109 Sb ε decay 2002Re14,1982Jo03

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Kumar(a), J. Chen(b) and F. G. Kondev	NDS 137, 1 (2016)	31-May-2016

Parent: ¹⁰⁹Sb: E=0; $J^{\pi}=(5/2^+)$; $T_{1/2}=17.2$ s 5; $Q(\varepsilon)=6380$ 9; $\%\varepsilon+\%\beta^+$ decay=100.0

2002Re14: ¹⁰⁹Sb activity produced using E(⁵⁸Ni)=230 MeV beam on ⁵⁴Fe target (470 μ g/cm²). Moving Tape Collector,

Fragment Mass Analyzer (FMA), Argonne National Laboratory, USA. Detectors: 3 large volume HPGe (two 80 %, one 120 %), 1 LEPS (70 %). Measured: $E\gamma$, $I\gamma$, $\gamma\gamma$, $\gamma(t)$. Comparisons with shell model calculations. 1982Jo03: ¹⁰⁹Sb activity produced in ⁹²Mo + ²⁰Ne and ⁵⁸Ni + ⁵⁸Ni reactions. $E(^{20}Ne)=195$ MeV from the HI linear

accelerator, University of Manchester on a 2 mg/cm² target of ⁹²Mo; helium-jet system and tape with 40 s intervals. E(⁵⁸Ni)=290 MeV using GSI accelerator. Mass separated activity was implanted onto a tape with 32 s intervals. Detectors: plastic scintillator telescope and Ge(Li). Measured: $T_{1/2}$, $E\gamma$, $I\gamma$, $\gamma\gamma$, γ -X, $\gamma\beta$, $Q(\varepsilon)$; 1981JoZx reports same as preliminary results.

1976Ox01: ¹⁰⁹Sb activity produced in ¹¹²Sn(p,4n), E(p)=25-65 MeV, McGill University cyclotron. Target: isotopically enriched

(79.6 %), metallic powder sealed in thin-walled Be tube. Detectors: two Ge(Li) (96 and 50 cm³). Measured: $T_{1/2}$, $E\gamma$, $I\gamma$, $\gamma\gamma$.

The following gammas: 407, 1273, 1488, 1632, 1836, 2195 reported by 1976Ox01 were not observed in 1982Jo03 and 2002Re14, and certainly belong to other nuclide.

109Sn Levels

E(level) [†]	Jπ‡	T _{1/2} ‡	Comments
0	5/2+	18.2 min 2	configuration: vd_{50} .
13.97 7	$(7/2^+)$		configuration: $vg_{7/2}$.
544.80 13	$(1/2^+)$		J^{π} : from 2002Re14 based on the non-observation of γ to the 7/2 ⁺ state and shell-model predictions.
			configuration: $v_{S_{1/2}}$ proposed in 2002Re14.
664.42 12	$(3/2^+)$		
678.31 14	$(5/2)^+$		
925.50 13	$(3/2)^+$		configuration: $d_{3/2}$ state.
991.34 <i>17</i>	$(3/2)^+$		6 72
1061.80 15	$(3/2)^+$		
1078.13 9	$(7/2)^+$		
1228.74 18	$(3/2^+, 5/2^+)$		
1343.72 13	$(7/2)^+$		
1495.89 <i>13</i>	$(3/2^+)$		
1614.23 19	$(3/2^+, 5/2^+)$		
1649.85 15	$(3/2^+, 5/2^+)$		
1914.01 <i>16</i>	$(3/2^+, 5/2^+)$		
2015.95 17	$(3/2^+, 5/2^+)$		
2126.62 16	$(3/2^+, 5/2^+)$		

[†] From a least-squares fit to $E\gamma$, by assuming $\Delta E\gamma = 1$ keV when uncertainty is not given.

[‡] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	Ιβ ⁺ #	Ie#	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger \#}$	Comments
(4253 9)	2126.62	1.8 5	0.32 9	5.44 13	2.1 6	av E β =1467.0 76; ε K=0.1305 17; ε L=0.01677 22; ε M+=0.00430 6
(4364 9)	2015.95	1.45 13	0.234 21	5.60 5	1.68 15	av Eβ=1519.0 76; εK=0.1197 15; εL=0.01539 20; εM+=0.00395 5
(4466 9)	1914.01	1.31 18	0.19 3	5.70 7	1.50 21	av Eβ=1567.0 76; εK=0.1108 14; εL=0.01423 18; εM+=0.00365 5
(4730 9)	1649.85	2.23 21	0.264 25	5.61 5	2.49 23	av Eβ=1691.7 76; εK=0.0912 11; εL=0.01171 14;

Continued on next page (footnotes at end of table)

