109 Mo β^- decay 2012Ku28

	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	S. Kumar(a), J. Chen(b) and F. G. Kondev	NDS 137, 1 (2016)	31-May-2016	

Parent: ¹⁰⁹Mo: E=0.0; $J^{\pi}=(5/2^+)$; $T_{1/2}=0.61 \text{ s} +3-4$; $Q(\beta^-)=7608 \ 15$; $\%\beta^-$ decay=100.0

2012Ku28: Monoisotopic ¹⁰⁹Mo produced in deuteron-induced fissions on natural uranium target using 25 MeV beam at the University of Jyvaskyla IGISOL3 facility. Penning trap isotopic purification. Detectors: two 120% Ge detectors, a LEPS spectrometer and a 2 mm-thick plastic scintillator detector. Measured: E γ , I γ , ce, $\gamma\gamma$ -coin, γ (x-ray)-coin., $\gamma\beta$ -coin.

¹⁰⁹Tc Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0#	(5/2+)	0.91 s <i>3</i>	
7.0 [@] 3	$(5/2^{-})$		
18.36 23	$(3/2^{-})$		configuration: Likely the $K^{\pi}=3/2^{-}$, $\pi 3/2[301]$ state. The assignment is tentative.
50.62 21	$(3/2^{+})$		configuration: Likely a member of the $K^{\pi}=1/2^+$, $\pi 1/2[431]$ band. The assignment is tentative.
69.12 [#] 15	$(7/2^+)$		
172.0 [@] 5	$(7/2^{-})$		
206.2 [#] 3	$(9/2^+)$		
333.14 ^{&} <i>13</i>	$(3/2^+)$		
358.59 ^{&} 13	$(7/2^+)$		
423.78 <mark>&</mark> 12	$(5/2^+)$		
489.31 25	(3/2,5/2)		
702.8 <i>3</i>	$(3/2, 5/2, 7/2^+)$		
745.00 13	$(7/2^+)$		configuration: Likely the $K^{\pi}=7/2^+$, $\pi7/2[413]$ state. The assignment is tentative.
1756.0 4	(3/2,5/2,7/2)		
2022.85 18	$(3/2^+, 5/2, 7/2^+)$		
2068.4 5	(3/2, 5/2, 7/2)		
2286.3 4	$(3/2, 5/2, 7/2^+)$		
[†] From a lea	st-squares fit to E ²	γ.	

[‡] From Adopted Levels.

[#] Band(A): $K^{\pi} = 5/2^+$, $\pi 5/2[422]$ band.

^(a) Band(B): $K^{\pi} = 5/2^{-}, \pi 5/2[503]$ band. [&] Band(C): Likely $K^{\pi} = 1/2^{+}, \pi 5/2[422] \otimes 2^{+}$ band.

