¹¹Li β^- decay:8.75 ms 2005Hi03

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	J. H. Kelley, C. G. Sheu	NP A880, 88 (2012)	1-Jan-2011				

Parent: ¹¹Li: E=0.0; $J^{\pi}=3/2^{-}$; $T_{1/2}=8.75$ ms 14; $Q(\beta^{-})=20551.2$ 11; % β^{-} decay=100.0

¹¹Li- $\%\beta^-$ decay: From (2003Au02). Sum of β feedings to excited states in ¹¹Be from (2005Hi03) is 91% 8 which is consistent with 100% β -branch given by (2003Au02).

¹¹Li beam polarized by collinear optical pumping technique (refer to paper by Levy et al., Nucl. Instrum. Meth. B 204, 689 (2003) for further details).

Measured E γ , E β , En, I γ , I β , In, β n γ coin, $\beta(\theta)$, neutron TOF with two Δ E-E plastic scintillator telescopes, two \approx 50% HPGe detectors, one ⁶Li-doped glass scintillator and six curved, large area plastic scintillators.

1979Az03: ¹¹Li β -decay, measured β -delayed E_N, nn-coin. ¹¹Be levels deduced 1n, 2n decay probabilities.

1980Az01: ¹¹Li β -decay, measured β -delayed, one-, two- three-neutron emission intensity, I_N, relative two-, three-neutron branching ratios.

1980De39: ¹¹Li β -decay, measured E_{γ} , I_{γ} , I_{β} , β -delayed E_N , I_N . Deduced log ft total β -delayed neutron emission probability.

1981La11: ¹¹Li β-decay, measured β-delayed E_{α} , β-α-coin. ¹¹Li, measured β-delayed $E(^{6}He)$, β(⁶He)-coin. Deduced log ft. ¹¹Li deduced three neutron emission probability, β-delayed I_N.

1991Bo31: ¹¹Li β -decay, measured continuum particle spectra following β -decay. Deduced log ft, Gamow-Teller transition strength, Γ -level, di-neutron, neutron halo roles.

1996Mu19: ¹¹Li(β^-), measured β -delayed deuteron-, triton-total energy spectra, β -delayed charged particles count rate vs elapsed time. Deduced β -delayed deuteron emission associated branching ratio lower limit.

1997Bo03: ¹¹Li(β^{-}), measured β -delayed D, t, ^{4,6}He, ^{9,10}Be spectra. ¹¹Be level deduced Gamow-Teller strength, branching ratios.

1997Mo35: ¹¹Li(β ⁻n), measured β -delayed E_N, I_N, E_{γ}, I_{γ}, T_{1/2}. ¹¹Be deduced levels, branching ratios, Gamow-Teller strength distributions, ¹¹Li neutron halo dependence.

2003Fy01: ¹¹Li(β^{-} n); analyzed Doppler-broadened E_{γ}, I_{γ}. ¹¹Be level deduced neutron decay T_{1/2}, related features.

2004Fy01: ¹¹Li(β^-), (β^- n); measured β -delayed E_{γ}, I_{γ}, $\beta\gamma$ -coin, DSA. Deduced neutron spectrum.

2004Hi12: ¹¹Li(β^-), (β^- n); measured β -delayed E_N, E_{γ}, $\beta\gamma$ -, β n-coin following decay of spin-polarized source; deduced log *ft*. ¹¹Be deduced levels, J, π , neutron spectroscopic factors.

2004Hi24: ¹¹Li(β^-), (β^- n); measured β -delayed E_{γ}, E_N, asymmetry following decay of spin-polarized source. ¹¹Be deduced levels, J, π .

2004Sa46: ¹¹Li(β^-), (β^- n); measured E_{γ}, I_{γ}, β -delayed neutron spectra. ¹¹Be deduced levels, J, π , halo features.

2005Hi03: ¹¹Li(β^-), (β^- n); measured β -delayed E_{γ}, E_N, asymmetry following decay of spin-polarized source. ¹¹Be deduced levels, J, π , S-factors.

2007RaZS: ¹¹Li(β^{-}); measured β -delayed deuteron, triton, charged particle total energy spectra.

2008Ma34: ¹¹Li(β^{-}); measured β -delayed charged-particle spectra. ¹¹Be deduced subsequent break-up decay channels.