$^{109}{ m Sb}\, arepsilon\, { m decay}$ 2002Re14,1982Jo03 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Ιβ ⁺ #	Ie#	Log ft	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments
						εM+=0.00300 4
(4766 9)	1614.23	1.78 <i>16</i>	0.204 19	5.73 5	1.98 <i>18</i>	av Eβ=1708.5 76; εK=0.0889 11; εL=0.01142 14; εM+=0.00293 4
(4884 9)	1495.89	8.5 7	0.89 8	5.11 4	9.4 8	av E β =1764.6 76; ε K=0.0818 10; ε L=0.01050 12; ε M==0.00269 3
(5036 9)	1343.72	0.69 6	0.064 6	6.28 5	0.75 7	av $E\beta$ =1836.7 76; ε K=0.0737 8; ε L=0.00946 11; ε M+=0.00243 3
(5151 9)	1228.74	2.19 19	0.189 17	5.83 5	2.38 21	av $E\beta$ =1891.4 76; ε K=0.0683 8; ε L=0.00876 10; ε M+=0.002247 24
(5302 9)	1078.13	0.81 9	0.063 7	6.34 6	0.87 10	av $E\beta$ =1963.0 77; ε K=0.0619 7; ε L=0.00794 9; ε M+=0.002037 2/
(5318 9)	1061.80	19.7 <i>16</i>	1.51 12	4.96 4	21.2 17	av $E\beta$ =1970.8 77; ε K=0.0613 7; ε L=0.00786 9; ε M+=0.002016 21
(5389 9)	991.34	0.33 7	0.024 5	6.77 10	0.35 8	$E\beta_{\text{max}}^{+}=4332 \text{ keV } 24 \text{ (1982Jo03).}$ av $E\beta=2004.4 \ 77; \ \varepsilon \text{K}=0.0586 \ 6; \ \varepsilon \text{L}=0.00752 \ 8;$ $\epsilon \text{M}_{\pm}=0.001928 \ 20$
(5455 9)	925.50	27.9 22	1.95 16	4.87 4	29.9 24	av E β =2035.8 77; ε K=0.0563 6; ε L=0.00721 8; ε M+=0.001850 19
						I($\varepsilon + \beta^+$): From log ft =4.87 3 for a similar $\pi d_{5/2}$ to $\nu d_{3/2}$ decay in ¹¹¹ Sb ε decay, log f =3.110 7 and T _{1/2} =17.2 s
						$E\beta^+$ =4416 keV 21 (1982Io03)
(5702 9)	678.31	9.3 9	0.56 6	5.45 5	9.9 10	av $E\beta$ =2153.9 77; ε K=0.0484 5; ε L=0.00621 6; ε M+=0.001591 /6
(5716 9)	664.42	4.8 8	0.28 5	5.75 8	5.1 9	av $E\beta$ =2160.6 77; ε K=0.0480 5; ε L=0.00615 6; ε M+=0.001578 15
(6366 9)	13.97	1.9 <i>13</i>	0.08 5	6.4 <i>3</i>	2.0 [‡] 14	μ_{max} +0/+ keV 22 (1962)003). av Eβ=2472.7 77; εK=0.0334 3; εL=0.00428 4; εM+=0.001096 10
(6380 9)	0	86	0.3 2	5.8 4	8 [‡] 6	av Eβ=2479.5 77; εK=0.0331 3; εL=0.00424 4; εM+=0.001088 10

[†] From intensity balances and $\% I\beta(\varepsilon + \beta^+)(925.5 \text{-keV level})=29.9 24.$ [‡] from $\% I\beta(\varepsilon + \beta^+)(gs)/\% I\beta(\varepsilon + \beta^+)(13.96 \text{-keV level})=4$, as suggested in 2002Re14, and the decay scheme. [#] Absolute intensity per 100 decays.

Iy normalization: From intensity balance at the 925.5 keV level and $\% I\beta(\varepsilon + \beta^+)(925.5 \text{-keV level}) = 29.9 24$.

