Adopted Levels 2019We03

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	C. G. Sheu, J. H. Kelley	ENSDF	29-April-2019					

$S(p) = -1.56 \times 10^3$ 2017Wa10,2019We03

From S_{2p} =-4160 keV (2019We03), $\Delta M(^{9}C)$ =28.91 MeV and $\Delta M(^{11}O)$ =47.65 MeV.

Evidence supporting observation of the unbound ground state of ¹¹O has been reported in (2019We03). A multiplet of unresolved broad states peaked at $E(2p+{}^9C)\approx4.5$ MeV is observed; the analysis supports association with a group of four resonances having $J^{\pi}=3/2^{-}$ and $5/2^{+}$.

Theoretical Mass Estimates:

2012Ch40: The mass of ¹¹C was predicted using the Isobaric Multiplet Mass Equation. In the article, the authors used the ${}^{12}Be(p,2n)$ reaction to identify the ${}^{11}Li_{g.s.}$ double isobaric analog state in ${}^{11}B$ at $E_x=33.57$ MeV 8. With this information, and using the appropriate analog state masses of ${}^{11}Li$, ${}^{11}Be$ and ${}^{11}B$, using the *a*, *b* and *c* terms of the IMME they predicted the mass excess of the ${}^{11}O$ ground state as $\Delta M=46.70$ MeV 84. In this case, ${}^{11}O$ is predicted to be unbound to 2p decay by 3.21 MeV 84. 2013Fo20:

A parametrization of mirror energy differences is developed and used to predict the ${}^{11}O_{g.s.}$ mass. The formula is presented as $MED=S_{2n}-S_{2p}=[a+bS_{2n}-cP(s^2)]Z_{<}/A^{1/3}$, where $P(s^2)$ is the fractional parentage in the $2s_{1/2}$ orbital. Using a=0.0228(7) (dimensionless), b=0.724(6) MeV and c=2.373(9) MeV (2013Fo01), $S_{2p}=-5.41$ MeV 11 is predicted.

2013Fo26, 2017Fo14:

In (2013Fo26) a potential model is developed to estimate the energies of the s²- and p-shell energies in ¹¹O, and the relationship between the two proton separation energy, S_{2p}, and the fractional occupancy, P(s²), is explored. The sequential decay (via ¹⁰N unbound states) and simultaneous 2p decay modes of ¹¹O are estimated in (2017Fo14) using their predicted S_{2p}=-4.49 MeV value. Their conclusion suggests, "Simultaneous decay is predicted to be comparable to or larger than sequential decay.". Others:

See also (1974Ir04, 1987Sa15, 2000Po32).

¹¹O Levels

Cross Reference (XREF) Flags

 $^{9}Be(^{13}O,2p+^{9}C)$

E(level) ^{†‡}	$J^{\pi \dagger}$	T _{1/2} †	$E_{rel.}(2p+{}^9C)$ (MeV)	XREF	Comments
0	(3/2-)	1.30 MeV	4.16	A	%2p≈100 E(level): (2019We03) observe a peak near E _{res} (2p+ ⁹ C)≈4.5 MeV that is reasonably explained assuming a four resonance multiplet.
0.49×10^{3}	$(5/2^+)$	1.06 MeV	4.65	Α	%2p≈100
0.69×10^{3}	$(3/2^{-})$	1.33 MeV	4.85	Α	%2p≈100
2.12×10^{3}	$(5/2^+)$	1.96 MeV	6.28	Α	%2p~100

[†] From analysis of a 2p+⁹C relative energy spectrum, including comparison with the mirror ¹¹Li nuclear structure.

^{\ddagger} E_{g.s.} from E_{res}(2p+⁹C)=4.16 MeV.