2008MaZY: ¹¹Li(β^{-}); measured β -delayed E_{α}, I_{α}, $\alpha\alpha$ -coin. ¹¹Be deduced levels, partial decay branches.

2008Ra23: ¹¹Li(β^{-}); measured β -delayed deuteron spectrum. Deduced transition probability.

2009Ma31: ¹¹Li(β^-); measured E_{β}, I_{β}, E_{α}, I_{α}, (charged-particle)(charged-particle)-coin In a kinematically complete experiments. Deduced B(GT). ¹¹Be deduced level energy, J, π using Monte Carlo.

¹¹Be Levels

With S(n)(¹¹Be)=501.62 keV 25 (2009AuZZ), above 320 keV, all levels listed here decay by neutron emission.

Assumption of neutron decays from 10600, 8820, 7030, and 3410 levels in ¹¹Be and 9270 level in ¹⁰Be by the authors

significantly improves the line shape fitting to the neutron TOF spectra. However, the fitting failed to reproduce the spectra around \approx 70 and 85 ns, suggesting the existence of some unresolved peaks within those regions.

 $[\]beta$ -decay of spin-polarized ¹¹Li studied at TRIUMF-ISAC.

¹¹Li β^- decay:8.75 ms 2005Hi03 (continued)

¹¹Be Levels (continued)

	E(level) [†]	$J^{\pi \#}$	Г	Comments
	0.0	1/2+ <i>a</i>		
	320.04 [@] 10 1783 4	$\frac{1}{2^{-a}}$ (3/2,5/2) ^{+a}	115 fs <i>10</i> 100 keV <i>10</i>	
	$2654 \circ 10$ 3400 6	$\frac{3/2}{(3/2^{-})}$	122 keV 8	
	3889 ^{‡@} 1	(3/2)	<8 keV	F(level): (2005Mi03) report $F = -3890$ keV 1
	3955 [‡] & 1	3/2 ^{-a}	10 keV 5	E(level): (2005Hi05) report E_x^{-3030} keV 1. E(level): 3969 +20-9 quoted by (2005Hi03). Candidate for source level of 3.10 MeV neutron that is assigned by (2005Hi03) to 3890 level. The authors' assignment is based upon $J^{\pi}=3/2^{-1}$ assignment to this level, adopted from literature. Neutron decay from this level to g.s. of ¹⁰ Be assumed by authors to reproduce asymmetry spectrum much better.
	5255 ^{&} 3 5849 10 6510 50 6705 21	5/2-	45 keV 10	
	7030 50	$(5/2^{-})$	0.30 MeV 10	J^{π} : From assumed neutron decay branch in (2005Hi03).
	8020 [‡] 20	3/2-	230 keV 55	 E(level): from (2005Hi03). E(level): Small logft value supports single α-cluster (3/2⁻) state interpretation for this level but the small neutron spectroscopic factor favors this level as being a single α-state. Γ: Average of Γ=243 keV 55 and 216 keV 55 for level; widths obtained by
				(2005Hi03) from independent fittings of neutron peaks coincident with 219 and 2590 γ rays using neutron TOF line shape, with amplitude and level width as free parameters.
	8813 25	3/2-	0.20 MeV 5	E(level): Small logft value supports single α -cluster (3/2 ⁻) state interpretation for this level.
	10590 50	5/2-	210 keV 40	
16	$5.3 \times 10^3 l$		0.7 MeV 1	from (2009Ma31).
18.	19×10 ³ 14		1.5 MeV 4	from (1997Bo03,2008Ra23,2009Ma31,2009Ma72).

[†] From Adopted Levels and Gammas, unless stated otherwise.

[‡] Deduced from $\beta n\gamma$ coin data in (2005Hi03).

[#] From (2005Hi03), unless otherwise stated. Assignments based upon β -decay from polarized ¹¹Be which follows the angular distribution expression given by: W(θ) \approx 1+APcos θ , where the asymmetry parameter A of a β -decay is -1.0, -0.4 and +0.6 for J^{π}s of 1/2⁻, 3/2⁻ and 5/2⁻ of the daughter state and is derived from $\beta\gamma$, β n and $\beta n\gamma$ coin data for individual β branches. Polarization (P=0.375 *10*) determined from β -decay asymmetry \approx which was measured in coin with delayed decay from 320 level using left-right asymmetry of β -counts (\approx -0.294 8 observed in coin with 320 γ).