${\rm E_{\gamma}}^{\dagger}$	I_{γ} ^{‡@}	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	$\alpha^{\#}$	$I_{(\gamma+ce)}^{@}$	Comments
13.97 9	1.91 18	13.97	(7/2+)	0	5/2+	[M1]	24.9 6	49.5 45	$\begin{array}{l} (ce(L)/(\gamma+ce)=0.778 \ l2; \ ce(M)/(\gamma+ce)=0.153 \ 5 \\ (ce(N)/(\gamma+ce)=0.0286 \ l0; \ ce(O)/(\gamma+ce)=0.00245 \ 9 \\ \alpha(L)=20.2 \ 5; \ \alpha(M)=3.96 \ l0 \\ \alpha(N)=0.742 \ l8; \ \alpha(O)=0.0635 \ l6 \\ \%I\gamma=0.51 \ 5, \ using \ the \ calculated \ normalization. \\ E_{\gamma}: \ from \ Adopted \ gammas. \\ I_{(\gamma+ce)}: \ from \ \%I\beta(\varepsilon+\beta^+)(gs)/\%I\beta(\varepsilon+\beta^+)(13.96\text{-keV} \\ \text{level})=4, \ as \ suggested \ in \ 2002Re14 \ and \ the \ decay \ scheme. \end{array}$
246.6 <i>3</i>	2.8 1	925.50	(3/2)+	678.31	(5/2)+	[M1]	0.0476		I _y : from I(y+ce) and α . α (K)=0.0412 6; α (L)=0.00514 8; α (M)=0.001007 15 α (N)=0.000190 3; α (O)=1.652×10 ⁻⁵ 24 %I ₂ =0.75 7, using the calculated normalization
260.8 <i>3</i>	6.4 2	925.50	$(3/2)^+$	664.42	(3/2 ⁺)	[M1]	0.0411		$\alpha(\text{K})=0.0356\ 6;\ \alpha(\text{L})=0.00443\ 7;\ \alpha(\text{M})=0.000868\ 13$ $\alpha(\text{N})=0.0001634\ 24;\ \alpha(\text{O})=1.425\times10^{-5}\ 21$ (Kar-171 J5 using the calculated normalization
381.3 <i>3</i>	0.6 2	925.50	$(3/2)^+$	544.80	(1/2+)	[M1]	0.01551		$\alpha(K) = 0.1137$, using the calculated normalization. $\alpha(K) = 0.01347$ 19; $\alpha(L) = 0.001655$ 24; $\alpha(M) = 0.000324$ 5 $\alpha(N) = 6.10 \times 10^{-5}$ 9; $\alpha(O) = 5.34 \times 10^{-6}$ 8 $\alpha(L) = 0.16$ 6, using the calculated normalization
397.5 <i>3</i>	3.0 7	1061.80	$(3/2)^+$	664.42	(3/2 ⁺)	[M1]	0.01397		$\alpha(\text{K})=0.01213 \ 18; \ \alpha(\text{L})=0.001489 \ 21; \ \alpha(\text{M})=0.000291 \ 5 \ \alpha(\text{N})=5.49\times10^{-5} \ 8; \ \alpha(\text{O})=4.80\times10^{-6} \ 7 \ \text{K}$
433.6 <i>3</i>	0.5 1	1495.89	(3/2+)	1061.80	(3/2)+	[M1]	0.01125		α (K)=0.00977 14; α (L)=0.001196 17; α (M)=0.000234 4 α (N)=4.41×10 ⁻⁵ 7; α (O)=3.86×10 ⁻⁶ 6
446.3 <i>3</i>	0.4 1	991.34	$(3/2)^+$	544.80	(1/2 ⁺)	[M1]	0.01048		α (K)=0.00910 13; α (L)=0.001113 16; α (M)=0.000218 3 α (N)=4.10×10 ⁻⁵ 6; α (O)=3.59×10 ⁻⁶ 5
516.5 3	4 1	1061.80	$(3/2)^+$	544.80	(1/2 ⁺)	[M1]	0.00732		α (K)=0.01637 9; α (L)=0.000775 11; α (M)=0.0001514 22 α (N)=2.85×10 ⁻⁵ 4; α (O)=2.50×10 ⁻⁶ 4
544.4 3	11.2 <i>I</i>	544.80	(1/2+)	0	5/2+	[E2]	0.00581		
550.2 <i>3</i>	0.6 1	1228.74	(3/2+,5/2+)	678.31	(5/2)+	[M1]	0.00628		I _y : Other: 10.6 5 (1982Jo03). α (K)=0.00546 8; α (L)=0.000664 10; α (M)=0.0001296 19 α (N)=2.44×10 ⁻⁵ 4; α (O)=2.15×10 ⁻⁶ 3 %I ₂ =0.16 3 using the calculated normalization
571.3 <i>3</i>	0.8 1	1649.85	$(3/2^+, 5/2^+)$	1078.13	$(7/2)^+$	[M1,E2]	0.00574		$\alpha(K)=0.00499$ 7; $\alpha(L)=0.000605$ 9; $\alpha(M)=0.0001183$ 17

