108 Pd(n, γ) E=thermal **1980Ca02**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Kumar(a), J. Chen(b) and F. G. Kondev	NDS 137, 1 (2016)	31-May-2016

S(n)=6153.59 15 from 2012Wa38.

1980Ca02: Thermal neutron beam was produced by the Brookhaven National Laboratory High Flux Beam Reactor (HFBR). Target is 5.52 g¹⁰⁸Pd enriched to 98.11%. γ rays were detected with Ge(Li) detectors (FWHM=7 keV at E γ =6 MeV). A separate study of primary transitions was performed with a three crystal pair spectrometer and a 7.7 g enriched target. Another study of low energy γ rays with high energy-precision and conversion electrons was performed with curved crystal spectrometers (FWHM=2-25 eV) for γ rays and the BILL spectrometer for electrons (resolution= $\Delta E/E \approx 10^{-3}$ at the Institute Laue Langevin (ILL) in Grenoble, France. Measured E γ , I γ , ce. Deduced levels, J^{π} , γ multipolarities.

2008Kr05: Thermal neutron beams was produced from the 10-MW Budapest Reactor. Target is a 1.6 g PdCl₂ with a thickness of 0.4 g/cm². γ rays were detected by a 25% efficient coaxial HPGe detector with Compton suppression by a BGO scintillator.

Measured E γ , I γ , absolute cross section. Deduced levels, J^{π} . Other measurement: 1977Ba87.

E(level) [†]	J ^π @	E(level) [†]	J ^π @	E(level) [†]	J ^π @
0	5/2+	944.967 6	$1/2^{+}$	1683.5 8	$1/2^{+}$
113.4000 14	1/2+	954.164 9	1/2+	1709.7 8	(1/2,3/2,5/2+
188.9903 10	$11/2^{-}$	981.755 <i>10</i>	5/2+	1728.1 [‡] 6	
245.0808 16	$(7/2)^{-}$	1053.628 19	3/2+	1789.0 [‡] 7	
248.01 [#] 11	9/2+	1065.8 5	$1/2^{+}$	1840.8 [‡] 5	
266.3424 15	$1/2^{+}$	1091.0 5	5/2+	1914.9 [‡] 6	
276.289 3	7/2+	1111.8 8	1/2,3/2	1923.4 [‡] 6	
287.250 3	9/2-	1134.694 6	1/2,3/2	1996.7 [‡] 7	
291.4339 16	$3/2^{+}$	1147.2 5	3/2+	2024.3 [‡] 5	
325.2835 16	$3/2^{+}$	1232.796 22	$1/2^{+}$	2087.4 [‡] 6	
326.8690 22	$5/2^{+}$	1243.9 8	1/2,3/2	2119.5 [‡] 6	
339.5299 17	5/2-	1268.1 8	$3/2^+, 5/2^+$	2158.1 [‡] 7	
426.140 <i>3</i>	7/2+	1328.4 5	5/2,(3/2)	2192.4 [‡] 9	
433.5630 16	$3/2^{+}$	1347.7 5	1/2,3/2,5/2+	2227.9 [‡] 7	
491.5892 24	$3/2^{+}$	1359.411 8	1/2,3/2	2241.9 [‡] 6	
540.6753 19	$5/2^{+}$	1371.1 5	5/2+	2363.0 [‡] 6	
604.5118 24	5/2-	1377.7 8	1/2,3/2	2414.7 [‡] 6	
623.4813 23	$3/2^{+}$	1399.0 5	1/2,3/2	2569.9 [‡] 6	
645.9 5	7/2+,9/2+	1479.3 8	$1/2^{+}$	2589.9 [‡] 7	
673.4879 24	3/2-	1484.9 8	$(1/2, 3/2, 5/2^+)$	2763.5 [‡] 10	
722.043 3	3/2+,5/2+	1536.9 8	1/2+	2885.6 [‡] 9	
791.425 5	$3/2^+, 5/2^+$	1540.3 [‡] 5	3/2	2924.4 [‡] 7	
810.592 4	$3/2^{+}$	1601.3 8	$(1/2^+)$	2984.8 [‡] 8	
846.1 5	5/2+	1615.4 8	$(1/2, 3/2, 5/2^+)$	(6153.51 10)	1/2+&
911.250 12	5/2	1644.2 8	$(3/2^+, 5/2^+)$		
941.098 <i>3</i>	$3/2^{-}$	1647.8 5	$(1/2, 3/2, 5/2^+)$		

¹⁰⁹Pd Levels

)

 † From a least-squares fit to $\gamma\text{-ray energies.}$

[‡] Seen only by 1977Ba87.

[#] Seen only by 2008Kr05.

[@] From Adopted Levels.

& s-wave capture in $J^{\pi}=0^{+108}$ Pd g.s.

$\gamma(^{109}\text{Pd})$

Conversion electron intensities per 1000 captures from 1980Ca02 are given under comments.