^(a) E, J^{π} and log *ft*-value of level in good agreement with that predicted for lowest band members ($K^{\pi}=1/2^{-}$).

[&] Possible $K^{\pi} = 3/2^{-}$ band member.

^{*a*} From Adopted Levels and Gammas.

β^{-} radiations

I β normalization: From (2003Au02). Sum of β feedings to excited states in ¹¹Be from (2005Hi03) is 91% 8 which is consistent with 100% β -branch given by (2003Au02).

¹¹Li β^- decay:8.75 ms 2005Hi03 (continued)

β^- radiations (continued)

E(decay)	E(level)	Ι <i>β</i> -†‡	Log ft	Comments
$(2.36 \times 10^3 \ 14)$	18190	0.55 6	2.45 13	av E β =1015 67
$(4.25 \times 10^3 \ 10)$	16300	0.048 7	4.65 8	av Eβ=1928 49
$(9.96 \times 10^3 5)$	10590	7.8 18	4.17 11	av E β =4749 25
				Log ft: Includes tentatively assumed neutron decays from level.
$(1.174 \times 10^4 \ 3)$	8813	8.9 14	4.45 7	av Eβ=5632 13
				Log ft: Includes tentatively assumed neutron decays from level.
(12531 20)	8020	15.5 <i>31</i>	4.34 9	av E β =6026 10
$(1.352 \times 10^4 5)$	7030	0.86 17	5.76 9	av E β =6518 25
(15296 3)	5255	2.4 5	5.57 9	av E β =7401.0 16
(16596.2 15)	3955	6.8 24	5.29 16	av E β =8047.27
				Log ft: $5.30 + 28 - 13$ quoted by (2005Hi03).
$(16662.2 \ 15)$	3889	22.7 45	4.78 9	av $E\beta = 8080.08$
				Log ft: $4.78 + 7 - 10$ quoted by (2005Hi03).
(17151 6)	3400	0.9 2	6.24 10	av E β =8323.2 31
				$I\beta^{-}$: %B=0.9 4 given in Table 1 of (2005Hi03).
(17897 10)	2654	17 4	5.05 11	av $E\beta = 8694.050$
(20231.2 11)	320.04	7.7 8	5.66 5	av $E\beta = 9853.78$
				$I\beta^-$: β -feeding to level normalized to the average value of $I\beta(320, 1/2^-)=7.6.8$ and 7.8.8, both from literature.

[†] Absolute intensities determined by normalizing observed γ -decay intensity of 320 transition to average decay intensity of 7.7% (from literature) and assumption of isotropic β -n angular correlation and γ -ray angular distribution. [‡] Absolute intensity per 100 decays.

$\gamma(^{11}\text{Be})$

Eγ	$E_i(level)$	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Comments		
320.0 5	320.04	$1/2^{-}$	0.0 1/2+	E_{γ} : From (2004Sa46).		

¹¹Li β^- decay:8.75 ms 2005Hi03

Decay Scheme

$\frac{3/2^{-}}{Q_{\beta^{-}}=2053}$	0.0 51.2 11 8	8.75 ms 14 $\%\beta^{-}=100.0$			
$I\beta^-$	Log ft				
0.55	2.45	\ \		18190	1.5 MeV 4
0.048	4.65	\		16300	0.7 MeV 1
		\backslash			
7.8	4.17	5/2-		10590	210 keV 40
8.9	4.45	3/2-		<u> </u>	0.20 MeV 5
15.5	4.34	3/2-			230 keV 55
0.86	5.76	(5/2-)		/7030_	0.30 MeV 10
2.4	5.57	5/2-			45 keV 10
6.8	5.29	3/2-			10 keV 5
22.7	4.78	5/2-			<8 keV
0.9	6.24	$(3/2^{-})$		3400	122 keV 8
17	5.05	\\3/2		2654	
7.7	5.66	1/2-	ŝ	320.04	115 fs 10
		1/2+	•	0.0	

¹¹₄Be₇