 $\boldsymbol{\omega}$

					109 Sb ε	decay 20	02Re14,1982J	003 (continued)
						$\gamma(^{109})$	Sn) (continued	<u>1)</u>
E_{γ}^{\dagger}	I_{γ} [‡] @	E_i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	α #	Comments
650.1 <i>3</i>	1.3 <i>1</i>	664.42	(3/2+)	13.97	(7/2+)	[E2]	0.00361	$\begin{aligned} &\alpha(N)=2.23\times10^{-5} \ 4; \ \alpha(O)=1.96\times10^{-6} \ 3\\ &\%I\gamma=0.21 \ 4, \ \text{using the calculated normalization.}\\ &\alpha(K)=0.00312 \ 5; \ \alpha(L)=0.000403 \ 6; \ \alpha(M)=7.91\times10^{-5} \ 12\\ &\alpha(N)=1.476\times10^{-5} \ 21; \ \alpha(O)=1.209\times10^{-6} \ 17 \end{aligned}$
664.0 <i>3</i>	39 2	664.42	(3/2 ⁺)	0	5/2+	[M1]	0.00401	%I γ =0.35 4, using the calculated normalization. α (K)=0.00349 5; α (L)=0.000421 6; α (M)=8.23×10 ⁻⁵ 12 α (N)=1.551×10 ⁻⁵ 22; α (O)=1.365×10 ⁻⁶ 20 α (L)=0.4.0 where the calculated neurolization
664.5 <i>1</i>	24 2	678.31	(5/2)+	13.97	(7/2*)	M1	0.00401	%1γ=10.4 9, using the calculated normalization. $\alpha(K)=0.00349 5$; $\alpha(L)=0.000421 6$; $\alpha(M)=8.22\times10^{-5} 12$ $\alpha(N)=1.550\times10^{-5} 22$; $\alpha(O)=1.364\times10^{-6} 20$ %Iγ=6.4 7, using the calculated normalization. E _γ : Others: 664.2 3 (2002Re14), 664.5 3 (1982Jo03), and 664.6 5 (1976Ox01). I _γ : Others: 63 4 (1982Jo03), 51 7 (1976Ox01, may combine 664.0 γ + 664.2 γ).
665.8 <i>3</i>	0.5 1	1343.72	$(7/2)^+$	678.31	(5/2)+	[M1]	0.00399	$\alpha(K)=0.00347 5; \alpha(L)=0.000419 6; \alpha(M)=8.18\times10^{-5} 12$ $\alpha(N)=1.541\times10^{-5} 22; \alpha(O)=1.356\times10^{-6} 19$
678.6 <i>1</i>	20.2 2	678.31	(5/2)+	0	5/2+	M1(+E2)	0.00381	
685	≤1.0	1914.01	(3/2 ⁺ ,5/2 ⁺)	1228.74	(3/2+,5/2+)	[M1]	0.00373	$\alpha(\text{K})=0.00324 5; \alpha(\text{L})=0.000391 6; \alpha(\text{M})=7.64\times10^{-5} 11$ $\alpha(\text{N})=1.440\times10^{-5} 21; \alpha(\text{O})=1.268\times10^{-6} 18$ $\alpha(\text{K})=0.13 14$ using the calculated normalization
687.3 <i>3</i>	0.4 1	1614.23	(3/2+,5/2+)	925.50	(3/2)+	[M1]	0.00370	$\alpha(K) = 0.03225; \alpha(L) = 0.0003886; \alpha(M) = 7.58 \times 10^{-5} 11$ $\alpha(N) = 1.429 \times 10^{-5} 20; \alpha(O) = 1.258 \times 10^{-6} 18$ $\% I\gamma = 0.11 3$, using the calculated normalization. E : proof fit level apergy difference=688.74
831.4 <i>3</i>	2.1 6	1495.89	(3/2+)	664.42	(3/2+)	[M1]	0.00238	$\alpha(K)=0.00207 \ 3; \ \alpha(L)=0.000248 \ 4; \ \alpha(M)=4.84\times10^{-5} \ 7 \ \alpha(N)=9.13\times10^{-6} \ 13; \ \alpha(O)=8.05\times10^{-7} \ 12 \ \% \ W=0.56 \ 17 \ wing the calculated normalization$
835.0 <i>3</i>	0.6 2	1914.01	(3/2 ⁺ ,5/2 ⁺)	1078.13	(7/2)+	[M1,E2]	0.00235	$\alpha(K)=0.00205 \ 3; \ \alpha(L)=0.000246 \ 4; \ \alpha(M)=4.79\times10^{-5} \ 7 \ \alpha(N)=9.04\times10^{-6} \ 13; \ \alpha(O)=7.97\times10^{-7} \ 12 \ \alpha(L)=0.166 \ \mu \text{sing the calculated normalization}$
910.9 <i>3</i>	2.9 2	925.50	$(3/2)^+$	13.97	(7/2 ⁺)	[E2]	1.59×10 ⁻³	$\alpha(K)=0.001377\ 20;\ \alpha(L)=0.0001707\ 24;\ \alpha(M)=3.34\times10^{-5}\ 5$ $\alpha(N)=6.26\times10^{-6}\ 9;\ \alpha(O)=5.30\times10^{-7}\ 8$
925.3 2	100	925.50	(3/2)+	0	5/2+	M1(+E2)	0.00186	$\alpha(K)=0.01622\ 23;\ \alpha(L)=0.000194\ 3;\ \alpha(M)=3.78\times10^{-5}\ 6$ $\alpha(N)=7.14\times10^{-6}\ 10;\ \alpha(O)=6.30\times10^{-7}\ 9$ %I $\gamma=26.7\ 2I$, using the calculated normalization. E_{γ} : Others: 925.0 3 (2002Re14), 925.4 3 (1982Jo03), 925.4 3