Ν

E_{γ}^{\dagger}	$I_{\gamma}^{\&}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. ^a	δ^{b}	α^{cd}	Comments
59.4 [#] 3 94.450 <i>I</i>	35 4	248.01 339.5299	9/2 ⁺ 5/2 ⁻	188.9903 245.0808	11/2 ⁻ (7/2) ⁻	M1+E2	0.33 +13-17	0.57 10	$I_{\gamma}: 5 \ 3 \ \text{from } \sigma=0.04 \ \text{b} \ 2 \ \text{in } 2008 \text{Kr05.}$ $\alpha(\text{K})=0.48 \ 7; \ \alpha(\text{L})=0.076 \ 22; \ \alpha(\text{M})=0.014 \ 5$ $\alpha(\text{N})=0.0023 \ 7$ $I_{\gamma}: \ 19.6 \ 17 \ \text{from } \sigma=0.145 \ \text{b} \ 8 \ \text{in } 2008 \text{Kr05.}$ $I(\text{ce})(\text{K})=15.0 \ 23, \ I(\text{ce})(\text{L})=1.53 \ 15, \ I(\text{ce})(\text{L}2)=0.49 \ 19,$ $I(\text{ce})(\text{L}3)=0.63 \ 25, \ I(\text{ce})(\text{M})=0.63 \ 25 \ (1980 \text{Ca02}).$
98.258 [@] 3	16.5 <i>17</i>	287.250	9/2-	188.9903	11/2-	M1		0.399	Mult.: $\alpha(K)\exp=0.43$ 9, $\alpha(L1)\exp=0.044$ 6, $\alpha(L2)\exp=0.014$ 6, $\alpha(L3)\exp=0.018$ 8, $\alpha(M)\exp=0.018$ 8. $\alpha(K)=0.347$ 5; $\alpha(L)=0.0427$ 6; $\alpha(M)=0.00804$ 12 $\alpha(N)=0.001352$ 19 I_{γ} : 11.1 11 from $\sigma=0.082$ b 6 in 2008Kr05.
106.694 <i>3</i> 108.280 [@] <i>1</i>	1.0 2 4.9 6	433.5630 433.5630	3/2 ⁺ 3/2 ⁺	326.8690 325.2835	5/2 ⁺ 3/2 ⁺	50		0.001	I(ce)(K)=4.7 7 I(ce)(L1)=0.73 15 (1980Ca02). Mult.: α (K)exp=0.29 5, α (L1)exp=0.044 10 (1980Ca02). I _{γ} : 1.5 10 from σ =0.011 b 7 in 2008Kr05. I _{γ} : 3.9 11 from σ =0.029 b 8 in 2008Kr05.
113.401 2	3.0×10 ² 3	113.4000	1/2 '	0	5/2*	E2		0.891	$\begin{array}{l} \alpha(\text{K})=0.704 \ 10; \ \alpha(\text{L})=0.1527 \ 22; \ \alpha(\text{M})=0.0294 \ 5\\ \alpha(\text{N})=0.00463 \ 7\\ \text{I}_{\gamma}: \ 171 \ 12 \ \text{from } \sigma=1.266 \ \text{b} \ 19 \ \text{in} \ 2008 \text{Kr05.}\\ \text{I(ce)(K)=166 \ 17, \ I(ce)(L1)=15.7 \ 16, \ I(ce)(L2)=9.21 \ 92, \\ \text{I(ce)(L3)=11.6 \ 12, \ I(ce)(M1)=2.97 \ 30, \ I(ce)(M2+M3)=4.16 \\ 42 \ (1980 \text{Ca02).} \end{array}$
149.854 <i>3</i> 152.942 <i>1</i>	1.0 <i>1</i> 95 <i>10</i>	426.140 266.3424	7/2 ⁺ 1/2 ⁺	276.289 113.4000	7/2 ⁺ 1/2 ⁺	M1		0.1170	Mult.: $\alpha(K)\exp=0.56 \ 8, \ \alpha(L1)\exp=0.053 \ 8, \ \alpha(L2)\exp=0.031 \ 4, \ \alpha(L3)\exp=0.039 \ 6, \ \alpha(M)\exp=0.010 \ 2 \ (1980Ca02).$ I _y : 0.15 4 from $\sigma=0.0011 \ b \ 3$ in 2008Kr05. $\alpha(K)=0.1018 \ 15; \ \alpha(L)=0.01242 \ 18; \ \alpha(M)=0.00234 \ 4 \ \alpha(N)=0.000393 \ 6 \ I_{\gamma}: 74 \ 5 \ from \ \sigma=0.549 \ b \ 8 \ in \ 2008Kr05.$ I(ce)(K)=9.04 45, I(ce)(L1)=0.952 \ 95, I(ce)(M)=0.190 \ 32
166.306 <i>4</i> ^x 170.561 <i>1</i>	2.2 <i>4</i> 2.4 <i>2</i>	491.5892	3/2+	325.2835	3/2+				(1980Ca02). Mult.: α (K)exp=0.095 <i>10</i> , α (L1)exp=0.010 <i>2</i> , α (M)exp=0.002 <i>5</i> (1980Ca02). I _{γ} : 2.1 <i>3</i> from σ =0.0159 b <i>23</i> in 2008Kr05.
178.034 <i>1</i> 187.115 <i>4</i>	72 7 1.0 <i>I</i>	291.4339 810.592	3/2 ⁺ 3/2 ⁺	113.4000623.4813	1/2 ⁺ 3/2 ⁺	M1		0.0776	$\alpha(K)=0.0676 \ 10; \ \alpha(L)=0.00820 \ 12; \ \alpha(M)=0.001543 \ 22 \\ \alpha(N)=0.000260 \ 4 \\ I_{\gamma}: \ 56 \ 4 \ from \ \sigma=0.413 \ b \ 8 \ in \ 2008Kr05. \\ I(ce)(K)=4.54 \ 14, \ I(ce)(L1)=0.432 \ 86 \ (1980Ca02). \\ Mult.: \ \alpha(K)exp=0.063 \ 6, \ \alpha(L1)exp=0.006 \ 1 \ (1980Ca02). \\ I_{\gamma}: \ 0.81 \ from \ \sigma=0.0060 \ b \ in \ 2008Kr05. \end{cases}$

