i>	100	7945.9	19-	E2	8.27×10 ⁻⁴	$\alpha(N)=4.96\times10^{-5} 7; \ \alpha(O)=2.90\times10^{-6} 4$ B(M1)(W.u.)=3.3 4 Mult.: From DCO=0.84 6. $\alpha(K)=0.000719 \ 10; \ \alpha(L)=8.55\times10^{-5} \ 12; \ \alpha(M)=1.637\times10^{-5} \ 23;$ $\alpha(N+)=6.22\times10^{-6} 9$ $\alpha(N)=2.91\times10^{-6} 4; \ \alpha(O)=1.678\times10^{-7} \ 24; \ \alpha(IPF)=3.14\times10^{-6} \ 5$ Mult.: From DCO=1 50 14
9430.4	21	462.5 3	100	8967.9	20	(M1)	0.00805	$\alpha(K)=0.00702 \ 10; \ \alpha(L)=0.000842 \ 12; \ \alpha(M)=0.0001614 \ 23;$

From ENSDF

							A	dopted Levels	s, Gammas (continued)
								γ (¹¹⁰ C	d) (continued)
	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. ^b	α^{\dagger}	Comments
									$\alpha(N+)=3.05\times10^{-5} 5$ $\alpha(N)=2.88\times10^{-5} 4; \ \alpha(O)=1.689\times10^{-6} 24$ B(M1)(W.u.)=3.2 +6-5 Mult.: From DCO=0.98 6.
	9574.3 9962.3	(21 ⁻) 22 ⁺	1169 <i>1</i> 1100 <i>1</i>	100 37 <i>11</i>	8405.3 8861.6	(19 ⁻) 20 ⁺	[E2]	9.25×10 ⁻⁴	$\begin{aligned} &\alpha(\mathrm{K}) = 0.000806 \ 12; \ \alpha(\mathrm{L}) = 9.63 \times 10^{-5} \ 14; \ \alpha(\mathrm{M}) = 1.84 \times 10^{-5} \ 3; \\ &\alpha(\mathrm{N}+) = 4.0 \times 10^{-6} \ 5 \\ &\alpha(\mathrm{N}) = 3.28 \times 10^{-6} \ 5; \ \alpha(\mathrm{O}) = 1.88 \times 10^{-7} \ 3 \end{aligned}$
			1314.1 <i>3</i>	100 4	8648.3	20+	E2	6.63×10 ⁻⁴	B(E2)(W.u.)=20 10 α (K)=0.000556 8; α (L)=6.56×10 ⁻⁵ 10; α (M)=1.254×10 ⁻⁵ 18; α (N+)=2.92×10 ⁻⁵ 5 α (N)=2.24×10 ⁻⁶ 4; α (O)=1.298×10 ⁻⁷ 19; α (IPF)=2.68×10 ⁻⁵ 4 B(E2)(W.u.)=22 8 Make D20 150 0
l	9971.7	22-	1342 <i>I</i>	100	8629.7	20-	E2	6.43×10 ⁻⁴	Mult.: From DCO=1.50 9. $\alpha(K)=0.000532 \ 8; \ \alpha(L)=6.28\times10^{-5} \ 9; \ \alpha(M)=1.200\times10^{-5} \ 17; \ \alpha(N+)=3.56\times10^{-5} \ 6$ $\alpha(N)=2.14\times10^{-6} \ 3; \ \alpha(O)=1.244\times10^{-7} \ 18; \ \alpha(IPF)=3.33\times10^{-5} \ 6$
L	9991.4	22	561 <i>1</i>	100	9430.4	21	(M1)	0.00505	Mult.: From DCO=1.8 3. $\alpha(K)=0.00440$ 7; $\alpha(L)=0.000525$ 8; $\alpha(M)=0.0001006$ 15; $\alpha(N+)=1.90\times10^{-5}$ β $\alpha(N)=1.80\times10^{-5}$ 3; $\alpha(O)=1.057\times10^{-6}$ 16 B(M1)(W.u.)=1.9 +4-3 Mult.: From DCO=1.0 2.
	10228.7 10495.8	(22 ⁺) 23 ⁻	1367 <i>1</i> 1389 <i>1</i>	100 100	8861.6 9106.8	20 ⁺ 21 ⁻	E2	6.14×10 ⁻⁴	$\alpha(\mathbf{K})=0.000497 \ 7; \ \alpha(\mathbf{L})=5.84\times10^{-5} \ 9; \ \alpha(\mathbf{M})=1.117\times10^{-5} \ 16; \\ \alpha(\mathbf{N}+)=4.80\times10^{-5} \ 8 \\ \alpha(\mathbf{N})=1.99\times10^{-6} \ 3; \ \alpha(\mathbf{Q})=1.161\times10^{-7} \ 17; \ \alpha(\mathbf{IPE})=4.59\times10^{-5} \ 7.50\times10^{-5} \ 7.50$
	10665.2 11320.3	23 24 ⁺	673.8 <i>3</i> 1358.0 <i>3</i>	100 100	9991.4 9962.3	22 22 ⁺	D E2	6.32×10 ⁻⁴	Mult.: From DCO=1.5 3. Mult.: From DCO=0.83 7. $\alpha(K)=0.000520 \ 8; \ \alpha(L)=6.12\times10^{-5} \ 9; \ \alpha(M)=1.171\times10^{-5} \ 17;$ $\alpha(N+)=3.96\times10^{-5} \ 6$ $\alpha(N)=2.09\times10^{-6} \ 3; \ \alpha(O)=1.215\times10^{-7} \ 17; \ \alpha(IPF)=3.74\times10^{-5} \ 6$ B(F2)(Wu)=21.6
	11451.2 11454.8	24 (24 ⁻)	786 <i>1</i> 1483 <i>1</i>	100 100	10665.2 9971.7	23 22 ⁻	D (E2)	5.75×10 ⁻⁴	Mult.: From DCO=1.33 10. Mult.: From DCO=1.12 13. $\alpha(K)=0.000436\ 7;\ \alpha(L)=5.11\times10^{-5}\ 8;\ \alpha(M)=9.77\times10^{-6}\ 14;$ $\alpha(N+)=7.75\times10^{-5}\ 12$ $\alpha(N)=1.743\times10^{-6}\ 25;\ \alpha(O)=1.020\times10^{-7}\ 15;\ \alpha(IPF)=7.57\times10^{-5}\ 12$
	12081.8	(25-)	1586 <i>1</i>	100	10495.8	23-	(E2)	5.52×10 ⁻⁴	Mult.: From (HI,xn γ). α (K)=0.000383 6; α (L)=4.47×10 ⁻⁵ 7; α (M)=8.54×10 ⁻⁶ 12;

