|                                                                 |                                  | Tune                                                                             | Aut                                                                                                                                                                                               | His                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | story                                                                                                                                              | Citation                                                                                                                                                                                                                 | Literature Cutoff Date                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                 |                                  | Type<br>Full Evaluation                                                          | Aut<br>C. Gürdəl and                                                                                                                                                                              | E G. Kondey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NDS                                                                                                                                                | 113 1315 (2012)                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                        |
| $Q(\beta^{-})=2891.0$<br>Note: Current<br>$Q(\beta^{-})=2892.9$ | 13; S<br>evalua<br>15; S         | (n)=6809.19 <i>10</i> ; S(<br>ation has used the f<br>(n)=6809.20 <i>10</i> ; S( | p)=7140.1 <i>14</i> ; Q<br>pollowing Q recor<br>p)=7143.0 <i>20</i> ; Q                                                                                                                           | $Q(\alpha) = -3521 \ 6$<br>rd.<br>$Q(\alpha) = -3522 \ 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2012V<br>2011A                                                                                                                                     | Wa38<br>AuZZ                                                                                                                                                                                                             | 1-Aug-2011                                                                                                                                                                                                                                                                                             |
|                                                                 |                                  |                                                                                  |                                                                                                                                                                                                   | <sup>110</sup> Ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Levels                                                                                                                                             |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                        |
|                                                                 |                                  |                                                                                  |                                                                                                                                                                                                   | Cross Deferrers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                    | TE) Elece                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
|                                                                 |                                  |                                                                                  |                                                                                                                                                                                                   | Closs Relefence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                    | 2F) Flags                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                        |
|                                                                 |                                  | I<br>I<br>C                                                                      | $\begin{array}{c} 110 \text{ Ag IT d} \\ 109 \text{ Ag}(n,\gamma) \\ 109 \text{ Ag}(n,\gamma) \end{array}$                                                                                        | ecay (249.83 d)<br>E=thermal<br>E=5.2 eV res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D<br>E<br>F                                                                                                                                        | $^{109}$ Ag(d,p)<br>$^{110}$ Pd(p,n $\gamma$ ), $^{109}$ A<br>$^{176}$ Yb( $^{28}$ Si,X $\gamma$ )                                                                                                                       | $Ag(d,p\gamma)$                                                                                                                                                                                                                                                                                        |
| E(level) <sup>†</sup>                                           | $\mathbf{J}^{\pi}$               | $T_{1/2}^{\ddagger}$ X                                                           | REF                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                    | Comment                                                                                                                                                                                                                  | S                                                                                                                                                                                                                                                                                                      |
| 0.0                                                             | 1+                               | 24.56 s 11 AB                                                                    | C EF $\%\beta^-=99$<br>$\%\varepsilon$ : Fro<br>$J^{\pi}$ : J=1<br>$^{110}Ag$<br>$T_{1/2}$ : W<br>(1962<br>Other<br>22 s (<br>$\mu$ : 2.711<br>resona<br>Q: 0.24<br>configur<br>Gallaj            | 9.70 6; $\% \varepsilon = 0.30$<br>from atomic besises of the second se | am mag<br>52Ka07)<br>of 24.7<br>72 (1957)<br>10), 24<br>4R in 1 <sup>9</sup><br>in 1969<br>by mea<br>$] \otimes v 5/2[\cdot]$<br>ki rule f         | gnetic resonance te<br>) and $\mu$ .<br>7 s 7 (1970Va08), 2<br>7Se19), 24 s 2 (192<br>s (1944Fl01), 23 s<br>976Wi03). Other:2<br>Cu09).<br>Issuring the spin-latt<br>413] (for prolate d<br>favors $J^{\pi} = 1^+$ assig | chnique (1969Cu09); $\pi$ =+ from<br>24.93 s 22 (1967Yu01), 24.42 s 14<br>54Bo39) and 24.5 s 3 (1946Hi06).<br>s (1938Re04), 22 s (1938Po03) and<br>.84 5 (using atomic beam magnetic<br>tice relaxation time (1981Do17).<br>eformation), the<br>gnment.                                                |
| 1.112 16                                                        | 2-                               | 660 ns 40 AB                                                                     | DEF Addition<br>E(level)<br>109 Ag<br>not re<br>(1979<br>$J^{\pi}$ : Fror<br>$T_{1/2}$ : Fr                                                                                                       | al information<br>: From a least-seg(n, $\gamma$ ) E=therma<br>eported reported<br>Bo41) and 3.18<br>n L(d,p)=2; 1.11<br>rom ce-inner she<br>ration: $\pi 1/2[301]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.<br>quares 1<br>l. $\Delta E\gamma$<br>in 1973<br>keV (1<br>$12\gamma$ E1<br>ell vacan<br>] $\otimes v5/2[$                                      | fit to $E\gamma$ pairs that<br>are from 1975Cl03<br>5Cl03. Others: 1.23<br>968El03).<br>to 1 <sup>+</sup> .<br>ncy delayed coincid<br>402] (for prolate d                                                                | populate this level and g.s. in<br>8, but estimated by the evaluators if<br>8 keV <i>10</i> (1970Ka05), 1.113 keV<br>dences (1975Cl03).<br>eformation).                                                                                                                                                |
| 117.59 <i>5</i><br>118.719 <i>10</i>                            | 6 <sup>+</sup><br>3 <sup>+</sup> | 249.83 d <i>4</i> A<br>36.6 ns 6 B                                               | EF $\%\beta^-=98$<br>$\mu=+3.58$<br>%IT: Fr<br>$J^{\pi}$ : Fron<br>$T_{1/2}$ : W<br>249.7<br>270  d<br>$\mu$ : Weig<br>and +<br>Q: +1.4<br>configur<br>E $\mu=3.79$<br>$J^{\pi}$ : 117.<br>(1976) | 8.67 8; %IT=1.3<br>88 3<br>om Ti(116 $\gamma$ )=10<br>n atomic-beam t<br>'eighted average<br>4 d 5 (1980Ho1<br>l (1950Gu54) an<br>hted average of<br>-3.587 4 (from a<br>4 10 (1984Be53)<br>ration: $\pi$ 7/2[413]<br>6<br>607 $\gamma$ E1(+M2)<br>Ha57); $\pi$ =+ fro<br>Pa 47)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33 8<br>00 - Ti<br>techniqu<br>of 249<br>7), 249<br>td 225 c<br>+3.589<br>tomic-t<br>b).<br>$] \otimes v5/2[$ .<br>to 2 <sup>-</sup> ; J<br>m comp | (658γ+1476γ+178<br>the (1958Ew84); 11<br>.950 d 24 (2002Un<br>d 3 (1962Ni01) an<br>d 20 (1938Li07).<br>D 4 (NMR on brute<br>beam magnetic reso<br>413] (for prolate d<br>U=3 from γ(θ) and<br>parison of experime        | $3\gamma$ ).<br>$6.48\gamma$ M4 to 2 <sup>-</sup> .<br>02), 249.790 d <i>16</i> (1983Wa26)<br>ad 252.5 d <i>15</i> (1957Ge07). Others:<br>force oriented nuclei in 1992Hu09)<br>ponance technique in 1967Sc04).<br>eformation).<br>$\gamma$ -ray excitation function<br>ental and calculated g-factors |
|                                                                 |                                  |                                                                                  | T <sub>1/2</sub> : W<br>coinci<br>metho                                                                                                                                                           | Veighted average<br>idence method i<br>od in 1974Be47)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of 36.7<br>n <mark>19761</mark> ), 36.5 1                                                                                                          | 7 ns 7 (from 117.60<br>Ha57), 37 ns 5 (usi<br>ns 20, 37 ns 4, 37                                                                                                                                                         | $07\gamma(t)$ pulsed-beam delayed<br>ing pulsed-beam delayed coincidence<br>ns 2 (using delayed coincidence                                                                                                                                                                                            |

Continued on next page (footnotes at end of table)