 $^{109}_{46}{\rm Pd}_{63}$ -2

				10	⁸ Pd (\mathbf{n}, γ) E =	=thermal	1980Ca02 (co	ontinued)	
						$\gamma(^{109}\text{Pd})$ (co	ontinued)		
${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\&}$	E _i (level)	${ m J}^{\pi}_i$	E_f	\mathbf{J}_f^{π}	Mult. ^a	δ^{b}	α^{cd}	Comments
188.990 <i>1</i>	16.5 17	188.9903	11/2-	0	5/2+	E3		0.783	$\begin{aligned} \alpha(\text{K}) = 0.570 \ 8; \ \alpha(\text{L}) = 0.1733 \ 25; \ \alpha(\text{M}) = 0.0340 \ 5\\ \alpha(\text{N}) = 0.00529 \ 8\\ \text{I}_{\gamma}: \ 13.9 \ 12 \ \text{from } \sigma = 0.103 \ \text{b} \ 6 \ \text{in} \ 2008 \text{Kr05.}\\ \text{I(ce)(K)} = 8.32 \ 25, \ \text{I(ce)(L1)} = 0.809 \ 8I, \ \text{I(ce)(L2)} = 0.91\\ 14, \ \text{I(ce)(L3)} = 0.76 \ 12, \ \text{I(ce)(M)} = 0.363 \ 73\\ (1980\text{Ca02}).\\ \text{Mult:} \ \alpha(\text{K}) \text{exp} = 0.50 \ 5, \ \alpha(\text{L1}) \text{exp} = 0.049 \ 7,\\ \alpha(\text{L2}) \text{exp} = 0.055 \ 9, \ \alpha(\text{L3}) \text{exp} = 0.046 \ 8,\\ \alpha(\text{M}) \text{exp} = 0.022 \ 5 \ (1980\text{Ca02}). \end{aligned}$
189.920 <i>3</i>	2.8 4	623.4813	3/2+	433.5630	3/2+				I_{γ} : 2.30 from σ =0.017 b in 2008Kr05.
197.333 8 200.153 4	0.6 <i>1</i> 12.0 <i>12</i>	623.4813 491.5892	3/2 ⁺ 3/2 ⁺	426.140 291.4339	7/2 ⁺ 3/2 ⁺	M1		0.0567	$\alpha(K)=0.0494\ 7;\ \alpha(L)=0.00598\ 9;\ \alpha(M)=0.001125\ 16$ $\alpha(N)=0.000189\ 3$ $I_{\gamma}:\ 9.9\ 10\ from\ \sigma=0.073\ b\ 5\ in\ 2008Kr05.$ $I(ce)(K)=0.49\ 10\ (1980Ca02).$ Mult.: $\alpha(K)exp=0.041\ 10\ (1980Ca02).$
^x 202.971 <i>13</i>	0.3 1								
^x 207.697 <i>3</i> 211.884 <i>3</i>	0.3 <i>I</i> 34 <i>3</i>	325.2835	3/2+	113.4000	1/2+	M1(+E2)	0.3 +2-3	0.053 6	$\alpha(K)=0.046\ 5;\ \alpha(L)=0.0058\ 9;\ \alpha(M)=0.00108\ 17$ $\alpha(N)=0.00018\ 3$ $I_{\gamma}:\ 27.6\ 21\ from\ \sigma=0.204\ b\ 7\ in\ 2008Kr05.$ $I(ce)(K)=1.48\ 6,\ I(ce)(L1)=0.235\ 71\ (1980Ca02).$ Mult.: $\alpha(K)exp=0.044\ 5,\ \alpha(L1)exp=0.007\ 2$
213.806 <i>4</i> 215.390 2	1.8 <i>3</i> 6.7 7	540.6753 540.6753	5/2 ⁺ 5/2 ⁺	326.8690 325.2835	5/2 ⁺ 3/2 ⁺	M1		0.0467	(1980Ca02). I_{γ} : 1.49 from σ =0.011 b in 2008Kr05. $\alpha(K)$ =0.0407 6; $\alpha(L)$ =0.00492 7; $\alpha(M)$ =0.000924 13 $\alpha(N)$ =0.0001557 22 I_{γ} : 7.8 9 from σ =0.058 b 5 in 2008Kr05. I(ce)(K)=0.261 26 (1980Ca02). Mult.: $\alpha(K)$ exp=0.039 5 (1980Ca02).
x216.487 9 222.922 6 224.717 7 x228 194 4	0.5 <i>1</i> 0.6 <i>1</i> 0.6 <i>1</i> 0.7 <i>1</i>	944.967 1359.411	1/2 ⁺ 1/2,3/2	722.043 1134.694	3/2 ⁺ ,5/2 ⁺ 1/2,3/2				I _γ : 0.51 from σ =0.0038 b in 2008Kr05. I _γ : 0.54 from σ =0.0040 b in 2008Kr05.
230.453 2 245.080 2	2.8 <i>3</i> 154 <i>15</i>	722.043 245.0808	3/2 ⁺ ,5/2 ⁺ (7/2) ⁻	491.5892 0	3/2+ 5/2+	E1		0.01200	I _γ : 3.0 6 from σ =0.022 b 4 in 2008Kr05. α (K)=0.01050 15; α (L)=0.001233 18; α (M)=0.000230 4 α (N)=3.85×10 ⁻⁵ 6 I _γ : 128 9 from σ =0.945 b 15 in 2008Kr05. I(ce)(K)=1.54 5, I(ce)(L1)=0.231 46 (1980Ca02). Mult.: α (K)exp=0.010 1, α (L1)exp=0.0015 3 (1980Ca02).
247.96 [#] 11 249.238 11	19.4 <i>19</i>	248.01 540.6753	9/2 ⁺ 5/2 ⁺	0 291.4339	5/2+ 3/2+	M1		0.0319	I _γ : 5.5 10 from σ =0.041 b 7 in 2008Kr05. α (K)=0.0278 4; α (L)=0.00334 5; α (M)=0.000628 9

