⁹Be(¹³O,2p+⁹C) 2019We03

	History					
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	C. G. Sheu, J. H. Kelley	ENSDF	29-April-2019			

- The authors analysed the relative energy spectrum of 2p+⁹C products following 2-neutron knockout reactions from ¹³O ions. First evidence of any ¹¹O resonances is reported.
- A beam of 69.5 MeV/nucleon ¹³O ions, from the NSCL/A1900 fragment separator, was purified in the Radio Frequency Fragment Separator before impinging on a 1 mm thick ⁹Be target. The reaction products were detected using the HiRA High-Resolution position sensitive ΔE -E telescope array, which covered the polar angles $\theta_{lab}=2.1^{\circ}$ to 12.1° . A broad peak near $E_{res}(2p+{}^{9}C)\approx4.5$ MeV was observed in the total energy spectrum. The peak included contributions from $2p+{}^{9}C$, $2p+{}^{10}C$ and $2p+{}^{11}C$; however the $2p+{}^{10}C({}^{12}O)$ and $2p+{}^{11}C({}^{13}O)$ components were estimated and subtracted.
- A rigorous theoretical analysis of the resulting spectrum was carried out that included a comparison with the mirror ¹¹Li system. The authors found a reasonable fit to their spectrum by assuming the broad peak they observed could be associated with a collection of four unresolved $J^{\pi}=3/2^{-}$ and $5/2^{+}$ states.

¹¹O Levels

E(level) ^{†‡}	$J^{\pi \dagger}$	$\Gamma (MeV)^{\dagger}$	$E_{rel.}(2p+{}^9C)$ (MeV)	Comments
0	(3/2 ⁻)	1.30 MeV	4.16	%2p≈100 E(level): (2019We03) observe a peak near E _{res} (2p+ ⁹ C)≈4.5 MeV that is reasonably explained using a four resonance fit. The fit, which is guided by theory, is found to be favorable but not uniquely constrained.
0.49×10^{3}	$(5/2^+)$	1.06 MeV	4.65	%2p≈100
0.69×10^{3}	$(3/2^{-})$	1.33 MeV	4.85	%2p≈100
2.12×10^3	$(5/2^+)$	1.96 MeV	6.28	%2p≈100

[†] From analysis and comparison with ¹¹Li.

[‡] $E_{g.s.}$ from $E_{res}(2p+{}^{9}C)=4.16$ MeV.

¹¹₈O₃