4

					109	Sb ε decay	2002Re14,1	982Jo03 (continued)
						<u>.</u>	$\gamma(^{109}\text{Sn})$ (cont	inued)
${\rm E_{\gamma}}^{\dagger}$	I_{γ} [‡] [@]	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [†]	α #	Comments
x932.1 3	0.5 2							 (1976Ox01). I_γ: Others: 100 (1982Jo03, 1976Ox01). %I_γ=0.13 6, using the calculated normalization. E_γ: placement by 2002Re14 from 2016 is incorrect, as confirmed in an e-mail reply from one of the authors (J. Ressler to B. Singh)
936.2 <i>3</i>	3.2 2	1614.23	(3/2+,5/2+)	678.31	(5/2)+	[M1]	0.00181	on June 10, 2002. It is however seen in coin with 1078 γ . $\alpha(K)=0.001579\ 23;\ \alpha(L)=0.000189\ 3;\ \alpha(M)=3.68\times10^{-5}\ 6$ $\alpha(N)=6.94\times10^{-6}\ 10;\ \alpha(O)=6.13\times10^{-7}\ 9$
951.1 <i>3</i>	2.4 2	1495.89	(3/2+)	544.80	(1/2+)	[M1]	1.75×10^{-3}	%1 γ =0.85 9, using the calculated normalization. $\alpha(K)$ =0.001523 22; $\alpha(L)$ =0.000182 3; $\alpha(M)$ =3.55×10 ⁻⁵ 5 $\alpha(N)$ =6.70×10 ⁻⁶ 10; $\alpha(O)$ =5.91×10 ⁻⁷ 9 %Ly=0.64 8, using the calculated normalization
985.5 <i>3</i>	1.1 2	1649.85	(3/2 ⁺ ,5/2 ⁺)	664.42	(3/2 ⁺)	[M1]	1.61×10 ⁻³	$\alpha(K)=0.001406\ 20;\ \alpha(L)=0.0001679\ 24;\ \alpha(M)=3.27\times10^{-5}\ 5$ $\alpha(N)=6.18\times10^{-6}\ 9;\ \alpha(O)=5.45\times10^{-7}\ 8$
991.2 <i>3</i>	1.8 <i>1</i>	991.34	(3/2)+	0	5/2+	M1(+E2)	1.59×10 ⁻³	$\alpha(K)=0.001388\ 20;\ \alpha(L)=0.0001657\ 24;\ \alpha(M)=3.23\times10^{-5}\ 5$ $\alpha(N)=6.09\times10^{-6}\ 9;\ \alpha(O)=5.38\times10^{-7}\ 8$
1024.4 3	0.5 1	2015.95	(3/2 ⁺ ,5/2 ⁺)	991.34	(3/2)+	[M1]	1.48×10 ⁻³	$\alpha(K) = 0.4035$, using the calculated normalization: $\alpha(K) = 0.001289 \ I8; \ \alpha(L) = 0.0001538 \ 22; \ \alpha(M) = 3.00 \times 10^{-5} \ 5$ $\alpha(N) = 5.66 \times 10^{-6} \ 8; \ \alpha(O) = 5.00 \times 10^{-7} \ 7$ % Ly=0.13.3 using the calculated normalization
1047.7 3	4.8 1	1061.80	(3/2)+	13.97	(7/2 ⁺)	[E2]	1.16×10 ⁻³	$\alpha(K) = 0.001009 \ I5; \ \alpha(L) = 0.0001234 \ I8; \ \alpha(M) = 2.41 \times 10^{-5} \ 4$ $\alpha(N) = 4.52 \times 10^{-6} \ 7; \ \alpha(O) = 3.87 \times 10^{-7} \ 6$
1061.8 <i>3</i>	67.9 7	1061.80	(3/2)+	0	5/2+	M1(+E2)	1.37×10 ⁻³	$\alpha(K) = 0.001190 \ 17; \ \alpha(L) = 0.0001418 \ 20; \ \alpha(M) = 2.77 \times 10^{-5} \ 4 \ \alpha(N) = 5.22 \times 10^{-6} \ 8; \ \alpha(O) = 4.61 \times 10^{-7} \ 7 \ \% I\gamma = 18.1 \ 15, \ using the calculated normalization. E\gamma: Others: 1061.7 \ 3 (1982Jo03), 1061.6 \ 3 (1976Ox01). L: Others: 75.5 (1982Jo03), 74.4 (1976Ox01).$
1064.0 <i>3</i>	0.86 6	1078.13	(7/2)+	13.97	(7/2+)	M1(+E2)	1.36×10 ⁻³	
1078.0 <i>1</i>	3.8 1	1078.13	(7/2)+	0	5/2+	M1(+E2)	1.32×10 ⁻³	$\alpha(K)=0.001151 \ 17; \ \alpha(L)=0.0001371 \ 20; \ \alpha(M)=2.67\times10^{-5} \ 4 \ \alpha(N)=5.04\times10^{-6} \ 7; \ \alpha(O)=4.45\times10^{-7} \ 7 \ \%I\gamma=1.01 \ 9, \ using the calculated normalization. E_{\gamma}: Others: 1078 \ keV \ (2012Re14) \ and 1078.0 \ keV \ 3 \ (1982Jo03).$
1090.8 <i>3</i>	0.5 1	2015.95	$(3/2^+, 5/2^+)$	925.50	$(3/2)^+$	[M1]	1.29×10^{-3}	$\alpha(K)=0.001121 \ I6; \ \alpha(L)=0.0001335 \ I9; \ \alpha(M)=2.60\times10^{-5} \ 4$

