¹⁰⁹Ag(p,p),(p,n) IAR 1969Sh06

History				
Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	G. Gürdal and F. G. Kondev	NDS 113, 1315 (2012)	1-Aug-2011	

The proton beams were accelerated E(p)=5.9-7.25 MeV by the University of Texas EN Tandem Van de Graff accelerator. 99.1% enriched 109 Ag target was used. For (p,p) experiment, preliminary data were taken using a single surface-barrier detector at room temperature at a laboratory scattering angle of 155°. Further data were recorded using 4 lithium-drifted detectors at laboratory angles 90°, 120°, 150° and 170°. Overall energy resolution was \approx 30 keV. For (p,n) experiment, neutrons were detected with a polyethylene shielded 3 He long counter placed on the scattering chamber lid at 90° to the beam and \approx 6in from the target. Measured: excitation functions at 90°. Deduced: Resonance energies, total decay width and proton orbital-angular-momenta transfer values.

Others: 1978Lo14, 1967Ha02.

¹¹⁰Cd Levels

E(level) [†]	$T_{1/2}^{\ddagger}$	Comments
15356	31 keV	E(p)(c.m) = 6437 keV.
15586	36 keV	$E(p)(c.m) = 6667 \text{ keV. Possible IAS of }^{110}Ag(236.9) \text{ level.}$
15644	≈15 keV	E(p)(c.m) = (6725) keV.
15679	17 keV	E(p)c.m = 6760 keV. Possible IAS of ¹¹⁰ Ag(338.9) level.
15737	23 keV	$E(p)(c.m) = 6818 \text{ keV. Possible IAS of }^{110}Ag(381.2) \text{ level.}$
15780	25 keV	$E(p)(c.m) = 6861 \text{ keV. Possible IAS of }^{110}Ag(424.7) \text{ level.}$
15877	45 keV	$E(p)(c.m) = 6958 \text{ keV. Possible IAS of }^{110}Ag(525.7 \text{ or } 527.5) \text{ level.}$
15943	15 keV	E(p)(c.m) = 7024 keV. Possible IAS of ¹¹⁰ Ag(594) level.
16004	10 keV	$E(p)(c.m) = 7085 \text{ keV. Possible IAS of }^{110}Ag(653.9) \text{ level.}$

[†] Energy is sum of S(p)=8919.3 16 (2003Au03) and E(p)(C.M.) for resonance.

[‡] Total decay width (keV).