108 Pd(n, γ) E=2.96 eV 1980Ca02

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	S. Kumar(a), J. Chen(b) and F. G. Kondev	NDS 137, 1 (2016)	31-May-2016				

¹⁰⁹Pd Levels

S(n)=6153.59 15 from 2012Wa38.

1980Ca02: E=2.96 eV resonance neutrons were produced by the Brookhaven National Laboratory High Flux Beam Reactor (HFBR) via Bragg diffraction from a large Be crystal. Target is 5.52 g ¹⁰⁸Pd enriched to 98.11%. γ rays were detected with Ge(Li) detectors (FWHM=7 keV at E γ =6 MeV). Measured E γ , I γ , $\gamma(\theta)$ at 90° and 135°. Deduced levels, J^{π} .

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	J ^{π‡}	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0		426.2 8		847 4		1328.4 16	(3/2)
113.4 6	1/2	433.6 6	3/2,(5/2)	911.3 8	5/2	1359.1 9	
188.9 <i>13</i>		491.6 7		941.0 9		1371.1 <i>16</i>	5/2
245.0 8		540.8 7		945.0 8	3/2	1399.2 16	
266.4 7		604.4 8		954.3 9	1/2,5/2	1477.6 <i>16</i>	
276.3 8		623.5 7	3/2,5/2	981.8 8	5/2	1540.3 16	3/2
287.2 14		646.0 <i>16</i>		1053.8 10	5/2,(3/2)	1623.9 16	
291.4 7	3/2	673.4 7		1091.0 16	5/2	1647.9 <i>16</i>	
325.3 6		722.1 7		1134.6 <i>13</i>		6154.2 6	
326.9 6	3/2,5/2 [#]	791.4 7	5/2	1232.8 12			
339.3 8		810.6 10		1269.8 16			

[†] From a least-squares fit to γ-ray energies.
[‡] From 1980Ca02 based on γ(θ).
[#] 1980Ca02 suggests that the 326 level is populated, but the 325 level is not ruled out.

$\gamma(10^{9}\text{Pd})$

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π
94.5 15	15.4 15	339.3		245.0	
98.3 [@] 15	21.8 22	287.2		188.9	
106.7 15	0.8 3	433.6	3/2,(5/2)	326.9	3/2,5/2
108.3 [@] 15	2.1 3	433.6	3/2,(5/2)	325.3	
113.4 15	187 <i>19</i>	113.4	1/2	0	
149.9 <i>15</i>	1.8 2	426.2		276.3	
152.9 <i>15</i>	42 4	266.4		113.4	1/2
166.3 <i>15</i>	1.9 4	491.6		325.3	
^x 170.6 15	2.9 6				
178.0 15	61 6	291.4	3/2	113.4	1/2
189.0 15	19.2 <i>19</i>	188.9		0	
189.9 <i>15</i>	2.6 4	623.5	3/2,5/2	433.6	3/2,(5/2)
197.3 <i>15</i>	0.6 3	623.5	3/2,5/2	426.2	
200.2 15	9.8 10	491.6		291.4	3/2
^x 203.0 15	0.7 2				
^x 207.7 15	0.7 2				
211.9 15	17.7 <i>18</i>	325.3		113.4	1/2
213.8 15	1.4 2	540.8		326.9	3/2,5/2
215.4 15	5.96	540.8		325.3	
^x 216.5 15	0.3 2				
222.9 15	0.8 <i>3</i>	945.0	3/2	722.1	
^x 228.2 15	1.7 2				
230.5 15	1.4 2	722.1		491.6	

Continued on next page (footnotes at end of table)