ω

 $^{109}_{46}\mathrm{Pd}_{63}$ -3

					¹⁰⁸ Pd(n	,γ) E=therm	al 1980Ca02	2 (continue	<u>d)</u>
						γ (¹⁰⁹ P	d) (continued)		
E_{γ}^{\dagger}	Ιγ &	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. ^a	$\delta^{\boldsymbol{b}}$	α^{cd}	Comments
x2(2,402,6	2.0.4								α (N)=0.0001058 <i>15</i> I _y : 17.3 <i>16</i> from σ =0.128 b 8 in 2008Kr05. I(ce)(K)=0.524 <i>42</i> (1980Ca02). Mult.: α (K)exp=0.027 <i>3</i> (1980Ca02).
263.403 6	2.0 <i>4</i> 1.4 <i>4</i>	540.6753	5/2+	276.289	$7/2^{+}$				I_{γ} : 1.20 from σ =0.0089 b in 2008Kr05.
264.980 <i>3</i>	13.4 13	604.5118	5/2-	339.5299	5/2-	M1+E2	0.9 +10-6	0.035 7	$\alpha(K)=0.030\ 6;\ \alpha(L)=0.0040\ 10;\ \alpha(M)=0.00076\ 19$ $\alpha(N)=0.00013\ 3$
									I_{γ} : 11.4 9 from σ =0.084 b 3 in 2008Kr03. I(ce)(K)=0.402 60 (1980Ca02).
266.346 3	28 3	266.3424	1/2+	0	5/2+	E2		0.0441	Mult.: α (K)exp=0.030 5 (1980Ca02). α (K)=0.0375 6; α (L)=0.00541 8; α (M)=0.001025 15 α (N)=0.0001674 24
									I_{γ} : 26.4 19 from σ =0.195 b 4 in 2008Kr05. I(ce)(K)=1 10 3 (1980Ca02)
									Mult: $\alpha(K) \exp[=0.040 \ 4 \ (1980Ca02)]$.
267.610 5 274 328 7	2.24	941.098 540 6753	$3/2^{-}$ $5/2^{+}$	673.4879 266 3424	$3/2^{-}$ $1/2^{+}$				I_{γ} : 1.89 from σ =0.014 b in 2008Kr05. Let 0.351 from σ =0.0026 b in 2008Kr05
276.296 5	33 3	276.289	7/2+	0	$5/2^+$	M1+E2	0.5 3	0.027 3	$\alpha(K)=0.0237\ 23;\ \alpha(L)=0.0030\ 5;\ \alpha(M)=0.00056\ 8$
									$\alpha(N)=9.4\times10^{-5}$ 13 I _y : 28.6 22 from σ =0.212 b 7 in 2008Kr05. I(ce)(K)=0.782 23 (1980Ca02). Mult : $\alpha(K)$ ay p=0.024 2 (1980Ca02)
288.480 <i>5</i> 291.430 <i>4</i>	2.2 <i>3</i> 60 6	722.043	$3/2^+, 5/2^+$ $3/2^+$	433.5630	$\frac{3}{2^{+}}$	M1+E2	0.6 4	0.024.3	I_{γ} : 2.4 6 from σ=0.018 b 4 in 2008Kr05. α (K)=0.0210 22: α (L)=0.0027 4: α (M)=0.00050 8
	00 0	2,11100,	0,1	0	0/2		0.0	0.02.10	$\alpha(N) = 8.4 \times 10^{-5} \ I2$
									I_{γ} : 53 4 from σ =0.393 b 8 in 2008Kr05. I(ce)(K)=1.27 4, I(ce)(L1)=0.24 <i>12</i> (1980Ca02).
205 507 2	1/2	540 6752	5/2+	245 0000	$(7/2)^{-}$				Mult.: α (K)exp=0.021 2, α (L1)exp=0.004 2 (1980Ca02).
293.197 5	12.6 <i>13</i>	623.4813	3/2 $3/2^+$	325.2835	(7/2) $3/2^+$	M1(+E2)	<3	0.025 5	$\alpha(K)=0.021$ 4; $\alpha(L)=0.0028$ 7; $\alpha(M)=0.00052$ 13
									$\alpha(N)=8.7\times10^{-5} 21$ L : 9.7 10 from $\sigma=0.072$ h 6 in 2008Kr05
									I_{γ} . 9.770 Hold $\theta = 0.072$ 0.0 Hi 2008K105. I(ce)(K)=0.239 72 (1980Ca02).
x299.119.5	1.9.3								Mult.: α (K)exp=0.019 6 (1980Ca02).
317.255 [@] 6	1.8 4	604.5118	5/2-	287.250	9/2-				I_{γ} : 1.6 6 from σ =0.012 b 4 in 2008Kr05.
320.164 5	28 3	433.5630	3/2+	113.4000	$1/2^{+}$	M1		0.01677	$\alpha(K)=0.01464\ 21;\ \alpha(L)=0.001745\ 25;\ \alpha(M)=0.000328\ 5$
									I_{γ} : 20 6 from σ =0.15 b 4 in 2008Kr05. I(ce)(K)=0.361 65 (1980Ca02).
^x 321.082.15	0.9.5								Mult.: α (K)exp=0.013 3 (1980Ca02).
221.002 10	0.70								

4

						γ (¹⁰⁹ Pe	d) (continued)		
E_{γ}^{\dagger}	Ι _γ &	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^a	$\delta^{\boldsymbol{b}}$	α^{cd}	Comments
325.284 4	122 12	325.2835	3/2+	0	5/2+	M1(+E2)	0.5 +3-5	0.0174 14	$\alpha(K)=0.0151 \ 11; \ \alpha(L)=0.00187 \ 20; \ \alpha(M)=0.00035 \ 4$ $\alpha(N)=5.9\times10^{-5} \ 6$ $I_{\gamma}: \ 106 \ 7 \ from \ \sigma=0.786 \ b \ 11 \ in \ 2008Kr05.$ $I(ce)(K)=1.83 \ 6, \ I(ce)(L1)=0.244 \ 41 \ (1980Ca02).$ $Mult.: \ \alpha(K)exp=0.015 \ 1, \ \alpha(L1)exp=0.002 \ 1$ (1090Ca02)
326.868 4	50 5	326.8690	5/2+	0	5/2+	E2		0.0223	(1980Ca02). $\alpha(K)=0.0191 \ 3; \ \alpha(L)=0.00262 \ 4; \ \alpha(M)=0.000495 \ 7$ $\alpha(N)=8.14\times10^{-5} \ 12$ $I_{\gamma}: \ 41 \ 3 \ from \ \sigma=0.300 \ b \ 8 \ in \ 2008Kr05.$ $I(ce)(K)=0.978 \ 39 \ (1980Ca02).$ Mult.: $\alpha(K)exp=0.020 \ 2 \ (1980Ca02).$
332.050 5 333.964 <i>3</i>	3.2 6 64 6	623.4813 673.4879	3/2 ⁺ 3/2 ⁻	291.4339 339.5299	3/2+ 5/2 ⁻	M1(+E2)	0.5 +4-5	0.0162 15	I_{γ} : 2.43 from σ=0.018 b in 2008Kr05. $\alpha(K)=0.0141 I2$; $\alpha(L)=0.00174 22$; $\alpha(M)=0.00033 5$ $\alpha(N)=5.5\times10^{-5} 7$ I_{γ} : 29.7 23 from σ=0.220 b 9 in 2008Kr05. I(ce)(K)=0.897 27 (1980Ca02). Mult.: $\alpha(K)exp=0.014 I (1980Ca02)$.
336.584 <i>3</i>	21.0 21	941.098	3/2-	604.5118	5/2-	M1(+E2)	0.1 +8-1	0.0148 25	$\begin{aligned} &\alpha(\text{K}) = 0.0129 \ 20; \ \alpha(\text{L}) = 0.0015 \ 4; \ \alpha(\text{M}) = 0.00029 \ 7 \\ &\alpha(\text{N}) = 4.9 \times 10^{-5} \ 11 \\ &\text{I}_{\gamma}: \ 17.4 \ 15 \ \text{from} \ \sigma = 0.129 \ \text{b} \ 7 \ \text{in} \ 2008 \text{Kr05.} \\ &\text{I(ce)(\text{K})} = 0.273 \ 19 \ (1980 \text{Ca02}). \\ &\text{Mult.:} \ \alpha(\text{K}) \text{exp} = 0.013 \ 2 \ (1980 \text{Ca02}). \end{aligned}$
x337.828 5 339.528 4	1.2 <i>3</i> 114 <i>11</i>	339.5299	5/2-	0	5/2+	E1(+M2)	0.12 +8-12	0.0058 14	$\alpha(K)=0.0050 \ 12; \ \alpha(L)=0.00060 \ 16; \ \alpha(M)=0.00011 \ 3 \\ \alpha(N)=1.9\times10^{-5} \ 5 \\ I_{\gamma}: \ 100 \ 7 \ from \ \sigma=0.737 \ b \ 11 \ in \ 2008Kr05. \\ I(ce)(K)=0.570 \ 57 \ (1980Ca02). \\ Mult.: \ \alpha(K)exp=0.005 \ 1 \ (1980Ca02). \end{cases}$
x343.869 9 346.622 6 347.192 6	1.9 <i>4</i> 0.6 <i>1</i> 1.8 <i>3</i>	673.4879 623.4813	3/2 ⁻ 3/2 ⁺	326.8690 276.289	5/2+ 7/2+				I _γ : 0.257 from σ =0.0019 b in 2008Kr05. I _γ : 1.49 from σ =0.011 b in 2008Kr05.
x355.694 6 357.148 9	1.5 5 0.6 1	623.4813	3/2+	266.3424	$1/2^{+}$				I_{γ} : 0.49 from σ =0.0036 b in 2008Kr05.
^358.697 10 359.426 6	8.5 <i>11</i> 69 7	604.5118	5/2-	245.0808	(7/2)-	M1		0.01253	$\alpha(K)=0.01095 \ 16; \ \alpha(L)=0.001300 \ 19; \ \alpha(M)=0.000244$ 4 $\alpha(N)=4.12\times10^{-5} \ 6$ $I_{\gamma}: \ 61 \ 4 \ from \ \sigma=0.453 \ b \ 11 \ in \ 2008Kr05.$ $I(ce)(K)=0.687 \ 27 \ (1980Ca02).$ What is $\alpha(K)=0.010 \ L \ (1080Ca02)$
365.295 7 *371.125 10	0.6 <i>3</i> 2.4 <i>4</i>	791.425	3/2+,5/2+	426.140	7/2+				I_{γ} : 1.35 from σ =0.010 b in 2008Kr05.
377.004 13	1.8 3	810.592	3/2+	433.5630	3/2+				I _γ : 1.35 from σ =0.010 b in 2008Kr05.