From ENSDF

							Adopted L	Levels, Gammas (continued)			
	γ ⁽¹¹⁰ Cd) (continued)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Iγ [‡]	E_f	\mathbf{J}_f^{π}	Mult. ^b	$lpha^\dagger$	Comments			
								α (N+)=0.0001161 <i>17</i> α (N)=1.524×10 ⁻⁶ <i>22</i> ; α (O)=8.95×10 ⁻⁸ <i>13</i> ; α (IPF)=0.0001144 <i>17</i> Mult.: From (HI,xn γ).			
12763.3	26+	1443 <i>1</i>	100	11320.3	24+	E2	5.89×10 ⁻⁴	$\alpha(K)=0.000460\ 7;\ \alpha(L)=5.40\times10^{-5}\ 8;\ \alpha(M)=1.033\times10^{-5}\ 15;\ \alpha(N+)=6.43\times10^{-5}\ 10$ $\alpha(N)=1.84\times10^{-6}\ 3;\ \alpha(O)=1.076\times10^{-7}\ 16;\ \alpha(IPF)=6.23\times10^{-5}\ 10$ B(E2)(W.u.)=12.0 While from PCO 1.52.12			
13032.8	(26^{-})	1578 <i>1</i>	100	11454.8	(24^{-})			Mult.: From $DCO=1.35$ 12.			
14206.4	28+	1443	100	12763.3	26+	E2	5.89×10 ⁻⁴	$\begin{aligned} &\alpha(\text{K}) = 0.000460 \ 7; \ \alpha(\text{L}) = 5.40 \times 10^{-5} \ 8; \ \alpha(\text{M}) = 1.033 \times 10^{-5} \ 15; \ \alpha(\text{N}+) = 6.43 \times 10^{-5} \ 9 \\ &\alpha(\text{N}) = 1.84 \times 10^{-6} \ 3; \ \alpha(\text{O}) = 1.076 \times 10^{-7} \ 15; \ \alpha(\text{IPF}) = 6.23 \times 10^{-5} \ 9 \\ &\text{Mult.: From DCO} = 1.53 \ 12. \end{aligned}$			
[†] Addition [‡] From (H [#] From ¹¹ [@] From ¹¹ ^{&} From ¹¹ ^a From ¹⁰ ^b From α	nal inform HI,xn) rea 10 Ag β^{-1} 10 Cd(n,n' 10 In ε dea 98 Pd(α ,2r (K)exp in	mation 1. action, unl decay (24) γ). cay (69.1 $\eta\gamma$), ¹¹⁰ Pd(η	less othe 9.83 d). min). α ,4n γ). - decav	rwise state	d. (1967M	[012) and/0	or DCO measu	arements in (HLxn γ) (1994Ju04), unless otherwise stated. DCO ratios are deduced			
using (F	$R(E_{\gamma}) = I_{\gamma}(E_{\gamma})$	$(143^{\circ} \text{ or } 3)$	$(7^{\circ})/I_{\gamma}(7^{\circ})$	$\frac{2}{9^{\circ}}$ or 101°)). For Δ	∆I=0 dipol	e and $\Delta I=2$ qu	adrupole transitions $R(E_{\gamma}) \approx 1.50$, for stretch dipole transitions $R(E_{\gamma}) \approx 0.75$.			