S

¹⁰⁹Sb ε decay **2002Re14,1982Jo03** (continued)

$\gamma(^{109}\text{Sn})$ (continued)

${\rm E_{\gamma}}^{\dagger}$	Ι _γ ‡@	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. [†]	α [#]	Comments
1104.4 <i>3</i>	2.7 2	1649.85	(3/2+,5/2+)	544.80	(1/2+)	[M1,E2]	1.25×10 ⁻³	$\alpha(N)=4.91\times10^{-6}$ 7; $\alpha(O)=4.34\times10^{-7}$ 6 %I $\gamma=0.13$ 3, using the calculated normalization. $\alpha(K)=0.001091$ 16; $\alpha(L)=0.0001298$ 19; $\alpha(M)=2.53\times10^{-5}$ 4 $\alpha(N)=4.77\times10^{-6}$ 7; $\alpha(O)=4.22\times10^{-7}$ 6; $\alpha(IPF)=4.82\times10^{-7}$ 9 %Ly=0.72.8 using the calculated normalization
1135.1 <i>3</i>	0.4 2	2126.62	(3/2 ⁺ ,5/2 ⁺)	991.34	(3/2)+	[M1]	1.18×10 ⁻³	E_{γ} : poor fit, level-energy difference=1105.16. $\alpha(K)=0.001027$ 15; $\alpha(L)=0.0001221$ 18; $\alpha(M)=2.38\times10^{-5}$ 4 $\alpha(N)=4.49\times10^{-6}$ 7; $\alpha(O)=3.97\times10^{-7}$ 6; $\alpha(IPF)=1.312\times10^{-6}$ 22 %Iv=0.11 6, using the calculated normalization
x1175.3 3 1200.8 3	2.8 <i>1</i> 0.3 <i>1</i>	2126.62	(3/2+,5/2+)	925.50	(3/2)+	[M1]	1.05×10 ⁻³	$%1\gamma = 0.11$ 6, using the calculated normalization. $%1\gamma = 0.75$ 7, using the calculated normalization. $\alpha(K) = 0.000907$ 13; $\alpha(L) = 0.0001078$ 16; $\alpha(M) = 2.10 \times 10^{-5}$ 3 $\alpha(N) = 3.96 \times 10^{-6}$ 6; $\alpha(O) = 3.50 \times 10^{-7}$ 5; $\alpha(IPF) = 6.15 \times 10^{-6}$ 10 $%10^{-6}$ 0.00 2 α is a labeled of the l
1214.4 3	1.1 <i>1</i>	1228.74	(3/2+,5/2+)	13.97	(7/2+)	[M1,E2]	1.02×10^{-3}	$\alpha(K)=0.00885$ <i>i</i> 3; $\alpha(L)=0.0001051$ <i>i</i> 5; $\alpha(M)=2.05\times10^{-5}$ <i>3</i> $\alpha(N)=3.87\times10^{-6}$ <i>6</i> ; $\alpha(O)=3.42\times10^{-7}$ <i>5</i> ; $\alpha(IPF)=7.72\times10^{-6}$ <i>i</i> 2
1229.3 <i>3</i>	7.7 1	1228.74	(3/2+,5/2+)	0	5/2+	[M1]	9.98×10 ⁻⁴	$\alpha(K)=0.294$, using the calculated normalization. $\alpha(K)=0.00086212$; $\alpha(L)=0.000102315$; $\alpha(M)=1.99\times10^{-5}3$ $\alpha(N)=3.76\times10^{-6}6$; $\alpha(O)=3.33\times10^{-7}5$; $\alpha(IPF)=9.61\times10^{-6}14$