S

From ENSDF

	¹⁰⁸ Pd(\mathbf{n},γ) E=thermal 1980Ca02 (continued)									
	γ ⁽¹⁰⁹ Pd) (continued)									
${\rm E_{\gamma}}^{\dagger}$	Ι _γ &	E _i (level)	J_i^π	E_f	${ m J}_f^\pi$	Mult. ^a	α^{cd}	Comments		
378.191 5	24.3 24	491.5892	3/2+	113.4000	1/2+	E2	0.01395	$\alpha(K)=0.01200 \ 17; \ \alpha(L)=0.001598 \ 23; \ \alpha(M)=0.000302 \ 5 \\ \alpha(N)=4.98\times10^{-5} \ 7 \\ I_{\gamma}: \ 20.9 \ 18 \ from \ \sigma=0.155 \ b \ 8 \ in \ 2008Kr05. \\ I(ce)(K)=0.292 \ 58 \ (1980Ca02). \\ Mult.: \ \alpha(K)exp=0.012 \ 3 \ (1980Ca02). \end{cases}$		
x386.75 4 x392.395 25 395.171 17 396.758 11 x407.124 10 x414.342 7 x416.738 20 x418.298 7	1.1 3 0.4 1 2.9 4 10.2 10 1.5 4 6.0 6 0.4 1 1.8 3	722.043 722.043	3/2 ⁺ ,5/2 ⁺ 3/2 ⁺ ,5/2 ⁺	326.8690 325.2835	5/2 ⁺ 3/2 ⁺			I _γ : 3.4 10 from σ =0.025 b 7 in 2008Kr05. I _γ : 11.8 17 from σ =0.087 b 11 in 2008Kr05.		
^x 421.049 <i>11</i> 426.135 <i>4</i>	1.5 <i>3</i> 11.7 <i>12</i>	426.140	7/2+	0	5/2+	M1	0.00822	α (K)=0.00719 <i>10</i> ; α (L)=0.000849 <i>12</i> ; α (M)=0.0001593 <i>23</i> α (N)=2.69×10 ⁻⁵ <i>4</i> I _{γ} : 8.1 <i>11</i> from σ =0.060 b 7 in 2008Kr05. I(ce)(K)=0.064 <i>16</i> (1980Ca02).		
428.396 <i>3</i>	19.0 <i>19</i>	673.4879	3/2-	245.0808	(7/2)-	E2	0.00948	Mult.: α (K)exp=0.0055 20 (1980Ca02). α (K)=0.00818 12; α (L)=0.001064 15; α (M)=0.000201 3 α (N)=3.32×10 ⁻⁵ 5 I_{γ} : 1.4 3 from σ =0.010 b 2 in 2008Kr05. I(ce)(K)=0.152 15 (1980Ca02). M k ω (K)=0.008 k (1000C 02)		
433.552 4	59 6	433.5630	3/2+	0	5/2+	M1	0.00788	Mult.: $\alpha(K)\exp=0.008 \ I \ (1980Ca02)$. $\alpha(K)=0.00689 \ I0; \ \alpha(L)=0.000813 \ I2; \ \alpha(M)=0.0001527 \ 22$ $\alpha(N)=2.57\times10^{-5} \ 4$ $I_{\gamma}: 50 \ 4 \ from \ \sigma=0.367 \ b \ I1 \ in \ 2008Kr05.$ $I(ce)(K)=0.383 \ 3I \ (1980Ca02).$ Mult.: $\alpha(K)\exp=0.0065 \ 8 \ (1980Ca02)$		
x436.185 11 x438.160 12 x441.839 9 x452.524 16	0.6 <i>1</i> 1.4 <i>3</i> 2.3 <i>5</i> 0.8 <i>1</i>							Mun.: <i>u</i> (k) <i>c</i> , p =0.0005 6 (1760Ca02).		
455.702 5 461.194 7 464.541 9 *466.511 10 *467 333 12	7.7 8 13.1 <i>13</i> 1.6 <i>3</i> 2.2 5 1.0 5	722.043 1134.694 791.425	3/2 ⁺ ,5/2 ⁺ 1/2,3/2 3/2 ⁺ ,5/2 ⁺	266.3424 673.4879 326.8690	1/2 ⁺ 3/2 ⁻ 5/2 ⁺			I _γ : 7.2 8 from σ =0.053 b 5 in 2008Kr05. I _γ : 11.8 10 from σ =0.087 b 5 in 2008Kr05. I _γ : 3.38 from σ =0.025 b in 2008Kr05.		
485.311 7 491.575 10 515.128 13 520.597 10 525.078 16	5.1 6 9.6 10 5.7 8 4.3 6 1.4 3	810.592 491.5892 791.425 954.164 791.425	3/2 ⁺ 3/2 ⁺ 3/2 ⁺ ,5/2 ⁺ 1/2 ⁺ 3/2 ⁺ ,5/2 ⁺	325.2835 0 276.289 433.5630 266.3424	3/2 ⁺ 5/2 ⁺ 7/2 ⁺ 3/2 ⁺ 1/2 ⁺			I _γ : 6.2 8 from σ =0.046 b 5 in 2008Kr05. I _γ : 2.35 17 from σ =0.0174 b 5 in 2008Kr05. I _γ : 12.2 14 from σ =0.090 b 8 in 2008Kr05. I _γ : 5.3 8 from σ =0.039 b 5 in 2008Kr05. I _γ : 3.11 from σ =0.023 b in 2008Kr05.		