# <sup>110</sup>Ag Levels (continued)

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E(level) <sup>†</sup>    | $\mathbf{J}^{\pi}$         | $T_{1/2}$ ‡ | XREF        | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------|-------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                            |             |             | technique in 1971Gu05, 1967Es03 and 1963Be51, respectively) and 33 ns 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                            |             |             | (1967WiZZ as quoted in 2000De11).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                            |             |             | $\mu$ : Weighted average of 3.87 5 (1974Be47) (reevaluated value using adopted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $ \begin{array}{cccccc} (1970 \text{Hz}^3), \ (revoluted value using adopted frame, \mu=3.73 4 using \\ T_{12}=36.75, Tz, Ti (970 \text{Hz}^3), \ (revoluted frame pulse-deman time-differential perturbed angular correlation technique). \\ 198,689 / 0 & 2^+ & 0.08 \text{ ns} & \textbf{B} & \textbf{E} & F; 198,069 \text{ M}(+\text{E2}) to 1^+, \\ 237,069 / 1 & (1,2,3^+) & 0.43 \text{ ns} & \textbf{B} & \textbf{E} & \textbf{E} & F; 198,069 \text{ M}(+\text{E2}) to 1^+, \\ 242.09^{\frac{4}{3}} 21 & (1,2,3^+) & 0.43 \text{ ns} & \textbf{B} & \textbf{B} & \textbf{E} & F; 198,069 \text{ M}(+\text{E2}) to 1^+, \\ 242.09^{\frac{4}{3}} 21 & (6^-) & \textbf{F} & \textbf{F}; 124.57 \text{ to } 6^+; \text{ band assignment} (2022 \text{Pol}1), \\ 242.09^{\frac{4}{3}} 21 & (6^-) & \textbf{F} & \textbf{F}; 124.57 \text{ to } 6^+; \text{ band assignment} (2022 \text{Pol}1), \\ 242.09^{\frac{4}{3}} 2 & (7^+) & \textbf{F} & \textbf{F}; 124.57 \text{ to } 6^+; \text{ band assignment} (2022 \text{Pol}1), \\ 267.290 & 1^+, 2^- & <0.08 \text{ ns} & \textbf{B} & \textbf{E} & \textbf{F}; 168.552 \text{ M}(1422) \text{ to } 2^+; 267.22 \text{ (MI) to } 1^+, \\ 269.8^{\frac{4}{3}} 4 & (7^+) & \textbf{F} & \textbf{F}; 168.552 \text{ M}(1422) \text{ to } 2^+; 267.22 \text{ (MI) to } 1^+, \\ 293.3+x^{\frac{4}{3}} & \textbf{B} & \textbf{E} & \textbf{F}; 105.824 \text{ M} \text{ to } 2^+; 304.538 \text{ to } 1^+, \\ 304.525 / 0 & 1^+, 2^+, 3^- & \text{col} \text{ ns} & \textbf{B} & \textbf{E} & \textbf{F}; 105.824 \text{ M} \text{ to } 2^+; 304.538 \text{ to } 1^+, \\ 304.525 / 0 & 1^+, 2^+, 3^- & \text{col} \text{ ns} & \textbf{B} & \textbf{E} & \textbf{F}; 105.824 \text{ M} \text{ to } 2^+; 304.538 \text{ to } 1^+, \\ 312.07 / 2 & -0.04 \text{ ns} & \textbf{B} & \textbf{D} & \textbf{XREF}; 1037), \\ 312.07 / 2 & -0.04 \text{ ns} & \textbf{B} & \textbf{D} & \textbf{XREF}; 1037), \\ 312.07 / 2 & -0.24 \text{ ns} & \textbf{B} & \textbf{D} & \textbf{XREF}; 1037), \\ 312.07 / 2 & -0.04 \text{ ns} & \textbf{B} & \textbf{D} & \textbf{XREF}; 1037), \\ 411.973 24 & (1^+, 2.3^+) & \text{col} \text{ ns} & \textbf{B} & \textbf{E} & F^+; 105.220 \text{ to } 1^+, \\ 114.972 24 & (1^+, 2.3^+) & \text{col} \text{ ns} & \textbf{B} & \textbf{E} & \textbf{F}; 123.766 \text{ to } 1^+, \\ 424.721 / 16 & (1,2,3^+) & \text{col} \text{ ns} & \textbf{B} & \textbf{E} & F^+; 103.297 \text{ to } 1^+, \\ 424.31 x^6 / 20 & (9^-) & \textbf{K} & \textbf{E} & \textbf{E} & F^+; 123.50 \text{ to } 1^-, \\ F^+; 14.4(p_1)=0.373 \text{ koy } 10^+, \\ 425.533 & (1^+, 2.3^+) & \text{col} \text{ ns} & \textbf{B} & \textbf{E} & F^+; 127.23 \text{ soy } 10^+, \\ 426.440 x e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                            |             |             | lifetime. $\mu$ =3.83 5 using T <sub>1/2</sub> =37 ns 5 in 1974Be47) and 3.74 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                            |             |             | (1976Ha57), (reevaluated value using adopted lifetime. $\mu$ =3.73 4 using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                            |             |             | $T_{1/2}$ =36.7 ns 7 in 1976Ha57) (both $\mu$ , deduced from pulsed-beam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |                            |             |             | time-differential perturbed angular correlation technique).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 191.622 12               | 3+                         |             | ΒE          | $J^{\pi}$ : 191.2 $\gamma$ (E2) to 1 <sup>+</sup> ; 72.903 $\gamma$ M1 to 3 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 236.859 /2<br>17 - $< 0.24$ ns B d XREF: d(235).<br>JF: L(d,p)=0: 235.757 M1 to 2 <sup>-</sup> .<br>237.069 /1 (1,2,3 <sup>+</sup> ) 0.43 ns 8 B dE F. KeFF: d(235).<br>JF: 235.947 to 2 <sup>-</sup> ; 237.057 to 1 <sup>+</sup> .<br>242.09 <sup>4</sup> 21 (6 <sup>-</sup> ) F J <sup>-</sup> : 124.57 to 6 <sup>+</sup> ; band assignment (2002Po11).<br>242.09+4 <sup>(6)</sup> (7 <sup>-</sup> ) F J <sup>-</sup> : Assigned as band head in 2002Po11.<br>267.229 /0 1 <sup>+</sup> .2 <sup>+</sup> < $< 0.08$ ns B E J <sup>-</sup> : (6.85527 M1(-E2) to 2 <sup>+</sup> ; 267.227 (M1) to 1 <sup>+</sup> .<br>269 <sup>(6)</sup> 4 1 <sup>-</sup> .2 <sup>-</sup> .3 <sup>-</sup> D J <sup>-</sup> : L(d,p)=2.<br>271.470 /3 2 <sup>+</sup> .3 <sup>+</sup> .4 <sup>+</sup> B E J <sup>-</sup> : 79.8477 to 3 <sup>+</sup> ; 152.7557 M1(+E2) to 3 <sup>+</sup> .<br>232.34x <sup>4</sup> (8 <sup>-</sup> ) F Additional information 2.<br>J <sup>+</sup> : 51.27 to (7 <sup>-</sup> ); band member.<br>302.14 (1 <sup>+</sup> .2,3 <sup>+</sup> ) F Additional information 2.<br>J <sup>+</sup> : 51.27 to (7 <sup>-</sup> ); band member.<br>302.14 (1 <sup>+</sup> .2,3 <sup>+</sup> ) C = D F : L(d,p)=6; 337.807 to 2 <sup>-</sup> ; 338.920 to 1 <sup>+</sup> .<br>303.8960 /4 0 <sup>-</sup> ,1 <sup>-</sup> < <0.04 ns B C E J <sup>-</sup> : 105.8024 M1 to 2 <sup>+</sup> ; 304.5387 to 1 <sup>+</sup> .<br>312.07 /2 1 <sup>-</sup> .2 <sup>-</sup> < <0.04 ns B CD E XREF: C(380)C(378).<br>J <sup>+</sup> : L(d,p)=6; 337.807 to 1 <sup>+</sup> .<br>312.07 /2 1 <sup>-</sup> .2 <sup>-</sup> < <0.04 ns B CD E XREF: C(380)C(378).<br>J <sup>+</sup> : L(d,p)=2; 381.207 to 1 <sup>+</sup> .<br>411.973 24 (1 <sup>+</sup> .2,3 <sup>+</sup> ) B J <sup>-</sup> : 293.267 to 3 <sup>+</sup> ; 411.967 to 1 <sup>+</sup> .<br>424.721 /6 (1.2,3 <sup>+</sup> ) < C = M F J <sup>+</sup> : 275.237 to 3 <sup>+</sup> .<br>432.376 /5 (2 <sup>-</sup> ) <0.08 ns 6 B J <sup>+</sup> : 275.237 to 3 <sup>+</sup> .<br>432.376 /5 (2 <sup>-</sup> ) <0.08 ns 6 B J <sup>+</sup> : 275.237 to 3 <sup>+</sup> .<br>446.885 /2 (1 <sup>+</sup> .2,3 <sup>+</sup> ) B J <sup>+</sup> : 270.157 to 2 <sup>+</sup> : 350.127 to 3 <sup>+</sup> .<br>411.239 /9 (1.2,3) 0.22 ns 5 B J <sup>+</sup> : 270.157 to 2 <sup>+</sup> : 350.127 to 3 <sup>+</sup> .<br>424.71 to (1 <sup>+</sup> .2,3 <sup>+</sup> ) < B J <sup>+</sup> : 275.547 to 3 <sup>+</sup> .<br>448.80 /2 (1 <sup>+</sup> .2,3 <sup>+</sup> ) < C XREF: (d48).<br>J <sup>+</sup> : 127.547 to 2 <sup>+</sup> .<br>484. <sup>64</sup> 4 0 <sup>-</sup> ,1 <sup>-</sup> CD XREF: (d48).<br>J <sup>+</sup> : 186.77 to 1 <sup>-</sup> .<br>484. <sup>64</sup> 4 0 <sup>-</sup> ,1 <sup>-</sup> CD XREF: (d48).<br>J <sup>+</sup> : 186.77 to 1 <sup>-</sup> .<br>484. <sup>64</sup> 4 0 <sup>-</sup> ,1 <sup>-</sup> CD XREF: (d48).<br>J <sup>+</sup> : 186.77 to 1 <sup>-</sup> .<br>484. <sup>64</sup> 4 0 <sup>-</sup> ,1 <sup>-</sup> CD XREF: (d48).<br>J <sup>+</sup> : 186.77 to 1 <sup>-</sup> .<br>484. <sup>64</sup> 4 0 <sup>-</sup> ,1 <sup>-</sup> CD XREF: (d48).<br>J <sup>+</sup> : 186.77 to 1 <sup>-</sup> .<br>484. <sup>64</sup> 4 0 <sup>-</sup> ,1 <sup>-</sup> CD XREF: (d48).<br>J <sup>+</sup> : 186.77 to 1 <sup>-</sup> .<br>485.857 1/7 (1.2,3 <sup>-</sup> ) <0.08 ns B C J <sup>+</sup> : 186.77 to 1 <sup>-</sup> .<br>486.85 1 <sup>-</sup> (1.2,3 <sup>-</sup> ) <0.08 ns B C J <sup>+</sup> : 186.77 to 1 <sup>-</sup> .<br>487.92.97 to 3 <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 198.689 <i>10</i>        | 2+                         | <0.08 ns    | ΒE          | $J^{\pi}$ : 198.69 $\gamma$ M1(+E2) to 1 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 236.859 12               | 1-                         | <0.24 ns    | Βd          | XREF: d(235).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 237.069 <i>I</i> 1 (1,2,3 <sup>+</sup> ) 0.43 ns <i>B</i> <b>b f</b> XREF: d(235).<br><b>J</b> <sup>+</sup> : 235.94y to 2 <sup>+</sup> : 237.05y to 1 <sup>+</sup> .<br>242.09 <sup>±</sup> 21 (6 <sup>-</sup> ) <b>F J</b> <sup>+</sup> : 124.5y to 6 <sup>+</sup> ; band assignment (2002Po11).<br>242.09 <sup>±</sup> 4 (7 <sup>-</sup> ) <b>F J</b> <sup>+</sup> : 124.5y to 6 <sup>+</sup> ; band assignment (2002Po11).<br>269 <sup>6,4</sup> <b>1</b> <sup>-</sup> , <b>2</b> <sup>-</sup> , <b>3</b> <sup>-</sup> <b>D J</b> <sup>+</sup> : L(d,p)=2.<br>271.470 <i>I</i> 3 2 <sup>+</sup> , <b>3</b> <sup>+</sup> , <b>4</b> <sup>+</sup> <b>B E J</b> <sup>+</sup> : 7.98.47y to 3 <sup>+</sup> ; 152.755y M1(+E2) to 3 <sup>+</sup> .<br>293.3+x <sup>4</sup> <b>4</b> (8 <sup>+</sup> ) <b>F</b> Additional information 2.<br><i>J</i> <sup>+</sup> : 51.2y to (7 <sup>-</sup> ); band member.<br>302.14 (1 <sup>+</sup> , 2, 3 <sup>+</sup> ) <b>F</b> Additional information 2.<br><i>J</i> <sup>+</sup> : 51.2y to (7 <sup>-</sup> ); band member.<br>303.89 (ol 10 <sup>-</sup> , <b>1</b> <sup>-</sup> <0.06 ns <b>B E J</b> <sup>+</sup> : 105.8024y M1 to 2 <sup>+</sup> ; 304.538y to 1 <sup>+</sup> .<br>383.900 <i>I</i> 4 <b>O</b> <sup>-</sup> , <b>1</b> <sup>-</sup> <0.06 ns <b>B E E F</b> <sup>+</sup> : 103.70,<br><i>J</i> <sup>+</sup> : 10.5y to 3 <sup>+</sup> ; 304.538y to 1 <sup>+</sup> .<br>381.207 <i>I</i> 2 <b>1</b> <sup>-</sup> , <b>2</b> <sup>-</sup> <0.04 ns <b>B CE F F</b> <sup>+</sup> : 293.020 Yu (1+C2) to 1 <sup>+</sup> , 2 <sup>+</sup> : 161.920y M1(+E2) to 2 <sup>+</sup> ; 123.766y to 1 <sup>-</sup> .<br>381.207 <i>I</i> 2 <b>1</b> <sup>-</sup> , <b>2</b> <sup>-</sup> <0.42 ns <b>BCDE KEEF</b> : D(337).<br><b>J</b> <sup>+</sup> : 203.20y to 1 <sup>+</sup> .<br><b>J</b> <sup>+</sup> : 233.20y to 1 <sup>+</sup> .<br><b>J</b> <sup>+</sup> : 233.20y to 3 <sup>+</sup> ; 411.96y to 1 <sup>+</sup> .<br>411.973 24 (1 <sup>+</sup> , 2, 3 <sup>+</sup> ) <b>B J</b> <sup>+</sup> : 293.20y to 1 <sup>+</sup> .<br><b>J</b> <sup>+</sup> : 293.20y to 3 <sup>+</sup> ; 411.96y to 1 <sup>+</sup> .<br>424.721 <i>I</i> 6 (1,2,3 <sup>+</sup> ) <0.08 ns <b>B DE KKE</b> : <b>C</b> (477).<br><b>J</b> <sup>+</sup> : 424.71y to 1 <sup>+</sup> : 423.60y to 2 <sup>-</sup> . In <sup>110</sup> Pd(p,my). <sup>169</sup> Ag(d,py) a 231.7y<br>is observed, so that this level can be a close-lying doublet.<br><b>J</b> <sup>+</sup> : 273.23y to 3 <sup>+</sup> .<br><b>J</b> <sup>+</sup> : 270.15y to 3 <sup>+</sup> ; 431.38y to 2 <sup>-</sup> .<br><b>J</b> <sup>+</sup> : 367.05y to 3 <sup>+</sup> .<br><b>J</b> <sup>+</sup> : 270.15y to 2 <sup>+</sup> ; 350.12y to 3 <sup>+</sup> .<br><b>J</b> <sup>+</sup> : 270.15y to 2 <sup>+</sup> ; 350.12y to 3 <sup>+</sup> .<br><b>J</b> <sup>+</sup> : 270.15y to 2 <sup>+</sup> ; 350.12y to 3 <sup>+</sup> .<br><b>J</b> <sup>+</sup> : 367.05y to 3 <sup>+</sup> ; 438.91y to 1 <sup>-</sup> .<br><b>K</b> <sup>+</sup> : (L(d,p)=0.<br><b>KKE</b> : (C488).<br><b>J</b> <sup>+</sup> : 270.51y to 2 <sup>+</sup> ; 350.12y to 3 <sup>+</sup> .<br><b>J</b> <sup>+</sup> : 367.05y to 3 <sup>+</sup> ; 248.91y to 1 <sup>-</sup> .<br><b>J</b> <sup>+</sup> : 367.05y to 3 <sup>+</sup> ; 248.91y to 1 <sup>+</sup> .<br><b>J</b> <sup>+</sup> : 367.05y to 3 <sup>+</sup> ; 245.97y to 1 <sup>+</sup> .<br><b>J</b> <sup>+</sup> : 367.05y to 3 <sup>+</sup> ; 245.97y to 1 <sup>+</sup> .<br><b>J</b> <sup>+</sup> : 367.05y to 3 <sup>+</sup> ; 245.97y to 1 <sup>+</sup> .<br><b>J</b> <sup>+</sup> : 367.05y to 3 <sup>+</sup> ; 245.97y to 1 <sup>+</sup> .<br><b>J</b> <sup>+</sup> : 367.05y to 3 <sup>+</sup> ; 245.359y to 1 <sup>+</sup> .