^c From $\gamma(\theta)$ in ¹⁰⁸Pd($\alpha,2n\gamma$),¹¹⁰Pd($\alpha,4n\gamma$) (1990Ke02), unless otherwise stated. ^d Placement of transition in the level scheme is uncertain.

56

 $^{110}_{48}\mathrm{Cd}_{62}$ -56

From ENSDF

 $^{110}_{48}\mathrm{Cd}_{62}\text{--}56$

Adopted Levels, Gammas Legend Level Scheme $\begin{array}{ll} \bullet & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ \bullet & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \bullet & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ Intensities: Type not specified + 1443 E2 100 28^{+} 14206.4 + 1538 100 + 1443 | 200 (26⁻) 13032.8 26^{+} <u>12763.3</u> 0.24 ps + 1586 (E3) 100 (25⁻) + 1483 (E2) 100 12081.8 1 36 D 100 1380 $\frac{(24^{-})}{24}$ 11454.8 11451.2 11320.3 0.19 ps 5 24^{+} 4 633.8 D 100 1 13 5 100 0.064 ps + 12 - 1623 10665.2 361 (A1) 100 23-8 10495.8 100 100 (1 (1 (1 (1) 136> (22⁺) 10228.7 Ŷ $\frac{22}{22^{-}}$ 9991.4 0.065 ps + 10 - 12+ ⁴6¹/₂, (11) / 00 | -9971.7 + 1001 001 + 0.15 ps 5 9962.3 + 1/000 + 1/000 + 1/000 (21⁻) + 323 an 100 9574.3 0.070 ps + 10 - 129430.4 21 4.5 E 100 E2 100 $\frac{21^{-}}{20}$ 8 9106.8 Ð 8967.9 0.127 ps + 12 - 158 50 9 8861.6 20^{+} 8648.3 0.118 ps 21 è. $\frac{\frac{20}{20^{-}}}{\frac{19}{(19^{-})}} \frac{1}{(18)}$ 8629.7 8595.6 8405.3 8292.3 18 8278.0 19-7945.9 18^{+} 7653.1 7523.2 18- 18^{+} 7325.3 0.159 ps 21 0^+ 0.0 stable

	Legend
Level Scheme (continued) Intensities: Type not specified	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

 $^{110}_{\ 48}\mathrm{Cd}_{62}$

Legend

 $^{110}_{\ 48}\mathrm{Cd}_{62}$

 $^{110}_{\ 48}\mathrm{Cd}_{62}$

 $^{110}_{48}\text{Cd}_{62}\text{-}65$

65

 $^{110}_{48}\mathrm{Cd}_{62}\text{--}66$

 $^{110}_{48}\mathrm{Cd}_{62}$

Adopted Levels, Gammas

 $^{110}_{\ 48}\mathrm{Cd}_{62}$

 $^{110}_{48}\text{Cd}_{62}$

 $^{110}_{\ 48}\mathrm{Cd}_{62}$