 $\gamma(^{109}\mathrm{Tc})$

Decay scheme is incomplete (pandemonium and presence of low-energy transitions with not well established properties) and no values are given for $\% I\beta$, $\% I\gamma$ and log *ft*. The authors in 2012Ku28 reported ¹⁰⁹Mo ground-state to ground-state β^- -decay intensity of 53% 5, which should also include feedings to the 7.0- and 18.0-keV levels. Using this information and the present decay scheme, a normalization factor of 0.100 13 can be deduced. The strongest-fed levels are 333-, 358-, 423- and 745-keV, associated with $\pi g_{9/2}$ orbital, as well as the 2022-keV level, which would support $\nu g_{7/2}$ assignment for the ¹⁰⁹Mo parent state.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	$\delta^{\#}$	α^{a}	Comments
(7.0) (18.3) 32.2 2	11 3	7.0 18.36 50.62	$(5/2^{-}) (3/2^{-}) (3/2^{+})$	0.0 0.0 18.36	$(5/2^+) (5/2^+) (3/2^-)$	(E1)		3.28 8	$\alpha(K)=2.83\ 7;\ \alpha(L)=0.374\ 9;\ \alpha(M)=0.0668\ 16$ $\alpha(N)=0.01008\ 23;\ \alpha(O)=0.000474\ 11$
43.6 2	28.2 16	50.62	(3/2 ⁺)	7.0	(5/2 ⁻)	(E1)		1.42 3	Mult.: $\alpha(K)\exp=4.7.4$ for $32.2\gamma+43.6\gamma$ in 2012Ku28. $\alpha(K)=1.234.24$; $\alpha(L)=0.155.3$; $\alpha(M)=0.0277.6$ $\alpha(N)=0.00423.9$; $\alpha(O)=0.000216.4$ Mult.: $\alpha(K)\exp=4.7.4$ for $32.2\gamma+43.6\gamma$ in 2012Ku28
65.2 2	34.8 27	423.78	(5/2+)	358.59	(7/2+)	M1+E2	0.30 6	1.34 16	
69.1 ^{@&} 2	44 15	69.12	(7/2+)	0.0	(5/2+)	M1+E2	0.11 10	0.84 12	$\alpha(K)=0.73 \ 9; \ \alpha(L)=0.095 \ 28; \ \alpha(M)=0.0173 \ 52 \ \alpha(N)=0.00271 \ 75; \ \alpha(O)=0.000162 \ 14 \ Mult., \delta: \ \alpha(K)exp=0.90 \ 20 \ and \ \alpha(exp)=0.90 \ 20 \ in \ 2012Ku28. \ Also \ \alpha(K)exp=1.12 \ 25 \ for \ 65.2\gamma+69.1\gamma \ in \ 2012Ku28.$
90.7 2	36 5	423.78	(5/2 ⁺)	333.14	(3/2 ⁺)	M1+E2	0.37 +10-11	0.54 9	$\alpha(K)=0.45 \ 7; \ \alpha(L)=0.071 \ 17; \ \alpha(M)=0.013 \ 3 \ \alpha(N)=0.0020 \ 5; \ \alpha(O)=9.4\times10^{-5} \ 11 \ Mult., \delta: \ \alpha(K)exp=0.45 \ 6 \ in \ 2012Ku28.$
$x_{128.7}^{@} 2$	51 9								
137.0 [@] 3	4 1	206.2	(9/2+)	69.12	$(7/2^+)$	M1(+E2)	0.6 6	0.193 93	α (K)=0.164 76; α (L)=0.024 15; α (M)=0.0044 27 α (N)=6.7×10 ⁻⁴ 40; α (O)=3.4×10 ⁻⁵ 13
152.1 5	1.4 3	358.59	$(7/2^+)$	206.2	(9/2+)	[M1]		0.0880 15	$\alpha(K)=0.0770 \ 13; \ \alpha(L)=0.00913 \ 16; \ \alpha(M)=0.00166 \ 3$ $\alpha(N)=0.000263 \ 5; \ \alpha(O)=1.74\times10^{-5} \ 3$
165.0 <i>3</i>	4.1 4	172.0	(7/2 ⁻)	7.0	(5/2 ⁻)	[M1+E2]		0.0707 11	$\alpha(K)=0.0618 \ I0; \ \alpha(L)=0.00731 \ I1; \ \alpha(M)=0.001328 \ 20 \ \alpha(N)=0.000211 \ 4; \ \alpha(O)=1.396 \times 10^{-5} \ 21$
206.1 2	0.076 25	206.2	(9/2+)	0.0	(5/2+)	[E2]		0.0934	α (K)=0.0796 <i>12</i> ; α (L)=0.01145 <i>17</i> ; α (M)=0.00209 <i>3</i> α (N)=0.000320 <i>5</i> ; α (O)=1.577×10 ⁻⁵ <i>23</i> E _{γ} ,I _{γ} : From Adopted Levels.