<br><b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                            |             |             | $J^{\pi}$ : L(d,p)=0; 235.75 $\gamma$ M1 to 2 <sup>-</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 237.069 11               | $(1,2,3^+)$                | 0.43 ns 8   | B dE        | XREF: d(235).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{rcl} 242.09 & 27 & (6^{-}) & F & J^{+}; 124.57 \ to 6^{+}; \ band assignment (2002Pol 1), \\ 242.09 + x^{0} & (7^{-}) & F & J^{+}; \ Assigned as band head in 2002Pol 1, \\ 269^{64} & 1^{-}, 2^{-}, 3^{-} & D & J^{+}; \ L(d,p) = 2, \\ 271.470 & J^{+}, 2^{+}, 3^{+}, 4^{+} & B & E & J^{+}; \ 79.8477 \ to 3^{+}; \ 152.7557 \ M1(+E2) \ to 3^{+}, \\ 293.3+x^{44} & (8^{-}) & F & Additional information 2, \\ J^{+}; \ 51.27 \ to (7^{-}); \ band member. \\ 302.14 & (1^{+}, 2, 3^{+}) & <0.16 \ ns & B & E & J^{+}; \ 10.55 \ to 3^{+}; \ 302.07 \ to 1^{+}, \\ 304.525 & J0 & 1^{+}, 2^{+}, 3^{+} & <0.16 \ ns & B & E & J^{+}; \ 10.55 \ to 3^{+}; \ 302.07 \ to 1^{+}, \\ 338.960 \ J^{-} & O^{-}, 1^{-} & <0.08 \ ns & B & DE & XREF: \ C3370. \\ J^{+}; \ L(d,p) = (337.807 \ to 2^{+}; 338.929 \ to 1^{+}, \\ 338.00 \ J^{-} & (1^{+}, 2, 3^{+}) & & B & E & J^{+}; \ 10.55 \ to 3^{+}; \ 411.973 \ 24 & (1^{+}, 2, 3^{+}) & & B & E & J^{-}; \ 293.267 \ to 1^{+}, 2^{+}; \ 161.207 \ M1(+E2) \ to 2^{+}; \ 123.7667 \ to 1^{-}, \\ 342.376 \ J^{-} & (1^{+}, 2, 3^{+}) & & B & F^{-}; \ 293.267 \ to 1^{+}, \ 293.267 \ to 1^{+}, \\ 424.721 \ J^{-} & (1^{+}, 2, 3^{+}) & & B & F^{-}; \ 293.267 \ to 3^{+}; \ 411.969 \ to 1^{+}, \\ 424.721 \ J^{-} & (1^{+}, 2, 3^{+}) & & B & F^{-}; \ 293.267 \ to 3^{+}; \ 411.969 \ to 1^{+}, \\ 424.721 \ J^{-} & (1^{+}, 2, 3^{+}) & & B & F^{-}; \ 293.267 \ to 3^{+}; \ 424.717 \ to 1^{+}; \ 423.767 \ J^{-} & (1^{+}, 2, 3^{+}) & \\ 44.66 \ 46.885 \ J^{-} & (1^{+}, 2, 3^{+}) & & B & F^{-}; \ 373.780 \ to 3^{+}, \\ 446.68 \ 46.885 \ J^{-} & (1^{+}, 2, 3) & \\ 446.88 \ J^{-} & (1^{+}, 2, 3) & \\ 448.40 \ x^{-} & & \\ 484.40 \ x^{-} & & \\ 496.886 \ J^{-} & (1, 2, 3^{+}) & < \\ 400.88 \ ns \ J^{+} \ 186.767 \ to 3^{+}; \ 136.767 \ to 3^{+}; \ 335.917 \ to 3^{+}; \ 526.397 \ to 2^{-}; \ 524.897 \ to 1^{+}, \\ \\ 485.737 \ J^{-} & & \\ 484.40 \ x^{-} & & \\ 496.886 \ J^{-} & (1, 2, 3^{+}) & < \\ 496.886 \ J^{-} & (1, 2, 3^{+}) \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | щ                        |                            |             |             | $J^{\pi}$ : 235.94 $\gamma$ to 2 <sup>-</sup> ; 237.05 $\gamma$ to 1 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 242.09# 21               | (6 <sup>-</sup> )          |             | F           | $J^{\pi}$ : 124.5 $\gamma$ to 6 <sup>+</sup> ; band assignment (2002Po11).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $ 267 229 10 	 1^{+} 2^{+} 	 <0.08 ns 	 B 	 E 	 J^{+} (68.552 y M1(+E2) to 2^{+} (27.22 y (M1) to 1^{+}. 269^{-} 4 	 1^{+} 2^{-} 3^{-} 	 D 	 J^{+} L(dp)=2. 	 1^{-} (27.23 y (M1) to 1^{+}. 293 3^{+} x^{\#} 	 4 	 (8^{-}) 	 F 	 Additional information 2. 	 J^{+} (14, 2, 3^{+}) 	 B 	 E 	 J^{+} (10.5 y to 3^{+} (302.0 y to 1^{+}. 304.532 to 1^{+}. 304.532 to 1^{+}. 2^{+} 3^{+} 	 <0.16 ns 	 B 	 E 	 J^{+} (10.5 y to 3^{+} (302.0 y to 1^{+}. 338.960 1/4 	 0^{-} 1^{-} 	 <0.08 ns 	 B 	 DE 	 XREF: D(337). 	 J^{+} (14.4 y)=0. 337.80 y to 2^{-} (338.90 y to 2^{-}; 338.92 y to 1^{+}. 383.960 1/4 	 0^{-} 1^{-} 	 <0.04 ns 	 B 	 DE 	 XREF: D(337). 	 J^{+} (14.4 y)=0. 337.80 y to 2^{-}; 338.92 y to 1^{+}. 381.207 1/2 	 1^{-} 2^{-} 	 <0.42 ns 	 BCDE 	 XREF: C(380)D(378). 	 J^{+} (14.4 y)=0. 337.80 y to 2^{-}; 318.92 y to 1^{+}. 311.95 y t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 242.09+x <sup>@</sup>    | (7-)                       |             | F           | $J^{\pi}$ : Assigned as band head in 2002Po11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 267.229 10               | $1^+, 2^+$                 | <0.08 ns    | ΒE          | $J^{\pi}$ : 68.552 $\gamma$ M1(+E2) to 2 <sup>+</sup> ; 267.22 $\gamma$ (M1) to 1 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 271.470 <i>13</i> 2 <sup>+</sup> ,3 <sup>+</sup> ,4 <sup>+</sup> B E <i>J</i> <sup>+</sup> : 79.847y to 3 <sup>+</sup> : 152.755y M1(+E2) to 3 <sup>+</sup> .<br>293.3+ $\frac{4}{9}$ 4 (8 <sup>+</sup> ) F Additional information 2.<br><i>J</i> Additional information 2.<br><i>J</i> Additional information 2.<br><i>J</i> Additional member.<br>302.1 <i>4</i> (1 <sup>+</sup> ,2,3 <sup>+</sup> ) E <i>J</i> <sup>+</sup> : 10.5y to 3 <sup>+</sup> : 302.0y to 1 <sup>+</sup> .<br>304.525 <i>I</i> 0 1 <sup>+</sup> ,2 <sup>+</sup> ,3 <sup>+</sup> < 0.16 ns <b>B D E</b> XREF: D(37).<br><i>J</i> - <i>c</i> 0.08 ns <b>B D E</b> XREF: D(37).<br><i>J</i> - <i>c</i> 0.04 ns <b>B C E</b> <i>J</i> <sup>+</sup> : 193.70 M1 (to 2 <sup>+</sup> ; 101.920y M1(+E2) to 2 <sup>+</sup> ; 123.766y to 1 <sup>-</sup> .<br>381.207 <i>I</i> 2 1 <sup>-</sup> ,2 <sup>-</sup> < 0.42 ns <b>BCDE</b> XREF: C(380)D(378).<br><i>J</i> <sup>+</sup> : 120.207 M1(+E2) to 1 <sup>+</sup> ,2 <sup>+</sup> ; 161.920y M1(+E2) to 2 <sup>+</sup> ; 123.766y to 1 <sup>-</sup> .<br>381.207 <i>I</i> 2 1 <sup>-</sup> ,2 <sup>-</sup> < 0.42 ns <b>BCDE</b> XREF: C(380)D(378).<br><i>J</i> <sup>+</sup> : 1203.207 uo 1 <sup>+</sup> .<br>411.973 <i>24</i> (1 <sup>+</sup> ,2,3 <sup>+</sup> ) <b>B</b> <i>J</i> <sup>+</sup> : 293.207 to 1 <sup>+</sup> .<br>424.721 <i>I</i> 6 (1,2,3 <sup>+</sup> ) < 0.13 ns <b>BC E</b> XREF: C(427).<br><i>J</i> <sup>+</sup> : 424.71y to 1 <sup>+</sup> ; 423.60y to 2 <sup>-</sup> . In <sup>110</sup> Pd(p,ny), <sup>109</sup> Ag(d,py) a 231.7y<br>is observed, so that this level can be a close-lying doublet.<br>432.376 <i>I</i> 5 (2) <sup>-</sup> < 0.08 ns <b>B D</b> <i>J</i> <sup>+</sup> : 373.80y to 3 <sup>+</sup> .<br>446.6 0.86 ns 6<br>456.53 <i>3</i> (2 <sup>+</sup> ,3,4 <sup>+</sup> ) <b>B</b> <i>J</i> <sup>+</sup> : 337.80y to 3 <sup>+</sup> .<br>466.885 <i>I</i> 1 (1 <sup>+</sup> ,2,3 <sup>+</sup> ) <b>B</b> <i>J</i> <sup>+</sup> : 272.54y to 2 <sup>+</sup> .<br>471.239 <i>I</i> 9 (1,2,3) 0.22 ns 5 <b>B</b> <i>J</i> <sup>+</sup> : 272.54y to 2 <sup>+</sup> .<br>484.40 + x <sup>60</sup> 20 (9 <sup>-</sup> ) <b>F</b> <i>J</i> <sup>+</sup> : 191.1y to (8 <sup>-</sup> ); band member.<br>484.64 0 $-1^{-}$ <b>CD</b> XREF: c(488).<br><i>J</i> <sup>+</sup> : 367.057 to 3 <sup>+</sup> ; 248.517 to 1 <sup>+</sup> .<br>486.886 <i>I</i> 3 (1,2,3 <sup>+</sup> ) < 0.08 ns <b>BCD</b> <i>X</i> XREF: 10.490.<br>486.757 <i>I</i> 7 (1,2,3 <sup>-</sup> ) < 0.08 ns <b>BCD</b> <i>X</i> XREF: 0.575 to 3 <sup>+</sup> ; 249.577 to 1 <sup>+</sup> .<br>525.677 <i>I</i> 7 (1,2,3 <sup>-</sup> ) < 0.08 ns <b>BC</b> <i>J</i> <sup>+</sup> : 188.177 to 0 <sup>-</sup> , 1; 326.977 to 2 <sup>+</sup> ; 524.547 to 1 <sup>+</sup> .<br>525.677 <i>I</i> 7 (1,2,3 <sup>-</sup> ) < 0.08 ns <b>BC</b> <i>J</i> <sup>+</sup> : 188.177 to 0 <sup>-</sup> , 1; 326.977 to 2 <sup>+</sup> ; 335.919 to 3 <sup>+</sup> ; 526.399 to 2 <sup>-</sup> .<br>527.428 <i>I</i> 6 (1 <sup>+</sup> ,2,3 <sup>-</sup> ) < 0.08 ns <b>BC</b> <i>J</i> <sup>+</sup> : 188.177 to 0 <sup>-</sup> , 1; 326.977 to 2 <sup>+</sup> ; 335.919 to 3 <sup>+</sup> ; 526.399 to 2 <sup>-</sup> .<br>527.428 <i>I</i> 6 (1 <sup>+</sup> ,2,3 <sup>-</sup> ) < 0.08 ns <b>BC</b> <i>J</i> <sup>+</sup> : 188.177 to 0 <sup>-</sup> , 1; 326.977 to 2 <sup>+</sup> ; 335.919 to 3 <sup>+</sup> ; 526.399 to 2 <sup>-</sup> .<br>527.428 <i>I</i> 6 (1 <sup>+</sup> ,2,3 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 269 <sup>&amp;</sup> 4   | 1-,2-,3-                   |             | D           | $J^{\pi}$ : L(d,p)=2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 271.470 13               | $2^+, 3^+, 4^+$            |             | ΒE          | $J^{\pi}$ : 79.847 $\gamma$ to 3 <sup>+</sup> ; 152.755 $\gamma$ M1(+E2) to 3 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 293.3+x <sup>#</sup> 4   | (8 <sup>-</sup> )          |             | F           | Additional information 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |                            |             |             | $J^{\pi}$ : 51.2 $\gamma$ to (7 <sup>-</sup> ); band member.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{rclcrcl} 304.525 \ lot & l^+, 2^+, 3^+ & <0.16 \ ns & B & E & l^+; 105.824 \ MI to 2^+; 304.538 \ to 1^+. \\ 338.960 \ l4 & 0^-, 1^- & <0.08 \ ns & B & DE & XREF: D(337). \\ 338.960 \ l4 & 0^-, 1^- & <0.08 \ ns & B & DE & XREF: d(459). \\ 338.900 \ l4 & 0^-, 1^- & <0.04 \ ns & B & CE & F^+; 93.402 \ MI (+E2) \ to 1^-, 2^+; 161.920 \ MI (+E2) \ to 2^+; 123.766 \ to 1^ \\ J^+; 1d(d,p)=2; 381.20 \ to 3^+; 411.96 \ to 1^+. \\ J^+; 1d(d,p)=2; 381.20 \ to 1^+. \\ J^+; 1d(d,p)=2; 381.20 \ to 1^+. \\ J^+; 24.721 \ l6 & (1,2,3^+) & < 0.13 \ ns & BC & XREF: C(427). \\ J^+; 424.711 \ lot 1^+; 423.60 \ to 2^ \ In \ ^{110} Pd(p,ny), \ ^{109} Ag(d,py) \ a \ 231.7 \ is observed, so that this level can be a close-lying doublet. \\ J^+; 1d(d,p)=0, \ 2^+; 375.23 \ to 3^+, \ 411.96 \ to 1^+. \\ J^+; 246.885 \ l2 & (1^+, 2, 3^+) & B & J^+; 275.23 \ to 3^+. \\ J^+; 275.23 \ to 3^+. \ J^+; 1d(d,p)=0, \ J^+; \ J^+; 1d(d,p)=0, \ J^+; \ 275.23 \ to 3^+. \\ J^+; 275.23 \ to 3^+. \ J^+; 1d(d,p)=0. \ J^+; \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 302.1 4                  | $(1^+, 2, 3^+)$            |             | E           | $J^{\pi}$ : 110.5 $\gamma$ to 3 <sup>+</sup> ; 302.0 $\gamma$ to 1 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 304.525 10               | $1^+, 2^+, 3^+$            | <0.16 ns    | ΒE          | $J^{\pi}$ : 105.824 $\gamma$ M1 to 2 <sup>+</sup> ; 304.538 $\gamma$ to 1 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 338.960 14               | $0^{-}, 1^{-}$             | <0.08 ns    | B DE        | XREF: D(337).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 260 610 10               | 1+ 0+                      | 0.04        | <b>DC D</b> | $J^{n}$ : L(d,p)=0; 337.80 $\gamma$ to 2 <sup>-</sup> ; 338.92 $\gamma$ to 1 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 360.618 10               | 1,2,                       | <0.04 ns    | BC F        | $J^{*}: 93.402\gamma \text{ MI}(+\text{E2}) \text{ to } 1^{\circ}, 2^{\circ}; 161.920\gamma \text{ MI}(+\text{E2}) \text{ to } 2^{\circ}; 123.766\gamma \text{ to } 1^{\circ}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 381.207 12               | 1,2                        | <0.42 ns    | BCDF        | XREF: $C(380)D(378)$ .<br>$I_{4}$ , $I_{4}$ , $I_{4}$ , $I_{2}$ , $I_{2}$ , $I_{4}$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 411 072 24               | (1+22+)                    |             | D           | $J^{*}$ : L(u,p)=2, 581.207 to 1 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 411.975 24               | (1, 2, 3)<br>$(1, 2, 3^+)$ | <0.13 ns    | D<br>BC F   | J = 295.207  to  5, 411.907 to 1 .<br><b>XREF:</b> $C(A27)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 424.721 10               | (1,2,5)                    | <0.15 lls   | DCL         | $I^{\pi}$ : 424 712 to 1 <sup>+</sup> : 423 602 to 2 <sup>-</sup> In <sup>110</sup> Pd(n m) <sup>109</sup> Ag(d m) a 231 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 432.376 15(2) <sup>-</sup> <0.08 ns<br>0.86 ns 6BDE<br>B $J^{\pi}$ : L(d,p)=0+2; 240.76y to $3^{+}$ ; 431.38y to $2^{-}$ .446.60.86 ns 6B456.53 3 $(2^{+},3,4^{+})$ B $J^{\pi}$ : 275.23y to $3^{+}$ .466.885 21 $(1^{+},2,3^{+})$ B $J^{\pi}$ : 275.23y to $3^{+}$ .468.850 12 $(1^{+},2,3^{+})$ B $J^{\pi}$ : 270.15y to $2^{+}$ ; 350.12y to $3^{+}$ .471.239 19 $(1,2,3)$ 0.22 ns 5B $J^{\pi}$ : 272.54y to $2^{+}$ .484.40 + $x^{\textcircled{0}}$ 20 $9^{-}$ )F $J^{\pi}$ : 191.1y to $(8^{-})$ ; band member.485.737 13 $(1^{+},2,3^{-})$ <0.1 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                            |             |             | is observed, so that this level can be a close-lying doublet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 446.6 0.86 ns 6 B $J^{\pi}$ : 337.80 $\gamma$ to 3 <sup>+</sup> .<br>466.85 21 (1 <sup>+</sup> ,2,3 <sup>+</sup> ) B $J^{\pi}$ : 337.80 $\gamma$ to 3 <sup>+</sup> .