6

¹⁰⁸Pd(\mathbf{n},γ) E=thermal **1980Ca02** (continued)

γ (¹⁰⁹Pd) (continued)

E_{γ}^{\dagger}	Ιγ ^{&}	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Comments
^x 526 411 21	051					
530 202 10	264	1134 694	1/2 3/2	604 5118	$5/2^{-}$	L: 3.5.6 from $\sigma = 0.026$ h 4 in 2008Kr05
x539 35 3	0.6.3	1151.071	1/2,5/2	001.0110	5/2	γ. 5.5 6 Hom 6 = 0.020 6 7 m 2000 kros.
540 697 10	317	540 6753	5/2+	0	$5/2^{+}$	L: 2.03 from $\sigma = 0.015$ h in 2008Kr05
x554 59 4	083	5-10.0755	5/2	0	5/2	17.2.05 from $0 - 0.015$ 0 in 2000 ki05.
555 614 13	183	981 755	5/2+	426 140	$7/2^{+}$	L: 4.2.6 from $\sigma = 0.031$ h 4 in 2008Kr05
x566 672 20	043	901.755	5/2	420.140	112	17. 4.20 from $0 - 0.0510 + 112000 Kr05$.
x579.90.3	0.13					
584 51 5	0.5 2	911 250	5/2	326 8690	5/2+	$I : 6.5 \text{ from } \sigma = 0.048 \text{ b in } 2008 \text{ km}^{-5}$
585 908 15	153	911.250	5/2	325 2835	$3/2^+$	$1 \cdot 2 \cdot 2 \cdot 8$ from $\sigma = 0.016$ b 6 in 2008 kr05
601 575 6	15618	941.098	$3/2^{-}$	339 5299	5/2-	I_{γ} : 2.2.6 from $\sigma = 0.102$ b 7 in 2008Kr05
604 530 6	557	604 5118	5/2-	0	5/2+	$1 \cdot 6 \cdot 6 \cdot 6 \text{ form } \sigma = 0.49 \text{ b} \cdot 1 \text{ in } 2008 \text{ kr} 5$
x608 672 0	181	004.5110	5/2	0	5/2	ly. 0.0 10 hom 0 =0.049 0 11 m 2000kt05.
x612 047 12	214					
$619.94^{@}3$	549	911 250	5/2	291 4339	$3/2^{+}$	L: 7.0.13 from $\sigma = 0.052$ b 9 in 2008Kr05
x620 441 16	528	<i>)</i> 11.250	5/2	271.1007	5/2	y. No 10 hom 0 0002 0 y in 2000m00.
623 468 16	62.10	623 4813	$3/2^{+}$	0	$5/2^{+}$	L: 7.4 from $\sigma = 0.05$ b 3 in 2008Kr05
628 887 18	2.7.4	954 164	$1/2^+$	325 2835	$3/2^+$	L. 3.0 10 from $\sigma = 0.022$ h 7 in 2008 kr05
x632 363 18	163	<i>yo</i> 1.101	1/2	525.2055	5/2	
x634 907 23	295					
645 96 4	0.8.3	645 9	$7/2^+ 9/2^+$	0	$5/2^{+}$	
649 65 3	0.5 2	941 098	3/2-	291 4339	$3/2^+$	L: 0.51 from $\sigma = 0.0038$ h in 2008Kr05
653 50 4	0.8.3	944 967	$1/2^+$	291 4339	$3/2^+$	L_{1}^{2} 0.68 from $\sigma = 0.0050$ b in 2008 k 05
654 892 16	194	981 755	5/2+	326 8690	5/2+	$1 \cdot 50.8 \text{ from } \sigma = 0.037 \text{ b} 5 \text{ in } 2008 \text{ kr}05$
x655 501 16	315	201.755	5/2	520.0070	5/2	17.5.00 from $0 - 0.057$ 0.5 in 2000 kros.
x657 57 3	2.1 5 4 4 5					
^x 660 13 3	0.6.3					
x670.09.6	0.05 074					
$672.61^{(0)}$	1.0.2	672 4970	2/2-	0	5/2+	$1 \cdot 0.47$ from -0.0025 h in 2009 Kr05
0/5.01 - 4	1.0.5	0/3.48/9	3/2 2/2-	266 2424	$\frac{3}{2}$	I_{γ} : 0.47 If 0III $\sigma = 0.0055$ D III 2008K105.
0/4./3 3	3.04	941.098	$\frac{3}{2}$	200.3424	$1/2^{+}$	I_{γ} : 0.40 9 Irom σ =0.0034 D 0 III 2008Kr05.
0/8.044	1.0.5	791.423	$\frac{3}{2^{+}}, \frac{3}{2^{+}}$	115.4000	1/2	1_{y} : 5.38 from $\theta = 0.023$ b in 2008/R03.
0/8.0/4	1.2.3	944.907	1/2	200.3424	1/2	I_{γ} : 0.97 from σ =0.0072 b in 2008Kr05.
(95,000,24	1.0.5	1250 411	1/0.2/0	(72 4970	2/2-	1 + 22.4 from $= 0.16$ h 2 in 2008/2-05
085.909 24	22.8 23	1339.411	$\frac{1}{2}, \frac{3}{2}$	0/3.48/9	$\frac{3}{2}$	I_{γ} : 22 4 Irom $\sigma = 0.021$ b 3 in 2008Kr05.
690.30 3	4.4 5	981.755	5/2	291.4339	3/2	I_{y} : 4.2 10 from σ = 0.031 b / in 2008 kr05.
695.95 3	2.2 3	941.098	3/2 5/2+	245.0808	(1/2)	I_{γ} : 3.9 <i>10</i> from σ =0.029 b / in 2008Kr05.
/05.43 5	0.8 3	981.755	5/21	276.289	1/2*	I_{γ} : 0.76 from σ =0.0056 b in 2008Kr05.
x711.40 6	1.3 4					
~/13.389.20	3.8 5	722.042		0	5 /0±	
722.02 3	14.0 14	722.043	3/2 + ,5/2+	0	5/2 ⁺	I_{γ} : 11.8 12 Irom σ =0.08/ b / in 2008Kr05.
726.740 24	5.5 6	1053.628	3/2*	326.8690	5/2*	I_{γ} : 7.3 11 from σ =0.054 b 7 in 2008Kr05.
754.908 22	27 3	1359.411	1/2,3/2	604.5118	$5/2^{-}$	I_{γ} : 24.2 19 from σ =0.179 b 7 in 2008Kr05.
~//2.096 20	4.4 6					