108 Pd(n, γ) E=2.96 eV 1980Ca02 (continued)

$\gamma(^{109}\text{Pd})$ (continued) I_{γ}^{\ddagger} E_{γ}^{\dagger} E_i(level) \mathbf{J}_i^{π} \mathbf{E}_{f} J_f^{π} 245.1 15 83 8 245.0 0 249.2 15 17.8 18 540.8 291.4 3/2 x263.4 15 0.6 4 264.4 15 0.9 8 540.8 276.3 265.0 15 5.66604.4 339.3 266.3 15 12.9 13 266.4 0 274.3 15 0.7 2 540.8 266.4 276.3 15 70 7 276.3 0 288.5 15 1.3 3 722.1 433.6 3/2,(5/2) 291.4 15 50 5 291.4 3/20 295.6 15 0.8~2540.8 245.0 298.2 15 10.6 11 623.5 3/2,5/2 325.3 317.3[@] 15 1.1 3 604.4 287.2 320.2 15 113.4 1/2 17.2 17 433.6 3/2,(5/2) 325.3 15 717 325.3 0 326.9 15 41 4 326.9 3/2,5/2 0 3.2 4 291.4 3/2 332.1 15 623.5 3/2,5/2 334.0 15 25 3 673.4 339.3 336.6 15 $6.0 \ 6$ 941.0 604.4 x337.8 15 0.9 5 50 5 339.5 15 339.3 0 x343.9 15 1.5 3 346.6 15 1.0 2 673.4 326.9 3/2,5/2 347.2 15 1.0 2 623.5 3/2,5/2 276.3 359.4 15 32 3 604.4 245.0 $0.8\ 2$ 791.4 5/2365.3 15 426.2 ^x371.1 15 1.4 3 433.6 3/2,(5/2) 377.0 15 0.63 810.6 378.2 15 17.7 18 491.6 113.4 1/2 395.2 15 1.8 3 722.1 326.9 3/2,5/2 5.1 5 722.1 396.8 15 325.3 x407.1 15 1.6 3 x414.3 15 4.0 4 x416.7 15 1.4 3 x418.3 15 3.5 4 x421.0 15 3.2 3 426.1 15 27 3 426.2 0 428.4 15 7.1 7 673.4 245.0 433.6 15 32 3 433.6 3/2,(5/2) 0 x441.8 15 3.2 5 455.7 15 4.2 4 722.1 266.4 461.2 15 4.0 4 1134.6 673.4 464.5 15 $2.5 \ 4$ 791.4 5/2326.9 3/2,5/2 ^x466.5[#]15 3.2[#] 3 x467.3[#] 15 3.2[#] 4 485.3 15 3.0 4 810.6 325.3 491.6 15 491.6 7.0 7 0 515.1 15 7.1 7 791.4 5/2 276.3 6.7 7 520.6 15 954.3 1/2,5/2 433.6 3/2,(5/2) 525.1 15 2.6 6 791.4 5/2266.4 ^x526.4 15 1.7 6 530.2 15 1134.6 604.4 0.9 6 ^x539.4 15 1.7 15 540.7 15 2.6 14 540.8 0 ^x554.6[#] 15 4.6[#] 5

Continued on next page (footnotes at end of table)

108 Pd(n, γ) E=2.96 eV	1980Ca02	(continued)
-------------------------------------	----------	-------------

$\gamma(^{109}\text{Pd})$ (continued) I_{γ}^{\ddagger} E_{γ}^{\dagger} E_i(level) J_i^{π} \mathbf{E}_{f} J_f^{π} 4.6[#] 5 555.6[#] 15 426.2 981.8 5/2 ^x579.9 15 1.3 3 584.5[#] 15 2.7[#] 4 911.3 5/2326.9 3/2,5/2 2.7[#] 4 585.9[#] 15 911.3 5/2325.3 601.6 15 3.9 4 339.3 941.0 604.5 15 2.6 4 604.4 0 ^x608.7 15 1.7 3 x612.0 15 1.2 3 619.9^{#@} 15 8.9[#] 9 911.3 5/2 291.4 3/2 ^x620.4[#] 15 8.9[#] 9 623.5 15 5.0 5 3/2,5/2 0 623.5 628.9 15 954.3 1/2,5/2 $3.0\,4$ 325.3 x632.4 15 1.1 3 ^x634.9 15 8.28 646.0 15 646.0 0 1.4 4 653.5 15 5.5 6 945.0 3/2 291.4 3/2 5.5[#] 6 654.9[#] 15 981.8 5/2326.9 3/2,5/2 ^x655.5[#] 15 5.5[#] 6 6.4[#] 6 ^x657.6[#]15 673.6^{#@} 15 1.3[#] 3 673.4 0 1.3[#] 3 674.7^{**#**} 15 941.0 266.4 678.0[#] 15 4.1[#] 4 791.4 5/2 113.4 1/2 678.7[#] 15 4.1[#] 4 945.0 3/2266.4 x681.0 15 2.0 3 685.9 15 673.4 3.4 *3* 1359.1 690.3 15 15.3 15 981.8 5/2 291.4 3/2 696.0 15 0.8 3 941.0 245.0 $2.5 \ 4$ 705.4 15 981.8 5/2276.3 ^x713.4 15 4.1 4 722.0 15 6.8 7 722.1 0 726.7 15 1053.8 5/2,(3/2) 326.9 3/2,5/2 5.16 754.9 15 3.2 4 1359.1 604.4 x772.1 15 1.3 3 787.3 15 1.5 3 1053.8 5/2,(3/2) 266.4 791.4 15 4.8 5 791.4 5/2 0 ^x793.6 15 1.8 3 799.3[@] 15 4.1 4 1232.8 433.6 3/2,(5/2) 810.5[@] 15 7.4 7 810.6 0 ^x815.2 15 2.8 3 x820.2 15 1.8 3 831.6 15 18.2 18 945.0 3/2 113.4 1/2 1/2,5/2 840.8 15 5.76 954.3 113.4 1/2 x846.3 15 15.8 16 911.3 15 14.4 14 911.3 5/20 966.4[@] 15 1.9 4 1232.8 266.4 1019.9 15 1.7 3 1359.1 339.3 4506.2 15 6.3 10 6154.2 1647.9 4530.1 15 9.1 10 6154.2 1623.9 4613.7 15 12.1 10 6154.2 1540.3 3/2 4676.4 15 5.1 5 6154.2 1477.6 4754.8 15 0.6 2 6154.2 1399.2 4782.9 15 7.26 6154.2 1371.1 5/2 4.4 13 4795.5 15 6154.2 1359.1