<br>468.850 12 (1 <sup>+</sup> ,2,3) 0.22 ns 5 B $J^{\pi}$ : 270.15 $\gamma$ to 2 <sup>+</sup> ; 350.12 $\gamma$ to 3 <sup>+</sup> .<br>471.239 19 (1,2,3) B $J^{\pi}$ : 272.54 $\gamma$ to 2 <sup>+</sup> .<br>484.40+ $x^{(0)}$ 20 (9 <sup>-</sup> ) F $J^{\pi}$ : 191.1 $\gamma$ to (8 <sup>-</sup> ); band member.<br>485.737 13 (1 <sup>+</sup> ,2,3 <sup>-</sup> ) <0.1 ns Bc XREF: c(488).<br>$J^{\pi}$ : 267.05 $\gamma$ to 3 <sup>+</sup> : 248.91 $\gamma$ to 1 <sup>-</sup> .<br>496.886 13 (1,2,3 <sup>+</sup> ) <0.08 ns BCD XREF: D(494).<br>$J^{\pi}$ : 186.76 $\gamma$ to 2 <sup>+</sup> ; 495.76 $\gamma$ to 2 <sup>-</sup> ; 496.87 $\gamma$ to 1 <sup>+</sup> .<br>525.677 17 (1,2,3 <sup>-</sup> ) <0.08 ns B J <sup>\pi</sup> : 186.76 $\gamma$ to 0 <sup>-</sup> , 1 <sup>-</sup> ; 326.97 $\gamma$ to 2 <sup>+</sup> ; 524.54 $\gamma$ to 2 <sup>-</sup> .<br>527.428 16 (1 <sup>+</sup> ,2,3 <sup>-</sup> ) <0.4 ns B C J <sup>\pi</sup> : 188.17 $\gamma$ to 0 <sup>-</sup> , 1 <sup>-</sup> ; 328.80 $\gamma$ to 2 <sup>+</sup> ; 335.91 $\gamma$ to 3 <sup>+</sup> ; 526.39 $\gamma$ to 2 <sup>-</sup> .<br>540.3 <0.1 ns BC J <sup>\pi</sup> : 1(d,p)=0.<br>549.397 13 (1,2,3) <0.08 ns B J <sup>\pi</sup> : 312.53 $\gamma$ to 1 <sup>-</sup> ; 549.38 $\gamma$ to 1 <sup>+</sup> .<br>557.1 <0.34 ns B J <sup>\pi</sup> : 312.53 $\gamma$ to 1 <sup>-</sup> ; 549.38 $\gamma$ to 1 <sup>+</sup> .<br>558.8 <0.14 ns B<br>592.9 1 <sup>-</sup> , 2 <sup>-</sup> , 3 <sup>-</sup> <0.34 ns B d XREF: d(594).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 432.376 15               | $(2)^{-}$                  | <0.08 ns    | B DE        | $J^{\pi}$ : L(d,p)=0+2; 240.76 $\gamma$ to 3 <sup>+</sup> : 431.38 $\gamma$ to 2 <sup>-</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 446.6                    | (-)                        | 0.86 ns 6   | В           | $(-(-)_{\mathbf{F}})$ $(-(-)_{\mathbf{F}})$ $(-(-)_{\mathbf{F}})$ $(-(-)_{\mathbf{F}})$ $(-(-)_{\mathbf{F}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{rclcrcl} 466.885 \ 21 & (1^+,2,3^+) & & & & & & & & & \\ 468.850 \ 12 & (1^+,2,3) & 0.22 \ \mathrm{ns} \ 5 & & & & & & & & \\ 471.239 \ 19 & (1,2,3) & & & & & & \\ 484.40 + x^{(0)} \ 20 & (9^-) & & & & & \\ 884.40 + x^{(0)} \ 20 & (9^-) & & & & & & \\ 885.737 \ 13 & (1^+,2,3^-) & <0.1 \ \mathrm{ns} & & & & \\ 80 & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ 496.886 \ 13 & (1,2,3^+) & <0.08 \ \mathrm{ns} & & & \\ & & & & & & \\ 80 & & & & & \\ 525.677 \ 17 & (1,2,3^-) & <0.08 \ \mathrm{ns} & & & \\ & & & & & & \\ 525.677 \ 17 & (1,2,3^-) & <0.08 \ \mathrm{ns} & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ 549.397 \ 13 & (1^+,2,3^-) & <0.08 \ \mathrm{ns} & & & \\ & & & & & \\ 549.397 \ 13 & (1,2,3) & <0.08 \ \mathrm{ns} & & & \\ & & & & & \\ & & & & & \\ 580.8 & & & & \\ & & & & & \\ 589.8 & & & & \\ & & & & \\ & & & & & \\ 592.9 & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 456.53 <i>3</i>          | $(2^+, 3, 4^+)$            |             | В           | $J^{\pi}$ : 337.80 $\gamma$ to 3 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 466.885 21               | $(1^+, 2, 3^+)$            |             | В           | $J^{\pi}$ : 275.23 $\gamma$ to 3 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 471.239 19 $(1,2,3)$ B $J^{\pi}: 272.54\gamma$ to $2^+$ .484 $\overset{@}{4}$ $0^-, 1^-$ cDXREF: c(488). $J^{\pi}: L(d,p)=0.$ F $J^{\pi}: 191.1\gamma$ to $(8^-)$ ; band member.485.737 13 $(1^+,2,3^-)$ <0.1 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 468.850 12               | $(1^+, 2, 3)$              | 0.22 ns 5   | В           | $J^{\pi}$ : 270.15 $\gamma$ to 2 <sup>+</sup> ; 350.12 $\gamma$ to 3 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 471.239 19               | (1,2,3)                    |             | В           | $J^{\pi}$ : 272.54 $\gamma$ to 2 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $J^{\pi}: L(d,p)=0.$ $484.40+x^{(2)} 20  (9^{-}) \qquad F \qquad J^{\pi}: 191.1\gamma \text{ to } (8^{-}); \text{ band member.}$ $485.737 \ I3 \qquad (1^{+},2,3^{-}) \qquad <0.1 \text{ ns} \qquad Bc \qquad XREF: c(488).$ $J^{\pi}: 367.05\gamma \text{ to } 3^{+}; 248.91\gamma \text{ to } 1^{-}.$ $496.886 \ I3 \qquad (1,2,3^{+}) \qquad <0.08 \text{ ns} \qquad BCD \qquad XREF: D(494).$ $J^{\pi}: 298.18\gamma \text{ to } 2^{+}; 495.76\gamma \text{ to } 2^{-}; 496.87\gamma \text{ to } 1^{+}.$ $525.677 \ I7 \qquad (1,2,3^{-}) \qquad <0.08 \text{ ns} \qquad B \qquad J^{\pi}: 186.76\gamma \text{ to } 0^{-}, 1^{-}; 326.97\gamma \text{ to } 2^{+}; 524.54\gamma \text{ to } 2^{-}.$ $527.428 \ I6 \qquad (1^{+},2,3^{-}) \qquad <0.4 \text{ ns} \qquad BC \qquad J^{\pi}: 188.17\gamma \text{ to } 0^{-}, 1^{-}; 328.80\gamma \text{ to } 2^{+}; 335.91\gamma \text{ to } 3^{+}; 526.39\gamma \text{ to } 2^{-}.$ $536.209 \ I3 \qquad 0^{-}, 1^{-} \qquad <0.16 \text{ ns} \qquad B \qquad J^{\pi}: L(d,p)=0.$ $540 \ 3 \qquad \qquad <0.1 \text{ ns} \qquad BC \qquad 547.333597 \ I3 \qquad (1,2,3) \qquad <0.08 \text{ ns} \qquad B \qquad E \qquad J^{\pi}: 312.53\gamma \text{ to } 1^{-}; 549.38\gamma \text{ to } 1^{+}.$ $557.1 \qquad <0.34 \text{ ns} \qquad B \qquad S86.85 \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 484 <sup>&amp;</sup> 4   | $0^{-}, 1^{-}$             |             | cD          | XREF: c(488).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 484.40+x $(9^{-})$ F $J^{\pi}: 191.1\gamma$ to $(8^{-})$ ; band member.485.737 13 $(1^{+},2,3^{-})$ <0.1 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                            |             |             | $J^{\pi}: L(d,p)=0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 485.737 13 $(1^+,2,3^-)$ <0.1 ns       Bc       XREF: c(488). $J^{\pi}$ : 367.05y to $3^+$ ;248.91y to $1^-$ .       496.886 13 $(1,2,3^+)$ <0.08 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 484.40+x <sup>@</sup> 20 | (9 <sup>-</sup> )          |             | F           | $J^{\pi}$ : 191.1 $\gamma$ to (8 <sup>-</sup> ); band member.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $496.886\ 13$ $(1,2,3^+)$ $<0.08\ ns$ BCD $XREF:\ D(494).$<br>$J^{\pi}:\ 298.18y\ to\ 2^+;\ 495.76y\ to\ 2^-;\ 496.87y\ to\ 1^+.$ $525.677\ 17$ $(1,2,3^-)$ $<0.08\ ns$ B $J^{\pi}:\ 186.76y\ to\ 0^-,1^-;\ 326.97y\ to\ 2^+;\ 524.54y\ to\ 2^$ $527.428\ 16$ $(1^+,2,3^-)$ $<0.4\ ns$ BC $J^{\pi}:\ 188.17y\ to\ 0^-,1^-;\ 328.80y\ to\ 2^+;\ 335.91y\ to\ 3^+;\ 526.39y\ to\ 2^$ $536.209\ 13$ $0^-,1^ <0.16\ ns$ BD $J^{\pi}:\ 188.17y\ to\ 0^-,1^-;\ 328.80y\ to\ 2^+;\ 335.91y\ to\ 3^+;\ 526.39y\ to\ 2^$ $540.3$ $<0.1\ ns$ BC $J^{\pi}:\ 312.53y\ to\ 1^-;\ 549.38y\ to\ 1^+.$ $57.1$ $<0.34\ ns$ B $E$ $586.8\ 5$ $E$ $589.8$ $<0.14\ ns$ B $592.9$ $1^-,2^-,3^ <0.34\ ns$ B $M$ $XREF:\ d(594).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 485.737 13               | $(1^+, 2, 3^-)$            | <0.1 ns     | Bc          | XREF: c(488).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 496.886 13 $(1,2,3^+)$ <0.08 ns       BCD       XREF: D(494).<br>J <sup><math>\pi</math></sup> : 298.18y to 2 <sup>+</sup> ; 495.76y to 2 <sup>-</sup> ; 496.87y to 1 <sup>+</sup> .         525.677 17 $(1,2,3^-)$ <0.08 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                            |             |             | $J^{\pi}$ : 367.05 $\gamma$ to 3 <sup>+</sup> ;248.91 $\gamma$ to 1 <sup>-</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $J^{\pi}: 298.18 \gamma \text{ to } 2^+; 495.76 \gamma \text{ to } 2^-; 496.87 \gamma \text{ to } 1^+.$ 525.677 17 (1,2,3 <sup>-</sup> ) <0.08 ns B $J^{\pi}: 186.76 \gamma \text{ to } 0^-, 1^-; 326.97 \gamma \text{ to } 2^+; 524.54 \gamma \text{ to } 2^$ 527.428 16 (1 <sup>+</sup> ,2,3 <sup>-</sup> ) <0.4 ns BC $J^{\pi}: 188.17 \gamma \text{ to } 0^-, 1^-; 328.80 \gamma \text{ to } 2^+; 335.91 \gamma \text{ to } 3^+; 526.39 \gamma \text{ to } 2^$ 536.209 13 0 <sup>-</sup> ,1 <sup>-</sup> <0.16 ns B D $J^{\pi}: 1(d,p)=0.$ 540 3 <0.1 ns BC 549.397 13 (1,2,3) <0.08 ns B E $J^{\pi}: 312.53 \gamma \text{ to } 1^-; 549.38 \gamma \text{ to } 1^+.$ 557.1 <0.34 ns B 586.8 5 E $(0.14 \text{ ns B})$ 589.8 <0.14 ns B $(0.14 \text{ ns B})$ 592.9 $1^-, 2^-, 3^- <0.34 \text{ ns B}$ d XREF: d(594).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 496.886 <i>13</i>        | $(1,2,3^+)$                | <0.08 ns    | BCD         | XREF: D(494).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $525.677 \ 17$ $(1,2,3^-)$ $<0.08 \text{ ns}$ B $J^{\pi}: 186.76y \text{ to } 0^-, 1^-; 326.97y \text{ to } 2^+; 524.54y \text{ to } 2^$ $527.428 \ 16$ $(1^+,2,3^-)$ $<0.4 \text{ ns}$ BC $J^{\pi}: 188.17y \text{ to } 0^-, 1^-; 328.80y \text{ to } 2^+; 335.91y \text{ to } 3^+; 526.39y \text{ to } 2^$ $536.209 \ 13$ $0^-, 1^ <0.16 \text{ ns}$ B       D $J^{\pi}: L(d,p)=0.$ $540.3$ $<0.1 \text{ ns}$ BC $J^{\pi}: 312.53y \text{ to } 1^-; 549.38y \text{ to } 1^+.$ $549.397 \ 13$ $(1,2,3)$ $<0.08 \text{ ns}$ B       E $J^{\pi}: 312.53y \text{ to } 1^-; 549.38y \text{ to } 1^+.$ $557.1$ $<0.34 \text{ ns}$ B       E $<589.8$ $<0.14 \text{ ns}$ B $592.9$ $1^-, 2^-, 3^ <0.34 \text{ ns}$ B       XREF: d(594).       XREF: d(594).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                            |             |             | $J^{\pi}$ : 298.18 $\gamma$ to 2 <sup>+</sup> ; 495.76 $\gamma$ to 2 <sup>-</sup> ; 496.87 $\gamma$ to 1 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $527.428\ I6$ $(1^+,2,3^-)$ $<0.4\ ns$ BC $J^*$ : $188.17\gamma$ to $0^-,1^-$ ; $328.80\gamma$ to $2^+$ ; $335.91\gamma$ to $3^+$ ; $526.39\gamma$ to $2^-$ . $536.209\ I3$ $0^-,1^ <0.16\ ns$ B       D $J^\pi$ : $L(d,p)=0.$ $540\ 3$ $<0.1\ ns$ BC $J^\pi$ : $312.53\gamma$ to $1^-$ ; $549.38\gamma$ to $1^+$ . $549.397\ I3$ $(1,2,3)$ $<0.08\ ns$ B       E $J^\pi$ : $312.53\gamma$ to $1^-$ ; $549.38\gamma$ to $1^+$ . $557.1$ $<0.34\ ns$ B       E $S86.8\ 5$ E $589.8$ $<0.14\ ns$ B       S92.9 $1^-,2^-,3^ <0.34\ ns$ B       C $592.9$ $1^-,2^-,3^ <0.34\ ns$ B       C       C       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 525.677 17               | $(1,2,3^{-})$              | <0.08 ns    | В           | $J^{n}$ : 186.76 $\gamma$ to 0 <sup>-</sup> ,1 <sup>-</sup> ; 326.97 $\gamma$ to 2 <sup>+</sup> ; 524.54 $\gamma$ to 2 <sup>-</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 536.209 13       0       ,1       <0.16 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 527.428 16               | $(1^+, 2, 3^-)$            | <0.4 ns     | BC          | $J^{\pi}$ : 188.1/ $\gamma$ to 0 <sup>-</sup> ,1 <sup>-</sup> ; 328.80 $\gamma$ to 2 <sup>+</sup> ; 335.91 $\gamma$ to 3 <sup>+</sup> ; 526.39 $\gamma$ to 2 <sup>-</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 540 3       <0.1 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 536.209 13               | 0,1                        | <0.16 ns    | R D         | $J^{n}: L(d,p)=0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 540 3<br>540 207 12      | (1, 2, 2)                  | <0.1 ns     | RC          | $\pi_{-212}$ 52. 4. $1^{-1}$ 540.29. 4. $1^{+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 549.397 15               | (1,2,3)                    | < 0.08  ns  | вЕ          | J <sup></sup> : 512.55γ το 1 ; 549.58γ το 1 <sup>-</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JJ/.1<br>586.8 5         |                            | <0.34 NS    | D<br>T      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 592.9 $1^-, 2^-, 3^-$ <0.34 ns B d XREF: d(594).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 580.8                    |                            | <0.14 mg    | R           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\mathbf{J}_{\mathbf{L}} = \mathbf{J}_{\mathbf{L}} $ | 502.0                    | 1-2-3-                     | < 0.17 115  | R d         | XREF: d(594)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $J^{\pi}: L(d,p)=2.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 574.7                    | 1, <u>2</u> , J            | \$0.5 1 115 | bu          | $J^{\pi}: L(d,p)=2.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