1249.4 <i>3</i>	1.8 5	1914.01	(3/2+,5/2+)	664.42	(3/2+)	[M1]	9.66×10 ⁻⁴	$\alpha(K) = 2.06 \ 1/$, using the calculated normalization. $\alpha(K) = 0.000832 \ 12; \ \alpha(L) = 9.87 \times 10^{-5} \ 14; \ \alpha(M) = 1.92 \times 10^{-5} \ 3$ $\alpha(N) = 3.63 \times 10^{-6} \ 5; \ \alpha(O) = 3.21 \times 10^{-7} \ 5; \ \alpha(IPF) = 1.241 \times 10^{-5} \ 18$
1343.64 <i>13</i>	2.3 1	1343.72	(7/2)+	0	5/2+	M1	8.44×10 ⁻⁴	α (K)=0.000711 <i>I0</i> ; α (L)=8.42×10 ⁻⁵ <i>I2</i> ; α (M)=1.641×10 ⁻⁵ <i>23</i> α (N)=3.10×10 ⁻⁶ <i>5</i> ; α (O)=2.74×10 ⁻⁷ <i>4</i> ; α (IPF)=2.96×10 ⁻⁵ <i>5</i> %Iγ=0.61 <i>6</i> , using the calculated normalization.
								 E_γ: From adopted gammas. Others: 1343.7 keV 3 (2012Re14) and 1343.5 3 (1982Jo03). L_γ: Other: 2.2 2 (1982Jo03).
1351.1 <i>3</i>	0.7 1	2015.95	(3/2+,5/2+)	664.42	(3/2+)	[M1]	8.36×10 ⁻⁴	$\dot{\alpha}$ (K)=0.000702 <i>10</i> ; α (L)=8.32×10 ⁻⁵ <i>12</i> ; α (M)=1.621×10 ⁻⁵ <i>23</i> α (N)=3.06×10 ⁻⁶ <i>5</i> ; α (O)=2.71×10 ⁻⁷ <i>4</i> ; α (IPF)=3.13×10 ⁻⁵ <i>5</i> α [V=0.19.3 using the calculated normalization
1369.6 <i>3</i>	0.8 1	1914.01	(3/2 ⁺ ,5/2 ⁺)	544.80	(1/2 ⁺)	[M1,E2]	8.18×10 ⁻⁴	$\alpha(K)=0.000682 \ 10; \ \alpha(L)=8.08\times10^{-5} \ 12; \ \alpha(M)=1.574\times10^{-5} \ 22 \ \alpha(N)=2.97\times10^{-6} \ 5; \ \alpha(O)=2.63\times10^{-7} \ 4; \ \alpha(IPF)=3.58\times10^{-5} \ 5 \ 7 \ M_{\odot} \ 0.21 \ 4 \ math{math{math{math{math{math{math{math{$
1462.2 3	62	2126.62	(3/2 ⁺ ,5/2 ⁺)	664.42	(3/2 ⁺)	[M1]	7.42×10 ⁻⁴	$\alpha(\text{K})=0.00593\ 9;\ \alpha(\text{L})=7.01\times10^{-5}\ 10;\ \alpha(\text{M})=1.366\times10^{-5}\ 20$ $\alpha(\text{N})=2.58\times10^{-6}\ 4;\ \alpha(\text{O})=2.28\times10^{-7}\ 4;\ \alpha(\text{IPF})=6.20\times10^{-5}\ 9$
1482.2 3	1.7 <i>1</i>	1495.89	(3/2+)	13.97	(7/2+)	[E2]	6.41×10 ⁻⁴	%1γ=1.6 <i>δ</i> , using the calculated normalization. α (K)=0.000493 7; α (L)=5.89×10 ⁻⁵ 9; α (M)=1.147×10 ⁻⁵ 16 α (N)=2.16×10 ⁻⁶ 3; α (O)=1.88×10 ⁻⁷ 3; α (IPF)=7.48×10 ⁻⁵ 11
1496.0 2	28.3 2	1495.89	(3/2+)	0	5/2+	[M1]	7.21×10 ⁻⁴	%Iγ=0.45 5, using the calculated normalization. $\alpha(K)=0.000565 8$; $\alpha(L)=6.68\times10^{-5} 10$; $\alpha(M)=1.301\times10^{-5} 19$ $\alpha(N)=2.45\times10^{-6} 4$; $\alpha(O)=2.17\times10^{-7} 3$; $\alpha(IPF)=7.30\times10^{-5} 11$ %Iγ=7.6 6, using the calculated normalization.

