⁵⁸Ni(⁵⁴Fe,2pnγ) 2012Pr10

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Kumar(a), J. Chen(b) and F. G. Kondev	NDS 137, 1 (2016)	31-May-2016

2012Pr10: $E({}^{54}Fe)=206$ MeV from K130 accelerator facility at Jyvaskyla University. Target=1 mg/cm² self-supporting ${}^{58}Ni$ foil. Detectors: RITU gas-filled separator and GREAT spectrometer at the focal plane, where the recoiling nuclei implanted into a pair of DDSD detectors, PRE-JUROGAM II array (12 four-way segmented Clover Ge detectors). Measured: $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin, level lifetimes using the Recoil Distance Doppler-shift method (RDDS) using a plunger device in conjunction with the Recoil-decay tagging method.

¹⁰⁹ Te L	levels
---------------------	--------

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	E(level) [†]	J ^{π#}
0.0 [@]	5/2+		1352.4 ^{<i>a</i>} 5	$13/2^{+}$		4464.4 ^{&} 12	$(27/2^+)$
97.86 <mark>&</mark> 24	7/2+		1532.9 <mark>&</mark> 7	$15/2^+$		4673.4 ^C 7	$29/2^+$
265.2 ^{<i>a</i>} 5	$5/2^{+}$		1583.8 ^b 4	$15/2^{-}$	9.7 ps 10	4711.1 ^b 7	31/2-
538.1 [@] 4	7/2+		2192.8 ^b 5	19/2-	3.8 ps 9	5550.7 ^C 8	$33/2^+$
690.3 ^a 3	9/2+	24 ps 5	2386.7 <mark>&</mark> 8	$19/2^{+}$		5726.8 ^b 8	35/2-
763.27 [@] 24	9/2+	3.1 ps 20	2887.9 ^b 6	$23/2^{-}$		6399.2 ^C 9	$37/2^+$
772.6 <mark>&</mark> 3	$11/2^+$		3429.1 <mark>&</mark> 10	$23/2^+$		6756.3 ^b 10	39/2-
1089.4 ^b 3	$11/2^{-}$	67.0 ps 21	3777.5 ^b 7	$27/2^{-}$			

[†] From a least-squares fit to $E\gamma$.

^{\ddagger} From the RDDS method (2012Pr10).

[#] From 2012Pr10, based on multipolarities as given in 58 Ni(58 Ni, $\alpha 2$ pn γ) (2000Bo29).

[@] Band(A): Band based on the $J^{\pi} = 5/2^+$ ground state.

& Band(B): Band based on the $J^{\pi}=7/2^+$ state at 98 keV.

^{*a*} Band(C): Band based on the $J^{\pi}=5/2^+$ state 265 keV.

^b Band(D): Band based on the $J^{\pi} = 11/2^{-}$ state at 1089 keV.

^c Band(E): Band based on the $J^{\pi}=29/2^+$ state at 4673 keV.

γ(109	Te)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]
74 1	<1	763.27	$9/2^{+}$	690.3	$9/2^{+}$	
98.2 <i>3</i>	12.9 <i>13</i>	97.86	$7/2^+$	0.0	$5/2^{+}$	M1+E2
152.4 6	<1	690.3	$9/2^{+}$	538.1	$7/2^{+}$	
225.0 6	7.1 14	763.27	$9/2^{+}$	538.1	$7/2^{+}$	M1+E2
232 1	<1	1583.8	$15/2^{-}$	1352.4	$13/2^{+}$	
265.0 6	10 2	265.2	$5/2^{+}$	0.0	$5/2^{+}$	M1+E2
317.0 3	12.9 <i>13</i>	1089.4	$11/2^{-}$	772.6	$11/2^+$	E1
326.0 3	55 6	1089.4	$11/2^{-}$	763.27	$9/2^{+}$	E1
399.0 <i>3</i>	58 6	1089.4	$11/2^{-}$	690.3	$9/2^{+}$	E1
424.8 6	8.1 16	690.3	$9/2^{+}$	265.2	$5/2^{+}$	E2
494.4 <i>3</i>	100	1583.8	$15/2^{-}$	1089.4	$11/2^{-}$	E2
538.0 6	2 1	538.1	$7/2^{+}$	0.0	$5/2^{+}$	M1+E2
580.0 6	<1	1352.4	$13/2^{+}$	772.6	$11/2^{+}$	
592.4 <i>3</i>	32 <i>3</i>	690.3	$9/2^{+}$	97.86	$7/2^{+}$	M1+E2
609.0 <i>3</i>	94 9	2192.8	$19/2^{-}$	1583.8	$15/2^{-}$	E2
662.0 6	<1	1352.4	$13/2^{+}$	690.3	9/2+	
665.8 6	<1	763.27	9/2+	97.86	$7/2^{+}$	

⁵⁸Ni(⁵⁴Fe,2pnγ) 2012Pr10 (continued)

						$\gamma(^{109}\text{Te})$ (continued)
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]
672.2 6	7.8 16	6399.2	$37/2^{+}$	5726.8	35/2-	E1
675.0 <i>3</i>	23 2	772.6	$11/2^{+}$	97.86	$7/2^{+}$	E2
695.0 <i>3</i>	87 <i>9</i>	2887.9	$23/2^{-}$	2192.8	19/2-	E2
760.3 6	8 2	1532.9	$15/2^{+}$	772.6	$11/2^{+}$	E2
763.0 <i>3</i>	45 5	763.27	$9/2^{+}$	0.0	$5/2^{+}$	E2
839.96	2.7 6	5550.7	$33/2^{+}$	4711.1	31/2-	E1
848.5 6	9.4 19	6399.2	$37/2^{+}$	5550.7	$33/2^{+}$	E2
853.8 <i>3</i>	17.8 18	2386.7	19/2+	1532.9	$15/2^{+}$	E2
877.3 <i>3</i>	10.5 11	5550.7	$33/2^{+}$	4673.4	$29/2^+$	E2
889.6 <i>3</i>	65 7	3777.5	$27/2^{-}$	2887.9	$23/2^{-}$	E2
895.9 <i>3</i>	11.3 11	4673.4	$29/2^{+}$	3777.5	$27/2^{-}$	E1
933.7 <i>3</i>	38 4	4711.1	$31/2^{-}$	3777.5	$27/2^{-}$	E2
1015.7 <i>3</i>	15.2 15	5726.8	$35/2^{-}$	4711.1	$31/2^{-}$	E2
1029.4 6	1.7 3	6756.3	39/2-	5726.8	35/2-	E2
1035.3 6	31	4464.4	$(27/2^+)$	3429.1	$23/2^+$	
1042.4 6	3.7 7	3429.1	$23/2^+$	2386.7	19/2+	E2

[†] From 2012Pr10. [‡] Taken by 2012Pr10 from the $\gamma(\theta)$ data in ⁵⁸Ni(⁵⁸Ni, α 2pn γ) (2000Bo29).

¹⁰⁹₅₂Te₅₇

⁵⁸Ni(⁵⁴Fe,2pnγ) 2012Pr10

¹⁰⁹₅₂Te₅₇