# <sup>110</sup>Ag Levels (continued)

| E(level) <sup>†</sup>    | $J^{\pi}$               | T <sub>1/2</sub> ‡ | XREF       | Comments                                                                                                                                                                  |
|--------------------------|-------------------------|--------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 595.05 4                 | 1-,2-                   | <0.16 ns           | BCd        | XREF: C(597)d(594).                                                                                                                                                       |
|                          |                         |                    |            | $J^{\pi}$ : L(d,p)=2; 595.07 $\gamma$ to 1 <sup>+</sup> ; 593.91 $\gamma$ to 2 <sup>-</sup> .                                                                             |
| 613.058 25               |                         | <0.07 ns           | В          |                                                                                                                                                                           |
| 615.137 23               | (1,2,3)                 | <0.06 ns           | В          | $J^{\pi}$ : 378.08 $\gamma$ to 1 <sup>-</sup> ; 614.04 $\gamma$ to 2 <sup>-</sup> .                                                                                       |
| 633.442 18               |                         | <0.14 ns           | В          |                                                                                                                                                                           |
| 653.929 17               | $(1^+, 2, 3^+)$         | <0.36 ns           | ΒE         | $J^{\pi}$ : 462.29 $\gamma$ to 3 <sup>+</sup> ; 652.76 $\gamma$ to 2 <sup>-</sup> .                                                                                       |
| 663.463 16               | $(1^{-}, 2^{-}, 3^{-})$ | <0.22 ns           | Βd         | XREF: d(661).                                                                                                                                                             |
| ((1.025.22               | (1 - 2 - 2 - )          | .0.5               | <b>D</b> 1 | $J^{n}$ : L(d,p)=2; 464.78 $\gamma$ to 2 <sup>+</sup> ; 662.27 $\gamma$ to 2 <sup>-</sup> .                                                                               |
| 664.935 22               | (1,2,3)                 | <0.5 ns            | ва         | XKEF: $d(001)$ .                                                                                                                                                          |
| 692 152 10               | (1, 2, 2)               | <0.46 mg           | D          | $J^{\pi}$ : L(d,p)=2; 005.757 to 2; 400.227 to 2.                                                                                                                         |
| 689 47 <i>4</i>          | (1,2,3)<br>(1+2,3+)     | < 0.40  ms         | B          | $J^{\pi}$ : 422 232 to $1^{\pm}$ 2 <sup>+</sup> : 570 762 to $3^{\pm}$                                                                                                    |
| 698 561 15               | (1,2,5)                 | < 0.40  ns         | B          | J . 422.25 / 10 1 ,2 , 570.70 / 10 5 .                                                                                                                                    |
| 706 214 16               | $(1^+ 2 3^+)$           | <0.10 113          | B          | $I^{\pi}$ : 507 41 $\gamma$ to 2 <sup>+</sup> : 514 45 $\gamma$ to 3 <sup>+</sup>                                                                                         |
| 711 & 1                  | (1, 2, 3)               |                    | л<br>П     | $I^{\pi}$ : I (d p)=0                                                                                                                                                     |
| 724 67 4                 | $1^+ 2 3^+$             |                    | R d        | $3 \cdot E(0,p) = 0.$                                                                                                                                                     |
| 124.01 4                 | 1,2,5                   |                    | bu         | $I^{\pi}$ : 605 95 $\gamma$ to 3 <sup>+</sup> : 723 57 $\gamma$ to 2 <sup>-</sup> : 724 69 $\gamma$ to 1 <sup>+</sup>                                                     |
| 725,807,22               |                         | <0.8 ns            | Bd         | XREF: d(725).                                                                                                                                                             |
| 748.598 22               | $1^{-}.2^{-}$           | <0.8 ns            | Bd         | XREF: d(751).                                                                                                                                                             |
|                          | ,                       |                    |            | $J^{\pi}$ : L(d,p)=2; 549.87 $\gamma$ to 2 <sup>+</sup> ; 748.63 $\gamma$ to 1 <sup>+</sup> .                                                                             |
| 750.837 25               | $(2)^{-}$               | <0.12 ns           | Βd         | XREF: d(751).                                                                                                                                                             |
|                          |                         |                    |            | $J^{\pi}$ : L(d,p)=2; 632.19 $\gamma$ to 3 <sup>+</sup> ; 750.89 $\gamma$ to 1 <sup>+</sup> .                                                                             |
| 753 <i>3</i>             | 1-,2-,3-                | <0.25 ns           | BCd        | XREF: d(751).                                                                                                                                                             |
|                          |                         |                    |            | $J^{\pi}$ : L(d,p)=2.                                                                                                                                                     |
| 759.6                    |                         | <0.21 ns           | В          |                                                                                                                                                                           |
| 767.01 4                 | $(1^+, 2, 3^+)$         | <1.3 ns            | Βd         | XREF: d(770).                                                                                                                                                             |
| 772 (07.22               | (1+2,2+)                | .0.16              | DC I       | J <sup><i>n</i></sup> : L(d,p)=2; 648.04 $\gamma$ to 3 <sup>+</sup> ; 765.93 $\gamma$ to 2 <sup>-</sup> .                                                                 |
| //3.69/ 23               | $(1^+, 2, 3^+)$         | <0.46 ns           | BCa        | XREF: $C(7/1)a(7/0)$ .                                                                                                                                                    |
| 795 692 10               | $(1^+ 2 2^+)$           | <0.5 m             | D          | $J^{\pi}$ : $L(0,p)=2; 5/4.987 \text{ to } 2; 034.997 \text{ to } 3; 7/5.077 \text{ to } 1$ .<br>$I^{\pi}$ : 586 07a to $2^{+}$ : 666 84a to $2^{+}$ : 785 66a to $1^{+}$ |
| 789 7                    | (1,2,3)                 | < 0.5  lis         | D<br>R     | J . 380.977 10 2 , 000.847 10 5 , 783.007 10 1 .                                                                                                                          |
| 793 3                    | 1 2 3+                  | <0.54 113          | CD CD      | $I^{\pi}$ : L(d p)=2: 793v to 1 <sup>+</sup>                                                                                                                              |
| 802.73 4                 | 1,2,5                   |                    | В          | v: E(a,p) = 2, r > 5 r = 0                                                                                                                                                |
| 811.419 24               |                         | <0.22 ns           | Βd         | XREF: d(814).                                                                                                                                                             |
| 819.017 22               |                         | <0.72 ns           | В          |                                                                                                                                                                           |
| 820 <i>3</i>             |                         | <1.1 ns            | BC         |                                                                                                                                                                           |
| 854.4                    |                         | <0.1 ns            | В          |                                                                                                                                                                           |
| 864 <mark>&amp;</mark> 4 | 1-,2-,3-                |                    | D          | $J^{\pi}$ : L(d,p)=2.                                                                                                                                                     |
| 881.5                    |                         | <0.6 ns            | В          |                                                                                                                                                                           |
| 890.7+x <sup>#</sup> 3   | (10 <sup>-</sup> )      |                    | F          | $J^{\pi}$ : 406.3 $\gamma$ to (9 <sup>-</sup> ); band member.                                                                                                             |
| 893 <mark>&amp;</mark> 4 |                         |                    | D          |                                                                                                                                                                           |
| 905 3                    |                         |                    | С          |                                                                                                                                                                           |
| 910.9                    |                         | <0.42 ns           | В          |                                                                                                                                                                           |
| 918 <i>3</i>             |                         |                    | CD         | XREF: D(925).                                                                                                                                                             |
| 925 <mark>&amp;</mark> 4 |                         |                    | D          |                                                                                                                                                                           |
| 948 <mark>&amp;</mark> 4 | 123-                    |                    | D          | $J^{\pi}: L(d,p)=2$                                                                                                                                                       |
| 953.2                    | 1 ,2 ,0                 | <2.0 ns            | В          |                                                                                                                                                                           |
| 954.4                    |                         | <0.3 ns            | В          |                                                                                                                                                                           |
| 985.7                    |                         | <0.7 ns            | В          |                                                                                                                                                                           |
| 995.1                    | $(1^{-},2^{-},3^{-})$   | <0.4 ns            | ΒD         | XREF: D(993).                                                                                                                                                             |
|                          |                         |                    |            | $J^{\pi}$ : L(d,p)=(2).                                                                                                                                                   |
| 1013.0                   |                         | <0.84 ns           | В          |                                                                                                                                                                           |
| 1026 <sup>&amp;</sup> 4  | (1-,2-,3-)              |                    | D          | $J^{\pi}$ : L(d,p)=(2).                                                                                                                                                   |
| 1104 3                   |                         | <1.2 ns            | BC         | XREF: B(1107).                                                                                                                                                            |

Continued on next page (footnotes at end of table)

## <sup>110</sup>Ag Levels (continued)

| E(level) <sup>†</sup>   | $J^{\pi}$          | XREF | Comments                                                                                             |
|-------------------------|--------------------|------|------------------------------------------------------------------------------------------------------|
| 1111 4                  | 1,2,3+             | CD   | $J^{\pi}$ : L(d,p)=2; 1111 $\gamma$ to 1 <sup>+</sup> .                                              |
| 1167 <i>3</i>           | 1,2,3+             | CD   | XREF: D(1165).                                                                                       |
| 0_                      |                    |      | $J^{\pi}$ : L(d,p)=2; 1167 $\gamma$ to 1 <sup>+</sup> .                                              |
| 1188 4                  |                    | D    |                                                                                                      |
| 1229.8+x <sup>@</sup> 3 | (11 <sup>-</sup> ) | F    | $J^{\pi}$ : 339.1 $\gamma$ to (10 <sup>-</sup> ); 745.5 $\gamma$ to (9 <sup>-</sup> ); band member.  |
| 1230 <sup>&amp;</sup> 4 | 1-,2-,3-           | D    | $J^{\pi}$ : L(d,p)=2.                                                                                |
| 1263 <sup>&amp;</sup> 4 |                    | D    |                                                                                                      |
| 1315 <sup>&amp;</sup> 4 | $0^{-}, 1^{-}$     | D    | $J^{\pi}: L(d,p)=0.$                                                                                 |
| 1343 <sup>&amp;</sup> 4 |                    | D    |                                                                                                      |
| 1377 <sup>&amp;</sup> 4 |                    | D    |                                                                                                      |
| 1402 <sup>&amp;</sup> 4 | 1-,2-,3-           | D    | $J^{\pi}: L(d,p)=2.$                                                                                 |
| 1480 <sup>&amp;</sup> 4 |                    | D    |                                                                                                      |
| 1513 <sup>&amp;</sup> 4 |                    | D    |                                                                                                      |
| 1535 <sup>&amp;</sup> 4 |                    | D    |                                                                                                      |
| 1568 <sup>&amp;</sup> 4 |                    | D    |                                                                                                      |
| 1659 <sup>&amp;</sup> 4 | 1-,2-,3-           | D    | $J^{\pi}: L(d,p)=2.$                                                                                 |
| 1707.2+x <sup>#</sup> 4 | (12 <sup>-</sup> ) | F    | $J^{\pi}$ : 477.4 $\gamma$ to (11 <sup>-</sup> ); 816.4 $\gamma$ to (10 <sup>-</sup> ); band member. |
| 2198.1+x <sup>@</sup> 4 | (13 <sup>-</sup> ) | F    | $J^{\pi}$ : 490.8 $\gamma$ to (12 <sup>-</sup> ); 968.4 $\gamma$ to (11 <sup>-</sup> ); band member. |
| 2666.1+x <sup>#</sup> 5 | (14 <sup>-</sup> ) | F    |                                                                                                      |
| 6809.20 10              | $0^{-}, 1^{-}$     | В    | E(level): From neutron separation energy (2003Au03). Other: 6810 keV 1 (1967Bo06).                   |
|                         |                    |      | $J^{\pi}$ : From s-wave capture by <sup>109</sup> Ag g.s ( $J^{\pi}=1/2^{-}$ ).                      |

<sup>†</sup> From least-squares fit to  $E\gamma'$ s, unless otherwise stated. <sup>‡</sup> From <sup>109</sup>Ag(n, $\gamma$ ) E=thermal (1988Ko31), unless otherwise stated. <sup>#</sup> Band(A):  $\pi g_{9/2} \nu h_{11/2}$ ,  $\alpha$ =0 band.