				108	Pd(n, y) E=therr	mal 1980Ca02 (continued)
					$\gamma(^{109}$	Pd) (continued)
${\rm E_{\gamma}}^{\dagger}$	Ιγ &	E _i (level)	\mathbf{J}_i^π	E_{f}	J_f^π	Comments
787.31 <i>3</i>	2.3 5	1053.628	$3/2^{+}$	266.3424	1/2+	I_{γ} : 4.5 9 from σ =0.033 b 6 in 2008Kr05.
791.43 <i>3</i> <i>x</i> 793.570 <i>23</i>	3.5 <i>5</i> 3.4 <i>5</i>	791.425	3/2+,5/2+	0	5/2+	I_{γ} : 3.6 7 from σ =0.027 b 5 in 2008Kr05.
799.26 [@] 5	5.1 6	1232.796	$1/2^{+}$	433.5630	3/2+	I_{γ} : 5.8 9 from σ =0.043 b 6 in 2008Kr05.
810.547 [@] 13 ^x 815.228 24 ^x 820 242 25	14.5 22 3.6 8	810.592	3/2+	0	5/2+	I_{γ} : 11.2 <i>17</i> from σ =0.083 b <i>11</i> in 2008Kr05.
831.571 15	5.57 11.7 <i>1</i> 8	944.967	$1/2^{+}$	113,4000	$1/2^{+}$	L: 9.7.9 from $\sigma = 0.072$ b 5 in 2008Kr05.
840.76 <i>3</i> *846.328 <i>13</i>	4.6 <i>14</i> 11 <i>3</i> 2 4 5	954.164	1/2+	113.4000	1/2+	I_{γ} : 6.8 8 from σ =0.050 b 5 in 2008Kr05.
911.283 24	3.4 J 4.0 7	911.250	5/2	0	$5/2^{+}$	L _v : 5.4.8 from σ =0.040 b 5 in 2008Kr05.
966.439 [@] 24	7.8.8	1232.796	$1/2^+$	266.3424	$1/2^+$	I_{a} : 9.9 12 from σ =0.073 b 7 in 2008Kr05.
1019.87 3	12.5 13	1359.411	1/2,3/2	339.5299	5/2-	I_{γ} : 11.4 from σ =0.084 b in 2008Kr05.
3168.7 [‡] 8	6.7 15	(6153.51)	$1/2^{+}$	2984.8		
3229.1 [‡] 7	10.2 25	(6153.51)	$1/2^{+}$	2924.4		
3267.9 [‡] 9	3.7 20	(6153.51)	$1/2^{+}$	2885.6		
3390 [‡] 1	5.4 7	(6153.51)	$1/2^{+}$	2763.5		
3563.5 [‡] 7	5.4 15	(6153.51)	$1/2^{+}$	2589.9		
3583.5 [‡] 6	3.0 7	(6153.51)	$1/2^{+}$	2569.9		
3738.7 [‡] 6	19.3 20	(6153.51)	$1/2^{+}$	2414.7		
3790.4 [‡] 6	5.0 7	(6153.51)	$1/2^{+}$	2363.0		
3911.5 [‡] 6	13.2 15	(6153.51)	$1/2^{+}$	2241.9		
3925.5 [‡] 7	8.5 15	(6153.51)	$1/2^{+}$	2227.9		
3961.0 [‡] 9	4.2 7	(6153.51)	$1/2^{+}$	2192.4		
3995.3 [‡] 7	5.4 7	(6153.51)	$1/2^{+}$	2158.1		
4033.9 [‡] 5	14.5 7	(6153.51)	$1/2^{+}$	2119.5		
4066.0 [‡] 5	10.0 15	(6153.51)	$1/2^{+}$	2087.4		
4129.1 [‡] 4	10.0 7	(6153.51)	$1/2^{+}$	2024.3		
4156.7 [‡] 7	3.7 7	(6153.51)	$1/2^{+}$	1996.7		
4230.0 [‡] 5	10.0 7	(6153.51)	$1/2^{+}$	1923.4		
4238.5 [‡] 6	8.5 7	(6153.51)	$1/2^{+}$	1914.9		
4312.6 [‡] 4	13.3 7	(6153.51)	$1/2^{+}$	1840.8		
4364.4 [‡] 7	4.2 7	(6153.51)	$1/2^{+}$	1789.0		
4425.3 [‡] 5	8.5 7	(6153.51)	$1/2^{+}$	1728.1		
4443.7 8	83	(6153.51)	1/2+	1709.7	$(1/2, 3/2, 5/2^+)$	
4469.9 8	4.2 17	(6153.51)	1/2+	1683.5	1/2+	