 \mathbf{P}

					109 Mo β^- dec	cay 201	2Ku28 (conti	nued)
γ ⁽¹⁰⁹ Tc) (continued)								
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	J^π_i	\mathbf{E}_{f}	J_f^π	Mult. [‡]	α ^{<i>a</i>}	Comments
213.5 2 282.5 2	37.9 <i>14</i> 17.4 <i>1</i> 8	702.8 333.14	$(3/2,5/2,7/2^+)$ $(3/2^+)$	489.31 50.62	(3/2,5/2) (3/2 ⁺)	[M1]	0.01732	$\alpha(K)=0.01518\ 22;\ \alpha(L)=0.001767\ 25;\ \alpha(M)=0.000320\ 5$
289.5 2	100 6	358.59	$(7/2^+)$	69.12	$(7/2^+)$	[M1]	0.01628	$\alpha(N)=5.10\times10^{-5} \ s; \ \alpha(O)=5.41\times10^{-5} \ s; \ \alpha(M)=0.000301 \ 5$ $\alpha(N)=4.79\times10^{-5} \ 7; \ \alpha(O)=3.20\times10^{-6} \ 5$
314.8 <i>3</i>	9.6 12	333.14	(3/2+)	18.36	(3/2 ⁻)	[E1]	0.00513	$\alpha(K) = 0.004517; \alpha(L) = 0.0005138; \alpha(M) = 9.26 \times 10^{-5} 14$ $\alpha(N) = 1.465 \times 10^{-5} 21; \alpha(O) = 9.50 \times 10^{-7} 14$
321.4 2	17.9 9	745.00	$(7/2^+)$	423.78	$(5/2^+)$	[M1]	0.01250	$\alpha(N) = 1.405 \times 10^{-2}$ $2.1, \alpha(O) = 9.505 \times 10^{-14}$ $\alpha(K) = 0.01096 \ 16; \alpha(L) = 0.001271 \ 18; \alpha(M) = 0.000230 \ 4$ $\alpha(N) = 3.67 \times 10^{-5}$ 6; $\alpha(O) = 2.46 \times 10^{-6}$ 4
333.3 2	200 9	333.14	(3/2 ⁺)	0.0	$(5/2^+)$	[M1]	0.01142	$\alpha(N) = 3.07 \times 10^{-5} \text{ f}, \alpha(C) = 2.40 \times 10^{-4} \text{ f}$ $\alpha(K) = 0.01001 \ 14; \alpha(L) = 0.001159 \ 17; \alpha(M) = 0.000210 \ 3$ $\alpha(N) = 3.34 \times 10^{-5} \text{ f}; \alpha(C) = 2.34 \times 10^{-6} \text{ f}$
354.6 4	12.2 10	423.78	(5/2 ⁺)	69.12	$(7/2^+)$	[M1]	0.00978	$\alpha(N) = 5.54 \times 10^{-5}$ <i>f</i> , $\alpha(C) = 2.24 \times 10^{-5}$ <i>f</i> $\alpha(K) = 0.00858$ <i>13</i> ; $\alpha(L) = 0.000992$ <i>15</i> ; $\alpha(M) = 0.000180$ <i>3</i> $\alpha(N) = 2.86 \times 10^{-5}$ <i>4</i> ; $\alpha(C) = 1.92 \times 10^{-6}$ <i>3</i>
358.7 ^{&} 2	56 6	358.59	$(7/2^+)$	0.0	(5/2 ⁺)	[M1]	0.00951	$\alpha(K) = 2.30 \times 10^{-5} 4$, $\alpha(C) = 1.92 \times 10^{-5} 3$ $\alpha(K) = 0.00834 \ 12; \ \alpha(L) = 0.000964 \ 14; \ \alpha(M) = 0.0001746 \ 25$ $\alpha(K) = 2.78 \times 10^{-5} 4$, $\alpha(C) = 1.87 \times 10^{-6} 3$
386.6 <i>3</i>	11.2 15	745.00	$(7/2^+)$	358.59	$(7/2^+)$	[M1]	0.00791	$\alpha(N)=2.78\times10^{-5}4$; $\alpha(C)=1.87\times10^{-5}3$ $\alpha(K)=0.00694$ 10; $\alpha(L)=0.000799$ 12; $\alpha(M)=0.0001448$ 21 $\alpha(N)=2.21\times10^{-5}4$; $\alpha(C)=1.551\times10^{-6}$ 22