<sup>*a*</sup> Band(a):  $\pi g_{9/2} \cdot n_{11/2}$ ,  $\alpha = 1$  band. <sup>*b*</sup> From <sup>109</sup>Ag(d,p).

|                        | Adopted Levels, Gammas (continued) |                                                         |                  |                                                                          |                    |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|------------------------|------------------------------------|---------------------------------------------------------|------------------|--------------------------------------------------------------------------|--------------------|--------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                        |                                    |                                                         |                  |                                                                          |                    | <u> γ(</u>   | <sup>110</sup> Ag) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                 | $E_{\gamma}^{\ddagger}$                                 | I <sub>γ</sub> ‡ | $\mathbf{E}_f = \mathbf{J}_f^{\pi}$                                      | Mult. <sup>#</sup> | $\delta^{@}$ | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 1.112                  | 2-                                 | 1.112 16                                                | 100              | 0.0 1+                                                                   | E1                 |              | 933 66             | B(E1)(W.u.)=0.00035 4<br>$E_{\gamma}$ : From energy level differences.<br>$\alpha$ : 933 66, calculated with the RAINE code using the same<br>atomic and nuclear parameters as BRICC (T. Kibedi, private<br>communication).                                                                                                                                                                                                                                                    |  |  |  |  |
| 117.59                 | 6+                                 | 116.48.5                                                | 100              | 1.112 2-                                                                 | M4                 |              | 164.9.17           | Mult.: From M1/M2/M3=0.3 $1/1.0/2.1 4$ , N1/N2/N3=0.25<br>$10/1.00/2.0 6 1993$ Ka37). Theoretical $\alpha$ ratios for E1 transition<br>(calculated by T. Kibedi with the RAINE code using the same<br>atomic and nuclear parameters as BRICC by T. Kibedi):<br>M1/M2/M3=0.3/1.0/2.2, N1/N2/N3=0.43/1.00/2.11.<br>B(M4)(W µ)=0.0165 $10$                                                                                                                                        |  |  |  |  |
| 117.07                 | 0                                  | 110.100                                                 | 100              |                                                                          |                    |              | 1011/17            | $E_{\gamma}$ : From <sup>110</sup> Ag IT decay (249.83 d) (1990Me15).<br>Mult.: From conversion electron intensity ratios, K/L=2.04 <i>6</i> , L1/L2=4.8 5, L1/L3=1.02 2 (1965Ge01). Other: K/L=2.1 2 (1963Su07), K/L=1.95 <i>10</i> (1965Ha07).                                                                                                                                                                                                                               |  |  |  |  |
| 118.719                | 3+                                 | 117.607 <i>17</i>                                       | 100              | 1.112 2-                                                                 | E1(+M2)            | +0.034 9     | 0.1032 22          | B(E1)(W.u.)=( $4.48 \times 10^{-6} 8$ ); B(M2)(W.u.)=( $1.7 9$ )<br>$\alpha$ (K)=0.0897 19; $\alpha$ (L)=0.0110 3; $\alpha$ (M)=0.00208 6;<br>$\alpha$ (N+)=0.000368 10<br>$\alpha$ (N)=0.000353 9; $\alpha$ (O)= $1.45 \times 10^{-5} 4$<br>Mult.: A <sub>2</sub> =-0.142 5, A <sub>4</sub> =+0.019 8 (for E(p)=3.5 MeV),<br>A <sub>2</sub> =-0.149 16, A <sub>4</sub> =+0.019 8 (for E(p)=3.0 MeV) (1976Ha57);<br>$\alpha$ (K)exp=0.088, $\alpha$ (L1)exp=0.0073 (1968E103). |  |  |  |  |
| 191.622                | 3+                                 | 118.716 <i>17</i><br>72.903 <i>11</i><br>191.2 <i>5</i> | 100<br>100       | $\begin{array}{ccc} 0.0 & 1^+ \\ 118.719 & 3^+ \\ 0.0 & 1^+ \end{array}$ | M1<br>(E2)         |              | 1.031<br>0.1447 25 | Mult.: $\alpha(K)\exp=0.86$ 17, $\alpha(L1)\exp=0.11$ 7 (1968EL03).<br>$\alpha(K)=0.1202$ 20; $\alpha(L)=0.0200$ 4; $\alpha(M)=0.00387$ 7;<br>$\alpha(N+)=0.000661$ 12<br>$\alpha(N)=0.000642$ 11; $\alpha(O)=1.92\times10^{-5}$ 4<br>Mult.: From A <sub>2</sub> =+0.235 13, A <sub>4</sub> =-0.030 22 (1976Ha57). Authors<br>of 1976Ha57 assign this transition as Q+(O), based on the<br>measured $\delta=+0.034$ 61.                                                        |  |  |  |  |
| 198.689                | 2+                                 | 197.58 3<br>198.69 3                                    | 100              | $1.112 \ 2^{-} \ 0.0 \ 1^{+}$                                            | M1(+E2)            | +0.017 17    | 0.0637             | $\alpha(K)=0.0554 \ 8; \ \alpha(L)=0.00677 \ 10; \ \alpha(M)=0.001287 \ 19; \ \alpha(N+)=0.000233 \ 4 \ \alpha(N)=0.000223 \ 4; \ \alpha(O)=1.040\times10^{-5} \ 15 \ B(M1)(W.u.)>0.033? \ Mult.: A_2=-0.084 \ 4, \ A_4=+0.014 \ 6 \ (1976Ha57) \ and \ from \ \alpha(K)\exp=0.048 \ 3 \ \alpha(L)\exp=0.0055 \ 8 \ (1968E103)$                                                                                                                                                |  |  |  |  |
| 236.859                | 1-                                 | 235.75 3                                                | 100              | 1.112 2-                                                                 | M1                 |              | 0.0405             | B(M1)(W.u.)>0.0067<br>Mult.: $\alpha$ (K)exp=0.027 1, $\alpha$ (L1)exp=0.0016 7 (1968EL03)<br>(includes L236.62γ).                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 237.069                | (1,2,3 <sup>+</sup> )              | 235.94 <i>4</i><br>237.05 <i>4</i>                      | 100              | $\begin{array}{ccc} 1.112 & 2^{-} \\ 0.0 & 1^{+} \end{array}$            |                    |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |

S

 $^{110}_{47}{\rm Ag}_{63}\text{-}5$ 

L

| Adopted Levels, Gammas (continued) |                                                          |                                                                                                             |                          |                                               |                                                                     |                              |                    |                                                                                                                                                                                                                                                                                                                           |  |  |  |
|------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------|---------------------------------------------------------------------|------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                    |                                                          |                                                                                                             |                          |                                               |                                                                     | $\gamma$ ( <sup>110</sup> A) | g) (continue       | ed)                                                                                                                                                                                                                                                                                                                       |  |  |  |
| E <sub>i</sub> (level)             | $\mathbf{J}_i^{\pi}$                                     | $E_{\gamma}^{\ddagger}$                                                                                     | $I_{\gamma}^{\ddagger}$  | $\mathrm{E}_{f}$                              | $\mathrm{J}_f^\pi$                                                  | Mult. <sup>#</sup>           | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 242.09<br>267.229                  | (6 <sup>-</sup> )<br>1 <sup>+</sup> ,2 <sup>+</sup>      | 124.5 <sup><i>a</i></sup> 2<br>68.552 10                                                                    | 100 <sup>a</sup><br>13 3 | 117.59<br>198.689                             | 6 <sup>+</sup><br>2 <sup>+</sup>                                    | M1(+E2)                      | 3.4 22             | $\alpha$ (K)=2.4 <i>14</i> ; $\alpha$ (L)=0.8 <i>7</i> ; $\alpha$ (M)=0.16 <i>14</i> ; $\alpha$ (N+)=0.026 <i>21</i> $\alpha$ (N)=0.025 <i>21</i> ; $\alpha$ (O)=0.00035 <i>16</i>                                                                                                                                        |  |  |  |
|                                    |                                                          | 266.11 <i>4</i><br>267.22 <i>4</i>                                                                          | 100 <i>11</i><br>24.6 25 | 1.112<br>0.0                                  | 2 <sup>-</sup><br>1 <sup>+</sup>                                    | (M1)                         | 0.0292             | Mult.: $\alpha(K) \exp[=1.04\ 21, \ \alpha(L1) \exp[=0.23\ 19\ (1968 E103)]$ .<br>$\alpha(K) = 0.0255\ 4; \ \alpha(L) = 0.00308\ 5; \ \alpha(M) = 0.000586\ 9; \ \alpha(N+) = 0.0001062\ 15$                                                                                                                              |  |  |  |
|                                    |                                                          |                                                                                                             |                          |                                               |                                                                     |                              |                    | $\alpha$ (N)=0.0001015 <i>15</i> ; $\alpha$ (O)=4.76×10 <sup>-6</sup> 7<br>B(M1)(W.u.)>0.0019<br>Mult.: A <sub>2</sub> =+0.013 9, A <sub>4</sub> =+0.026 <i>16</i> (1976Ha57), coefficient of<br>summed angular distribution for 265.7 $\gamma$ and 267.0 $\gamma$ and from<br>$\alpha$ (K)exp=0.017 <i>1</i> (1968El03). |  |  |  |
| 271.470                            | 2+,3+,4+                                                 | 79.847 12                                                                                                   | 100 10                   | 191.622                                       | 3+                                                                  | M1(+E2)                      | 2.0 13             | $\alpha(K)=1.5.9; \alpha(L)=0.4.4; \alpha(M)=0.08.7; \alpha(N+)=0.013.11$<br>$\alpha(N)=0.013.11; \alpha(O)=0.00023.10$<br>Mult : $\alpha(K)=n=0.82.16; \alpha(L)=n=0.08.3$ (1968E103)                                                                                                                                    |  |  |  |
|                                    |                                                          | 152.755 22                                                                                                  | 26 5                     | 118.719                                       | 3+                                                                  | M1(+E2)                      | 0.22 10            | $\alpha(K)=0.19 \ 8; \ \alpha(L)=0.031 \ 18; \ \alpha(M)=0.006 \ 4; \ \alpha(N+)=0.0010 \ 6 \ \alpha(N)=0.0010 \ 6; \ \alpha(O)=3.1\times10^{-5} \ 10 \ Mult.: \ \alpha(K)exp=0.15 \ 2 \ (1968E103).$                                                                                                                     |  |  |  |
| 293.3+x<br>302.1                   | (8 <sup>-</sup> )<br>(1 <sup>+</sup> ,2,3 <sup>+</sup> ) | 51.2 <sup><i>a</i></sup> 4<br>110.5 5<br>302.0 5                                                            | 100 <sup>a</sup>         | 242.09+x<br>191.622                           | $(7^{-})$<br>3 <sup>+</sup><br>1 <sup>+</sup>                       |                              |                    | $E_{\gamma}$ : From <sup>110</sup> Pd(p,n $\gamma$ ), <sup>109</sup> Ag(d,p $\gamma$ ).                                                                                                                                                                                                                                   |  |  |  |
| 304.525                            | 1+,2+,3+                                                 | 105.824 15                                                                                                  | 100                      | 198.689                                       | 1<br>2 <sup>+</sup>                                                 | M1                           | 0.358              | B(M1)(W.u.)>0.085<br>Mult.: $\alpha$ (K)exp=0.25 4, $\alpha$ (L1)exp=0.037 7 (1968El03).                                                                                                                                                                                                                                  |  |  |  |
| 338.960                            | 0 <sup>-</sup> ,1 <sup>-</sup>                           | 304.538 15<br>101.856 15<br>337.80 5<br>338.92 5                                                            |                          | 0.0<br>237.069<br>1.112<br>0.0                | $(1,2,3^+)$<br>$2^-$<br>$1^+$                                       |                              |                    |                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 360.618                            | 1+,2+                                                    | 93.402 14                                                                                                   | 100 10                   | 267.229                                       | 1+,2+                                                               | M1(+E2)                      | 1.2 7              | $\alpha$ (K)=0.9 5; $\alpha$ (L)=0.22 16; $\alpha$ (M)=0.04 4; $\alpha$ (N+)=0.007 5<br>$\alpha$ (N)=0.007 5; $\alpha$ (O)=0.00014 6<br>Mult.: $\alpha$ (K)exp=0.50 10, $\alpha$ (L1)exp=0.078 24 (1968El03).                                                                                                             |  |  |  |
|                                    |                                                          | 123.571 <i>18</i><br>123.766 <i>18</i><br>161.920 <i>24</i>                                                 | 26 5                     | 237.069<br>236.859<br>198.689                 | $(1,2,3^+)$<br>$1^-$<br>$2^+$                                       | M1(+E2)                      | 0.19 8             | $\alpha(K)=0.15\ 6;\ \alpha(L)=0.025\ 14;\ \alpha(M)=0.005\ 3;\ \alpha(N+)=0.0008\ 5$<br>$\alpha(N)=0.0008\ 5;\ \alpha(O)=2.6\times10^{-5}\ 8$<br>Mult : $\alpha(K)=0.12\ 4\ (1968E103)$                                                                                                                                  |  |  |  |
| 381.207                            | 1-,2-                                                    | 359.51 <i>5</i><br>360.62 <i>5</i><br>113.976 <i>17</i><br>144.148 <i>21</i><br>144.342 <i>21</i><br>280.06 | ≤12<br>≤12               | 1.112<br>0.0<br>267.229<br>237.069<br>236.859 | $2^{-} \\ 1^{+} \\ 1^{+}, 2^{+} \\ (1, 2, 3^{+}) \\ 1^{-} \\ 2^{-}$ |                              |                    | Mart. a(1)0Ap=0.12 + (1)00L105).                                                                                                                                                                                                                                                                                          |  |  |  |
| 411.973                            | (1+,2,3+)                                                | 380.09 6<br>381.20 6<br>220.35 3                                                                            | 24<br>100                | 0.0<br>191.622                                | 2<br>1+<br>3+                                                       |                              |                    |                                                                                                                                                                                                                                                                                                                           |  |  |  |