6

					10	9 Sb ε decay	2002Re14	,1982Jo03 (continued)
							$\gamma(^{109}\text{Sn})$ (con	ntinued)
E_{γ}^{\dagger}	I_{γ} ^{‡@}	E _i (level)	\mathbf{J}_i^π	E_f	${ m J}_f^\pi$	Mult. [†]	α #	Comments
								E_{γ} : From adopted gammas. Others: 1496.1 keV 3 (2012Re14) and 1495.8 3 (1982Jo03).
1581.8 <i>3</i>	0.4 1	2126.62	$(3/2^+, 5/2^+)$	544.80	$(1/2^+)$	[M1,E2]	6.80×10^{-4}	$\alpha(\text{K})=0.000502 \ 7; \ \alpha(\text{L})=5.93 \times 10^{-5} \ 9; \ \alpha(\text{M})=1.155 \times 10^{-5} \ 17$
								$\alpha(N)=2.18\times10^{-5}$; $\alpha(O)=1.95\times10^{-5}$; $\alpha(IPF)=0.0001040$ 75 %I γ =0.11 3, using the calculated normalization.
1601.4 <i>3</i>	3.8 2	1614.23	$(3/2^+, 5/2^+)$	13.97	$(7/2^+)$	[M1]	6.72×10^{-4}	$\alpha(K) = 0.000490 \ 7; \ \alpha(L) = 5.78 \times 10^{-5} \ 8; \ \alpha(M) = 1.125 \times 10^{-5} \ 16$
								$\alpha(N)=2.12\times10^{-6}$ 3; $\alpha(O)=1.88\times10^{-7}$ 3; $\alpha(IPF)=0.0001115$ 16 %Iy=1.01 10, using the calculated normalization.
							1	E_{γ} : poor fit, level-energy difference=1600.26.
1636.3 <i>3</i>	1.6 2	1649.85	$(3/2^+, 5/2^+)$	13.97	$(7/2^+)$	[M1,E2]	6.61×10 ⁻⁴	$\alpha(K) = 0.000468 \ 7; \ \alpha(L) = 5.52 \times 10^{-5} \ 8; \ \alpha(M) = 1.075 \times 10^{-5} \ 15$ $\alpha(N) = 2.03 \times 10^{-6} \ 3; \ \alpha(O) = 1.80 \times 10^{-7} \ 3; \ \alpha(IPE) = 0.0001252 \ 18$
								$\%$ I γ =0.43 7, using the calculated normalization.
1650.4 <i>3</i>	3.1 2	1649.85	$(3/2^+, 5/2^+)$	0	5/2+	[M1]	6.57×10^{-4}	$\alpha(K) = 0.000460 \ 7; \ \alpha(L) = 5.42 \times 10^{-5} \ 8; \ \alpha(M) = 1.055 \times 10^{-5} \ 15$
								$\alpha(N)=1.99\times10^{-6}$ 3; $\alpha(O)=1.763\times10^{-7}$ 25; $\alpha(IPF)=0.0001308$ 19 %Iv=0.83.9 using the calculated normalization
^x 1760.4 3	2.6 1							$\%$ I γ =0.69 6, using the calculated normalization.
1914.7 <i>3</i>	1.9 <i>1</i>	1914.01	$(3/2^+, 5/2^+)$	0	5/2+	[M1]	6.35×10^{-4}	$\alpha(K) = 0.0003385; \alpha(L) = 3.97 \times 10^{-5} 6; \alpha(M) = 7.74 \times 10^{-6} 11$
								$\alpha(N)=1.459\times10^{-6}\ 21;\ \alpha(O)=1.293\times10^{-7}\ 19;\ \alpha(IPF)=0.000248\ 4$ %Iv=0.51.5 using the calculated normalization
2016.2 3	4.6 2	2015.95	$(3/2^+, 5/2^+)$	0	5/2+	[M1]	6.44×10^{-4}	$\alpha(K)=0.000304 5; \alpha(L)=3.57\times10^{-5} 5; \alpha(M)=6.96\times10^{-6} 10$
								α (N)=1.312×10 ⁻⁶ <i>19</i> ; α (O)=1.163×10 ⁻⁷ <i>17</i> ; α (IPF)=0.000296 <i>5</i>
2127 1 3	097	2126 62	$(3/2^+ 5/2^+)$	0	5/2+	[M1]	6.63×10^{-4}	$\% 1\gamma = 1.23 \ II$, using the calculated normalization. $\alpha(K) = 0.000273 \ 4^{\circ} \alpha(I) = 3.20 \times 10^{-5} \ 5^{\circ} \alpha(M) = 6.24 \times 10^{-6} \ 9$
2127.1 J	0.91	2120.02	(3/2,3/2)	0	512	[1411]	0.05×10	$\alpha(N)=0.0002757, \alpha(D)=0.208710^{-5}, \alpha(N)=0.248710^{-5}$ $\alpha(N)=1.177\times10^{-6}$ 17; $\alpha(O)=1.043\times10^{-7}$ 15; $\alpha(IPF)=0.000350$ 5
								%I γ =0.24 4, using the calculated normalization.

[†] From Adopted Gammas.

-

[‡] From 2002Re14.
[#] Additional information 1.
[@] For absolute intensity per 100 decays, multiply by 0.267 21.
^x γ ray not placed in level scheme.

 ${}^{109}_{50}{
m Sn}_{59}$ -7

8