 $^{109}_{46}\mathrm{Pd}_{63}$ -8

From ENSDF

 $^{109}_{46}{\rm Pd}_{63}$ -8

Т

$\gamma(^{109}Pd)$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\&}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
4509.2 8	11 4	(6153.51)	$1/2^{+}$	1644.2	$(3/2^+, 5/2^+)$	
4538.0 8	6.5 19	(6153.51)	$1/2^{+}$	1615.4	$(1/2, 3/2, 5/2^+)$	
4552.1 8	6.0 15	(6153.51)	$1/2^+$	1601.3	$(1/2^+)$	
4616.5 8	5.1 25	(6153.51)	$1/2^{+}$	1536.9	$1/2^{+}$	
4668.5 8	2.1 4	(6153.51)	$1/2^{+}$	1484.9	$(1/2, 3/2, 5/2^+)$	
4674.1 8	6.6 15	(6153.51)	$1/2^{+}$	1479.3	$1/2^{+}$	
4775.7 8	12 4	(6153.51)	$1/2^{+}$	1377.7	1/2,3/2	
4793.81 23	68.3	(6153.51)	$1/2^{+}$	1359.411	1/2,3/2	I_{γ} : 57 7 from σ =0.42 b 4 in 2008Kr05.
						E_{γ} : weighted average of 4794.0 8 (1980Ca02) and 4793.79 24 (2008Kr05).
4885.3 8	0.7 4	(6153.51)	$1/2^{+}$	1268.1	$3/2^+, 5/2^+$	
4909.5 8	4.3 15	(6153.51)	$1/2^{+}$	1243.9	1/2,3/2	
4920.2 <i>3</i>	17.8 20	(6153.51)	$1/2^{+}$	1232.796	$1/2^{+}$	I_{γ} : 16.4 <i>19</i> from σ =0.121 b <i>11</i> in 2008Kr05.
						E_{γ} : weighted average of 4920.3 8 (1980Ca02) and 4920.2 3 (2008Kr05).
5006.2 4	6.4 6	(6153.51)	$1/2^{+}$	1147.2	3/2+	I_{γ} : 6.1 15 from σ =0.045 b 11 in 2008Kr05.
						E_{γ} : weighted average of 5006.1 8 (1980Ca02) and 5006.3 5 (2008Kr05).
5018.9 5	5.8 6	(6153.51)	1/2+	1134.694	1/2,3/2	I_{γ} : 7.3 16 from σ =0.054 b 11 in 2008 kr05.
50.41.6.0		((150.51)	1 (2+	1111.0	1 /2 2 /2	E_{γ} : weighted average of 5018.9 8 (1980Ca02) and 5018.8 6 (2008Kr05).
5041.6 8	2.5 11	(6153.51)	1/2+	1111.8	1/2,3/2	
5100.0 5	1.5 0	(6153.51)	1/2 '	1053.628	3/2	L_{γ} : 3.5 15 from σ =0.026 b 11 in 2008Kr05.
5171 (0	20.12	((152, 51))	1/2+	001 755	5/0+	E_{γ} : weighted average of 5099.7 8 (1980Ca02) and 5100.1 6 (2008Kr05).
5011.0.0	3.0 12	(0155.51)	1/2	981.755	5/2"	$1 + 21 + 25 = 0.021 + 10 = 2008 \times 105$
5211.8 5	213	(0155.51)	1/2	941.098	5/2	I_{γ} : 51 5 If $\sigma = 0.251$ D 79 In 2008Kr05.
5421.0.4	11714	(6152 51)	1/2+	722 042	2/2+ 5/2+	E_{γ} : weighted average of 5211.8 8 (1980/2002) and 5211.8 5 (2008/105).
5451.94	11./ 14	(0155.51)	1/2	122.045	5/2 ,5/2	V_{1} , s.o. 10 from $\theta = 0.004$ of 11 m 2008K103.
5470 8 3	12 0 14	(6153 51)	$1/2^{+}$	673 1870	3/2-	$1 \cdot 74$ 13 from $\sigma = 0.055$ h g in 2008 ros
5479.0 5	12.9 17	(0155.51)	1/2	075.4079	5/2	F_{1} , F_{2} is a form $0 = 0.055$ of 5.100 km 2.00 km 2
5612.9.8	094	(6153 51)	$1/2^{+}$	540 6753	5/2+	L_{γ} . weighted average of 5400.5 6 (1900ea02) and 5479.7 5 (2000fr(05)).
5661.9.8	1813	(6153.51) (6153.51)	$\frac{1}{2}$	491 5892	$3/2^+$	
5719 5 3	21.2.20	(6153.51) (6153.51)	$1/2^+$	433 5630	$3/2^+$	L.: 16.4.23 from $\sigma = 0.121$ h 15 in 2008Kr05
5719.5 5	21.2 20	(0155.51)	1/2	155.5650	5/2	$E_{\rm eff}$ weighted average of 5720 3.8 (1980Ca02) and 5719.4.3 (2008Kr05)
5829.0.3	19.1.20	(6153.51)	$1/2^{+}$	325,2835	$3/2^{+}$	L_{γ} : 16.4 19 from σ =0.121 h 11 in 2008 kr05.
2.02010.0		(5100.01)	-, -	220.2000	-,-	$E_{\rm v}$: weighted average of 5828.6 8 (1980Ca02) and 5829.0 3 (2008Kr05).
5887.3 5	7.5 14	(6153.51)	$1/2^{+}$	266.3424	$1/2^{+}$	I_{v} : 6 3 from σ =0.042 b 19 in 2008Kr05.
		(· · · · · · · · · · · · · · · · · · ·	,		*	E_{ν} : weighted average of 5887.5 8 (1980Ca02) and 5887.2 7 (2008Kr05).
6152.9 8	1.1 2	(6153.51)	$1/2^{+}$	0	5/2+	

[†] From 1980Ca02, unless otherwise noted. Secondary γ -ray transitions were measured with high-precision curved crystal spectrometers while the primary transitions were measured by a Ge(Li) detector.
[‡] Seen only by 1977Ba87.
[#] Seen only by 2008Kr05.

9

 $^{109}_{46}\mathrm{Pd}_{63}\text{-}9$

γ (¹⁰⁹Pd) (continued)

[@] Tentative placement by 1980Ca02.

[&] From 1980Ca02, normalized to I(4794 γ)=68.3 78 per 1000 neutron captures, which is deduced by 1980Ca02 from the adopted absolute intensities I γ =0.049, 0.32 and 0.244 per 1000 ¹⁰⁹Pd decays for 309.1, 311.4 and 647.3 keV γ rays, respectively. 2008Kr05 give cross sections for γ -ray transitions and deduce a total cross section of 7.4 b 5 including thermal captures to both g.s. (7.2 b 5) and the 11/2⁻ isomer (0.185 b 11) after correction for internal conversion, and simulated level feedings. Based on the total cross section, the evaluators have normalized the cross sections to photons per 1000 captures, as given in the comments.

^{*a*} From ce data in 1980Ca02.

- ^b Deduced from ce data using the BrIccMixing program.
- ^c From BrIcc v2.3 (29-Mar-2013) 2008Ki07, "Frozen Orbitals" appr.
- ^d Additional information 1.
- $x \gamma$ ray not placed in level scheme.

From ENSDF

 $^{109}_{46}\mathrm{Pd}_{63}$

 $^{109}_{46}\text{Pd}_{63}$

 $^{109}_{46}\mathrm{Pd}_{63}$

From ENSDF

14