6

L

|                        |                                |                                                                                                                                                                          |                         |                                                                                                                                | A                                                                                                                           | dopted Lev         | els, Gamm               | as (continued)                                                                                                                                                                                         |
|------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                |                                                                                                                                                                          |                         |                                                                                                                                |                                                                                                                             | $\gamma(^{11}$     | <sup>)</sup> Ag) (conti | nued)                                                                                                                                                                                                  |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$           | Eγ‡                                                                                                                                                                      | $I_{\gamma}^{\ddagger}$ | E <sub>f</sub>                                                                                                                 | $J_f^{\pi}$                                                                                                                 | Mult. <sup>#</sup> | $\alpha^{\dagger}$      | Comments                                                                                                                                                                                               |
| 411.973                | (1+,2,3+)                      | 293.26 <i>4</i><br>411.96 <i>6</i>                                                                                                                                       |                         | 118.719<br>0.0                                                                                                                 | 3+<br>1 <sup>+</sup>                                                                                                        |                    |                         |                                                                                                                                                                                                        |
| 424.721                | (1,2,3 <sup>+</sup> )          | 157.488 <sup>b</sup> 23<br>187.65 3<br>423.60 6<br>424.71 6                                                                                                              |                         | 267.229<br>237.069<br>1.112<br>0.0                                                                                             | $1^+, 2^+$<br>(1,2,3^+)<br>$2^-$<br>$1^+$                                                                                   |                    |                         |                                                                                                                                                                                                        |
| 432.376                | (2)-                           | 165.138 24<br>195.52 3<br>233.67 3<br>240.76 4<br>313.64 5<br>431.38 6                                                                                                   | 100                     | 267.229<br>236.859<br>198.689<br>191.622<br>118.719<br>1.112                                                                   | 1 <sup>+</sup> ,2 <sup>+</sup><br>1 <sup>-</sup><br>2 <sup>+</sup><br>3 <sup>+</sup><br>2 <sup>-</sup>                      |                    |                         |                                                                                                                                                                                                        |
| 456.53                 | (2+,3,4+)                      | 185.07 <i>3</i><br>337.80 <i>5</i>                                                                                                                                       |                         | 271.470<br>118.719                                                                                                             | 2 <sup>+</sup> ,3 <sup>+</sup> ,4 <sup>+</sup><br>3 <sup>+</sup>                                                            |                    |                         |                                                                                                                                                                                                        |
| 466.885                | (1+,2,3+)                      | 162.371 24<br>275.23 4<br>348 17 5                                                                                                                                       |                         | 304.525<br>191.622<br>118 719                                                                                                  | $1^+, 2^+, 3^+$<br>$3^+$<br>$3^+$                                                                                           |                    |                         |                                                                                                                                                                                                        |
| 468.850                | (1+,2,3)                       | 108.229 <i>16</i><br>164.316 <i>24</i><br>197.38 <i>3</i><br>231.77 <i>3</i><br>270.15 <i>4</i><br>350.12 <i>5</i>                                                       |                         | 360.618<br>304.525<br>271.470<br>237.069<br>198.689<br>118.719                                                                 | $ \begin{array}{c} 1^+, 2^+ \\ 1^+, 2^+, 3^+ \\ 2^+, 3^+, 4^+ \\ (1, 2, 3^+) \\ 2^+ \\ 3^+ \end{array} $                    |                    |                         |                                                                                                                                                                                                        |
| 471.239                | (1,2,3)                        | 166.710 <i>24</i><br>234.18 <i>3</i><br>272.54 <i>4</i>                                                                                                                  | 100                     | 304.525<br>237.069<br>198.689                                                                                                  | $1^+, 2^+, 3^+$<br>(1,2,3 <sup>+</sup> )<br>$2^+$                                                                           |                    |                         |                                                                                                                                                                                                        |
| 484.40+x<br>485.737    | $(9^{-})$<br>$(1^{+},2,3^{-})$ | 191.1 <sup><i>a</i></sup> 2<br>125.155 <i>1</i> 8                                                                                                                        | 100 <sup>a</sup><br>100 | 293.3+x<br>360.618                                                                                                             | (8 <sup>-</sup> )<br>1 <sup>+</sup> ,2 <sup>+</sup>                                                                         | M1+E2              | 0.44 22                 | $\alpha(K)=0.35 \ 16; \ \alpha(L)=0.07 \ 5; \ \alpha(M)=0.013 \ 9; \ \alpha(N+)=0.0022 \ 14 \ \alpha(N)=0.0021 \ 14; \ \alpha(O)=5.7\times10^{-5} \ 21 \ Mult.; \ \alpha(K)exp=0.29 \ 4 \ (1968E103).$ |
| 496.886                | (1,2,3+)                       | 181.27 3<br>218.57 3<br>248.91 4<br>287.08 4<br>294.12 4<br>367.05 5<br>115.685 17<br>229.66 3<br>259.82 4<br>260.02 <sup>b</sup> 4<br>298.18 <sup>b</sup> 4<br>495.76 7 |                         | 304.525<br>267.229<br>236.859<br>198.689<br>191.622<br>118.719<br>381.207<br>267.229<br>237.069<br>236.859<br>198.689<br>1.112 | $1^{+},2^{+},3^{+}$ $1^{+},2^{+}$ $1^{-}$ $2^{+}$ $3^{+}$ $1^{-},2^{-}$ $1^{+},2^{+}$ $(1,2,3^{+})$ $1^{-}$ $2^{+}$ $2^{-}$ |                    |                         |                                                                                                                                                                                                        |

 $\neg$ 

From ENSDF

 $^{110}_{47}\mathrm{Ag}_{63}$ -7

<sup>110</sup><sub>47</sub>Ag<sub>63</sub>-7

I

# $\gamma(^{110}\text{Ag})$ (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\ddagger}$ | I <sub>γ</sub> ‡ | $E_f$   | $\mathbf{J}_f^\pi$  | Comments                                                                                |
|------------------------|----------------------|-------------------------|------------------|---------|---------------------|-----------------------------------------------------------------------------------------|
| 496.886                | $(1.2.3^{+})$        | 496.87 7                |                  | 0.0     | 1+                  |                                                                                         |
| 525.677                | $(1,2,3^{-})$        | 186.76 <i>3</i>         |                  | 338.960 | $0^{-}, 1^{-}$      |                                                                                         |
|                        |                      | 288.62 4                |                  | 237.069 | $(1,2,3^+)$         |                                                                                         |
|                        |                      | 288 82 <mark>b</mark> 4 |                  | 236 859 | 1-                  |                                                                                         |
|                        |                      | 326.97.5                |                  | 198 689 | $2^{+}$             |                                                                                         |
|                        |                      | 524 54 8                |                  | 1 112   | $\bar{2}^{-}$       |                                                                                         |
| 527.428                | $(1^+, 2, 3^-)$      | 166.891.24              |                  | 360.618 | $1^{+}.2^{+}$       |                                                                                         |
| 02/1120                | (1,,=,0)             | 188.17.3                |                  | 338,960 | $0^{-}.1^{-}$       |                                                                                         |
|                        |                      | 256.03 4                |                  | 271.470 | $2^+.3^+.4^+$       |                                                                                         |
|                        |                      | 328.80 5                |                  | 198.689 | 2+                  |                                                                                         |
|                        |                      | 335.91.5                |                  | 191.622 | 3+                  |                                                                                         |
|                        |                      | 408.79 6                |                  | 118,719 | 3+                  |                                                                                         |
|                        |                      | 526.39 8                |                  | 1.112   | 2-                  |                                                                                         |
| 536.209                | $0^{-}.1^{-}$        | 175.56 3                |                  | 360.618 | $1^+.2^+$           |                                                                                         |
|                        | - ,                  | 231.66.3                |                  | 304.525 | $1^{+}.2^{+}.3^{+}$ |                                                                                         |
|                        |                      | 268.96 4                |                  | 267.229 | $1^+, 2^+$          |                                                                                         |
|                        |                      | 299.33 4                |                  | 236.859 | 1-                  |                                                                                         |
|                        |                      | 536.16 8                |                  | 0.0     | $1^{+}$             |                                                                                         |
| 540                    |                      | $540^{\&}$ 3            |                  | 0.0     | 1+                  |                                                                                         |
| 549.397                | (1.2.3)              | 188.77.3                |                  | 360.618 | $1^{+}.2^{+}$       |                                                                                         |
| 0 19 10 9 1            | (1,=,0)              | 244.85 4                |                  | 304.525 | $1^{+}.2^{+}.3^{+}$ |                                                                                         |
|                        |                      | 277.88 4                |                  | 271.470 | $2^+.3^+.4^+$       |                                                                                         |
|                        |                      | 282.16 4                |                  | 267.229 | $1^+.2^+$           |                                                                                         |
|                        |                      | 312.53 5                |                  | 236.859 | 1-                  |                                                                                         |
|                        |                      | 549.38 8                |                  | 0.0     | 1+                  |                                                                                         |
| 586.8                  |                      | 586.8 5                 |                  | 0.0     | $1^{+}$             | $E_{\gamma}$ : From <sup>110</sup> Pd(p,n $\gamma$ ), <sup>109</sup> Ag(d,p $\gamma$ ). |
| 595.05                 | $1^{-},2^{-}$        | 358.00 5                |                  | 237.069 | $(1,2,3^+)$         |                                                                                         |
|                        |                      | 358.17 5                |                  | 236.859 | 1-                  |                                                                                         |
|                        |                      | 593.91 9                |                  | 1.112   | 2-                  |                                                                                         |
|                        |                      | 595.07 9                |                  | 0.0     | $1^{+}$             |                                                                                         |
| 613.058                |                      | 231.84 <i>3</i>         |                  | 381.207 | $1^{-},2^{-}$       |                                                                                         |
|                        |                      | 274.12 4                |                  | 338.960 | $0^{-}, 1^{-}$      |                                                                                         |
|                        |                      | 494.33 7                |                  | 118.719 | 3+                  |                                                                                         |
| 615.137                | (1,2,3)              | 182.76 <i>3</i>         |                  | 432.376 | $(2)^{-}$           |                                                                                         |
|                        |                      | 254.51 <i>4</i>         |                  | 360.618 | $1^+, 2^+$          |                                                                                         |
|                        |                      | 378.08 6                |                  | 237.069 | $(1,2,3^+)$         |                                                                                         |
|                        |                      | 378.28 6                |                  | 236.859 | 1-                  |                                                                                         |
|                        |                      | 614.04 9                |                  | 1.112   | 2-                  |                                                                                         |
| 633.442                |                      | 136.555 20              | 100              | 496.886 | $(1,2,3^{+})$       |                                                                                         |
|                        |                      | 252.24 4                |                  | 381.207 | 1-,2-               |                                                                                         |
|                        |                      | 272.82 4                |                  | 360.618 | 1+,2+               |                                                                                         |
|                        |                      | 366.21 5                |                  | 267.229 | 1+,2+               |                                                                                         |
|                        |                      | 396.39 6                |                  | 237.069 | $(1,2,3^{+})$       |                                                                                         |
|                        |                      |                         |                  |         |                     |                                                                                         |