412.0 2	60 9	745.00	$(7/2^+)$	333.14	$(3/2^+)$	[E2]	0.00908	$\alpha(N) = 2.51\times10^{-5} 4; \alpha(O) = 1.551\times10^{-22}$ $\alpha(K) = 0.00789 12; \alpha(L) = 0.000983 14; \alpha(M) = 0.000178 3$ $\alpha(N) = 2.70\times10^{-5} 4; \alpha(O) = 1.662\times10^{-6} 24$
423.9 2	77 8	423.78	(5/2 ⁺)	0.0	$(5/2^+)$	[M1]	0.00631	$\alpha(N)=2.79\times10^{-4}$, $\alpha(O)=1.002\times10^{-224}$ $\alpha(K)=0.00554$ 8; $\alpha(L)=0.000637$ 9; $\alpha(M)=0.0001154$ 17 $\alpha(N)=1.84\times10^{-5}$ 3: $\alpha(O)=1.238\times10^{-6}$ 18
438.6 2 471.0 2 652.3 <i>3</i>	43 <i>4</i> 33 <i>3</i> 8.9 16	489.31 489.31 702.8	(3/2,5/2) (3/2,5/2) $(3/2,5/2,7/2^+)$	50.62 18.36 50.62	$(3/2^+)$ $(3/2^-)$ $(3/2^+)$			$u(n) = 1.0 + 10^{-5}$, $u(0) = 1.250 \times 10^{-10}$
744.6 ^{&} 2	42 5	745.00	$(7/2^+)$	0.0	$(5/2^+)$	[M1]	1.68×10^{-3}	$\alpha(K)=0.001480\ 21;\ \alpha(L)=0.0001675\ 24;\ \alpha(M)=3.03\times10^{-5}$
								$\alpha(N)=4.83\times10^{-6}$ 7; $\alpha(O)=3.29\times10^{-7}$ 5
1332.2 <i>3</i> 1365.5 <i>4</i> 1599.1 <i>3</i> 1664.2 <i>4</i> 1689.6 <i>3</i> 2022 9 <i>3</i>	20.2 <i>17</i> 6.6 8 13.1 7 5.2 6 41.5 25 8 5 7	1756.0 2068.4 2022.85 2022.85 2022.85 2022.85	$\begin{array}{c} (3/2,5/2,7/2)\\ (3/2,5/2,7/2)\\ (3/2^+,5/2,7/2^+)\\ (3/2^+,5/2,7/2^+)\\ (3/2^+,5/2,7/2^+)\\ (3/2^+,5/2,7/2^+)\\ (3/2^+,5/2,7/2^+)\end{array}$	423.78 702.8 423.78 358.59 333.14 0.0	$(5/2^+)$ $(3/2,5/2,7/2^+)$ $(5/2^+)$ $(7/2^+)$ $(3/2^+)$ $(5/2^+)$			
2235.7 3	15.4 8	2286.3	$(3/2, 5/2, 7/2^+)$	50.62	$(3/2^+)$			

ω

[†] From 2012Ku28.
[‡] From experimental conversion coefficient in 2012Ku28, unless otherwise specified.
[#] Deduced by evaluators using experimental conversion coefficient and BrIccMixing v2.3 program. If No value given it was assumed δ=0.00 for E2/M1, δ=1.00 for E3/M2 and δ =0.10 for the other multipolarities.

 $\gamma(^{109}\text{Tc})$ (continued)

[@] Observed also in ¹⁰⁹Tc β^- decay. [&] Observed also in ¹⁰⁹Ru β^- decay.

4

^{*a*} Additional information 1. ^{*b*} For absolute intensity per 100 decays, multiply by ≈ 0.100 .

 $x \gamma$ ray not placed in level scheme.

109 Mo β^- decay 2012Ku28

5