 $\infty$ 

 $^{110}_{47}\mathrm{Ag}_{63}\text{--}8$ 

L

# $\gamma(^{110}\text{Ag})$ (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                                | $E_{\gamma}^{\ddagger}$                                                                                       | $\mathbf{E}_{f}$                                                                            | $\mathbf{J}_f^{\pi}$                                                                                            | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                                                                    | E <sub>γ</sub> ‡                                                                                                                               | $E_f$                                                                                                                                                                                               | $\mathbf{J}_f^{\pi}$                                                                                                 |
|------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 653.929                | (1+,2,3+)                                         | 157.043 23<br>185.07 3<br>315.05 5<br>417.06 6<br>462 20 7                                                    | 496.886<br>468.850<br>338.960<br>236.859                                                    | $(1,2,3^+) (1^+,2,3) 0^-,1^- 1^- 2^+ $                                                                          | 706.214                | (1+,2,3+)                                                                             | 345.50 5<br>434.65 6<br>507.41 7<br>514.45 <sup>b</sup> 8                                                                                      | 360.618 1+<br>271.470 2+<br>198.689 2+<br>191.622 3+<br>118.710 2+                                                                                                                                  | ,2 <sup>+</sup><br>,3 <sup>+</sup> ,4 <sup>+</sup>                                                                   |
| 663.463                | (1 <sup>-</sup> ,2 <sup>-</sup> ,3 <sup>-</sup> ) | 652.76 <i>10</i><br>114.082 <i>17</i><br>177.69 <i>3</i><br>194.61 <i>3</i>                                   | 191.022<br>1.112<br>549.397<br>485.737<br>468.850                                           | $5 \\ 2^{-} \\ (1,2,3) \\ (1^{+},2,3^{-}) \\ (1^{+},2,3) $                                                      | 724.67                 | 1+,2,3+                                                                               | 253.43 4<br>605.95 9<br>723.57 11<br>724.69 11                                                                                                 | $\begin{array}{c} 118.719 & 3 \\ 471.239 & (1, \\ 118.719 & 3^{+} \\ 1.112 & 2^{-} \\ 0.0 & 1^{+} \end{array}$                                                                                      | 2,3)                                                                                                                 |
| 664.935                | (1-,2-,3-)                                        | 302.84 <i>4</i><br>358.93 5<br>464.78 7<br>662.27 <i>10</i><br>283.73 <i>4</i>                                | 360.618<br>304.525<br>198.689<br>1.112<br>381.207                                           | $1^+, 2^+$<br>$1^+, 2^+, 3^+$<br>$2^-$<br>$1^-, 2^-$                                                            | 725.807                |                                                                                       | 228.92 <i>3</i><br>301.06 <i>4</i><br>344.60 <i>5</i><br>386.90 <i>6</i><br>488.75 <i>7</i>                                                    | 496.886 (1,<br>424.721 (1,<br>381.207 1 <sup></sup><br>338.960 0 <sup></sup><br>237.069 (1,                                                                                                         | $2,3^+)$<br>$2,3^+)$<br>$,2^-$<br>$,1^-$<br>$2,3^+)$                                                                 |
|                        | (- ,- ,- )                                        | 304.30 5<br>326.01 5<br>393.49 6<br>427.87 6<br>428.06 6<br>466.22 7<br>663.75 10                             | 360.618<br>338.960<br>271.470<br>237.069<br>236.859<br>198.689<br>1.112                     | $1^{+}, 2^{+}$<br>$0^{-}, 1^{-}$<br>$2^{+}, 3^{+}, 4^{+}$<br>$(1, 2, 3^{+})$<br>$1^{-}$<br>$2^{+}$<br>$2^{-}$   | 748.598                | 1 <sup>-</sup> ,2 <sup>-</sup>                                                        | 212.39 <i>3</i><br>323.86 <i>5</i><br>367.38 <i>5</i><br>387.97 <i>6</i><br>409.69 <i>6</i><br>549.87 <i>8</i><br>748.63 <i>11</i>             | 536.209 0 <sup>-</sup><br>424.721 (1,<br>381.207 1 <sup>-</sup><br>360.618 1 <sup>+</sup><br>338.960 0 <sup>-</sup><br>198.689 2 <sup>+</sup><br>0.0 1 <sup>+</sup>                                 | $(1,1)^{,1}$<br>$(2,3^+)^{,2^-}$<br>$(2,2^+)^{,2^+}$<br>$(1,1)^{,2^-}$                                               |
| 683.152                | (1,2,3)                                           | 157.488 <sup>b</sup> 23<br>214.29 3<br>322.52 5<br>378.62 6<br>415.91 6<br>484.45 7                           | 525.677<br>468.850<br>360.618<br>304.525<br>267.229<br>198.689                              | $(1,2,3^{-})$<br>$(1^{+},2,3)$<br>$1^{+},2^{+}$<br>$1^{+},2^{+},3^{+}$<br>$1^{+},2^{+}$<br>$2^{+}$              | 750.837                | (2) <sup>-</sup>                                                                      | 223.37 <i>3</i><br>390.25 6<br>446.34 7<br>483.68 7<br>632.19 9<br>750.89 <i>11</i>                                                            | 527.428 (1<br>360.618 1+<br>304.525 1+<br>267.229 1+<br>118.719 3+<br>0.0 1+                                                                                                                        | <sup>+</sup> ,2,3 <sup>-</sup> )<br>,2 <sup>+</sup><br>,2 <sup>+</sup> ,3 <sup>+</sup><br>,2 <sup>+</sup>            |
| 689.47                 | (1+,2,3+)                                         | 232.94 <i>3</i><br>422.23 <i>6</i><br>570.76 <i>8</i>                                                         | 456.53<br>267.229<br>118.719                                                                | (2 <sup>+</sup> ,3,4 <sup>+</sup> )<br>1 <sup>+</sup> ,2 <sup>+</sup><br>3 <sup>+</sup>                         | 753<br>767.01          | 1 <sup>-</sup> ,2 <sup>-</sup> ,3 <sup>-</sup><br>(1 <sup>+</sup> ,2,3 <sup>+</sup> ) | 753 <sup>&amp;</sup> 3<br>298.18 <sup>b</sup> 4<br>406.44 6                                                                                    | 0.0 1 <sup>+</sup><br>468.850 (1 <sup>-</sup><br>360.618 1 <sup>+</sup>                                                                                                                             | +,2,3)<br>,2 <sup>+</sup>                                                                                            |
| 698.561                |                                                   | 149.168 22<br>162.371 24<br>201.68 3<br>212.77 3<br>273.85 4<br>317.34 5<br>337.95 5<br>461.51 7<br>698 58 10 | 549.397<br>536.209<br>496.886<br>485.737<br>424.721<br>381.207<br>360.618<br>237.069<br>0.0 | $(1,2,3)  0^{-},1^{-}  (1,2,3^{+})  (1^{+},2,3^{-})  (1,2,3^{+})  1^{-},2^{-}  1^{+},2^{+}  (1,2,3^{+})  1^{+}$ | 773.697                | (1+,2,3+)                                                                             | 648.04 <i>10</i><br>765.93 <i>11</i><br>237.49 <i>4</i><br>276.80 <i>4</i><br>348.98 5<br>469.14 7<br>536.72 8<br>574.98 8<br>654 99 <i>10</i> | 118.719 3 <sup>+</sup><br>1.112 2 <sup>-</sup><br>536.209 0 <sup>-</sup><br>496.886 (1,<br>424.721 (1,<br>304.525 1 <sup>+</sup><br>237.069 (1,<br>198.689 2 <sup>+</sup><br>118.719 3 <sup>+</sup> | ,1 <sup>-</sup><br>2,3 <sup>+</sup> )<br>2,3 <sup>+</sup> )<br>,2 <sup>+</sup> ,3 <sup>+</sup><br>2,3 <sup>+</sup> ) |
| 706.214                | (1+,2,3+)                                         | 156.754 23<br>169.923 25<br>220.85 3<br>237.28 4                                                              | 549.397<br>536.209<br>485.737<br>468.850                                                    | (1,2,3)<br>$0^{-},1^{-}$<br>$(1^{+},2,3^{-})$<br>$(1^{+},2,3)$                                                  | 785.683                | (1+,2,3+)                                                                             | 773.67 <i>11</i><br>236.27 <i>4</i><br>249.47 <i>4</i><br>260.02 <sup><i>b</i></sup> <i>4</i>                                                  | $\begin{array}{c} 0.0 & 1^+ \\ 549.397 & (1, \\ 536.209 & 0^- \\ 525.677 & (1, \\ \end{array}$                                                                                                      | 2,3)<br>,1 <sup>-</sup><br>2,3 <sup>-</sup> )                                                                        |

9

 $^{110}_{47}\mathrm{Ag}_{63}$ -9

|                        |                      |                                                                           |                                                                                                                                                                   | Ado                          | opted Lev                                                      | els, Gammas (                                                                          | continued)                                                |                                             |                                                                        |
|------------------------|----------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------|
|                        |                      |                                                                           |                                                                                                                                                                   |                              | $\gamma(^{11}$                                                 | <sup>0</sup> Ag) (continue                                                             | d)                                                        |                                             |                                                                        |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\ddagger}$                                                   | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$                                                                                                                          | E <sub>i</sub> (level)       | $\mathbf{J}_i^{\pi}$                                           | $E_{\gamma}^{\ddagger}$                                                                | $I_{\gamma}^{\ddagger}$                                   | $E_f$                                       | ${ m J}_f^\pi$                                                         |
| 785.683                | (1+,2,3+)            | 288.82 <sup>b</sup> 4<br>316.82 5<br>481.21 7<br>586.97 7                 | 496.886 (1,2,3 <sup>+</sup> )<br>468.850 (1 <sup>+</sup> ,2,3)<br>304.525 1 <sup>+</sup> ,2 <sup>+</sup> ,3 <sup>+</sup><br>198.689 2 <sup>+</sup>                | 819.017                      |                                                                | 386.64 <i>6</i><br>514.45 <sup><i>b</i></sup> 8<br>581.96 <i>9</i><br>620.32 <i>10</i> |                                                           | 432.376<br>304.525<br>237.069<br>198.689    | $(2)^{-}$<br>$1^{+},2^{+},3^{+}$<br>$(1,2,3^{+})$<br>$2^{+}$           |
|                        |                      | 666.84 <i>10</i><br>785.66 <i>12</i>                                      | $\begin{array}{ccc} 118.719 & 3^+ \\ 0.0 & 1^+ \end{array}$                                                                                                       | 820<br>890.7+x               | (10 <sup>-</sup> )                                             | $820^{\infty} 3$<br>406.3 <sup><i>a</i></sup> 2                                        | 100 <i>a</i>                                              | 0.0<br>484.40+x                             | 1 <sup>+</sup><br>(9 <sup>-</sup> )                                    |
| 793                    | 1,2,3+               | 793 <sup>&amp;</sup> 3                                                    | 0.0 1+                                                                                                                                                            | 918                          |                                                                | 918 <sup>&amp;</sup> 3                                                                 |                                                           | 0.0                                         | 1+                                                                     |
| 802.73                 |                      | 277.07 <i>4</i><br>611.04 <i>9</i>                                        | 525.677 $(1,2,3^{-})$<br>191.622 $3^{+}$                                                                                                                          | 1104<br>1111                 | 1,2,3+                                                         | $1104^{\circ} 3$<br>$1111^{\circ} 4$                                                   |                                                           | 0.0<br>0.0                                  | 1+<br>1+                                                               |
| 811.419                |                      | 683.98 <i>10</i><br>275.23 <i>4</i><br>325.64 <i>5</i><br>342.62 <i>5</i> | $\begin{array}{c} 118.719  3^{+} \\ 536.209  0^{-},1^{-} \\ 485.737  (1^{+},2,3^{-}) \\ 468.850  (1^{+},2,3) \\ 360  (1^{+},2,3) \\ 360  (1^{+},2,3) \end{array}$ | 1167<br>1229.8+x<br>1707.2+x | 1,2,3 <sup>+</sup><br>(11 <sup>-</sup> )<br>(12 <sup>-</sup> ) | $1167^{\&} 3$ $339.1^{a} 2$ $745.5^{a} 3$ $477.4^{a} 2$                                | $100^{a} 12$<br>$44^{a} 12$<br>$100^{a} 24$               | 0.0<br>890.7+x<br>484.40+x<br>1229.8+x      | $1^+$<br>(10 <sup>-</sup> )<br>(9 <sup>-</sup> )<br>(11 <sup>-</sup> ) |
|                        |                      | 450.78 7<br>506.83 7<br>544.20 8<br>612 71 0                              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                              | 2198.1+x                     | $(13^{-})$                                                     | $816.4^{a}$ 4<br>$490.8^{a}$ 3<br>$968.4^{a}$ 5<br>$468.0^{a}$ 3                       | $18^{a} 6$<br>$86^{a} 29$<br>$100^{a} 29$<br>$100^{a} 33$ | 890.7+x<br>1707.2+x<br>1229.8+x<br>2108.1+x | (10)<br>$(12^{-})$<br>$(11^{-})$<br>$(13^{-})$                         |
| 819.017                |                      | 165.093 <i>24</i><br>282.80 <i>4</i>                                      | $\begin{array}{c} 136.009 \ 2 \\ 653.929 \ (1^+,2,3^+) \\ 536.209 \ 0^-,1^- \end{array}$                                                                          | 2000.1+X                     | (14)                                                           | 959 <sup><i>a</i></sup> 1                                                              | $50^{a} 17$                                               | 1707.2+x                                    | (12 <sup>-</sup> )                                                     |

10

<sup>†</sup> Additional information 3. <sup>‡</sup> From <sup>109</sup>Ag(n, $\gamma$ ) ( $\Delta$ E $\gamma$  estimated by the evaluators based on  $\Delta$ E $\gamma$  given in 1975Cl03), unless otherwise stated. <sup>#</sup> Deduced from  $\alpha$ (K)exp and  $\alpha$ (L1)exp in <sup>109</sup>Ag(n, $\gamma$ ) (1968El03), or  $\gamma(\theta)$  in <sup>110</sup>Pd(p,n $\gamma$ ), <sup>109</sup>Ag(d,p $\gamma$ ) (1976Ha57), unless otherwise stated. <sup>@</sup> From  $\gamma(\theta)$  in <sup>110</sup>Pd(p,n $\gamma$ ), <sup>109</sup>Ag(d,p $\gamma$ ) (1976Ha57). <sup>&</sup> From <sup>109</sup>Ag(n, $\gamma$ ) E=5.2 eV res. <sup>a</sup> From <sup>176</sup>Yb(<sup>28</sup>Si,X $\gamma$ ). <sup>b</sup> Multiply placed

<sup>b</sup> Multiply placed.



<sup>110</sup><sub>47</sub>Ag<sub>63</sub>

#### Level Scheme (continued)

Intensities: Type not specified



<sup>110</sup><sub>47</sub>Ag<sub>63</sub>

#### Level Scheme (continued)

Intensities: Type not specified



<sup>110</sup><sub>47</sub>Ag<sub>63</sub>

#### Level Scheme (continued)

Intensities: Type not specified



<sup>110</sup><sub>47</sub>Ag<sub>63</sub>



<sup>110</sup><sub>47</sub>Ag<sub>63</sub>





<sup>110</sup><sub>47</sub>Ag<sub>63</sub>



<sup>110</sup><sub>47</sub>Ag<sub>63</sub>



 $^{110}_{47}\mathrm{Ag}_{63}$