Continued on next page (footnotes at end of table)

				108	³ Pd(n, γ) E	=2.96 eV	1980Ca02 ((continued)		
			γ ⁽¹⁰⁹ Pd) (continued)							
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	E_{γ}^{\dagger}	I_{γ} ‡	E _i (level)	\mathbf{E}_{f}	${ m J}_f^\pi$
4825.6 15	4.4 5	6154.2		1328.4	(3/2)	5508.0 15	1.0 4	6154.2	646.0	
4884.2 15	5.1 6	6154.2		1269.8		5530 <i>3</i>	12.8 13	6154.2	623.5	3/2,5/2
5063.0 15	15.7 13	6154.2		1091.0	5/2	5612.6 15	1.7 4	6154.2	540.8	
5100.0 15	9.1 <i>13</i>	6154.2		1053.8	5/2,(3/2)	5662.3 15	4.4 5	6154.2	491.6	
5172.2 15	30 <i>3</i>	6154.2		981.8	5/2	5720.3 15	4.7 5	6154.2	433.6	3/2,(5/2)
5199.7 <i>15</i>	17.8 18	6154.2		954.3	1/2,5/2	5815.0 <i>15</i>	2.1 2	6154.2	339.3	
5209.1 15	16.1 16	6154.2		945.0	3/2	5827.2 15	6.5 7	6154.2	326.9	3/2,5/2
5242.7 15	28.2 23	6154.2		911.3	5/2	5862.7 15	7.5 8	6154.2	291.4	3/2
5307 4	1.3 6	6154.2		847		6040.5 15	33.6	6154.2	113.4	1/2
5362.6 15	13.1 13	6154.2		791.4	5/2	6154 <i>4</i>	0.6 2	6154.2	0	
5480.6 15	4.7 6	6154.2		673.4						

[†] 1980Ca02 only lists values for the primary γ rays for the measurement of E=2.96 eV resonance capture and assign Δ E=1.5 keV for most of them. For those low energy secondary γ rays also observed in this measurement, the evaluators have taken rounded-off values from the thermal capture measurement in 1980Ca02 and assign Δ E=1.5 keV.

[‡] From 1980Ca02, normalized to I(6040.5 γ)=33.6 per 1000 neutron captures (accurate to 24%), which is deduced by 1980Ca02 from the adopted absolute intensities I γ =0.049, 0.32 and 0.244 per 1000 ¹⁰⁹Pd decays for 309.1, 311.4 and 647.3 keV γ rays, respectively.

[#] Multiplet lines not resolved in this resonance capture but resolved in the thermal capture measurement (1980Ca02). Values of $E\gamma$ are taken as the average of the multiplet and values of $I\gamma$ are the sum of the multiplet.

[@] Tentative placement by 1980Ca02.

 $^{x} \gamma$ ray not placed in level scheme.

 $^{109}_{46}\mathrm{Pd}_{63}$

6

 $^{109}_{46}\mathrm{Pd}_{63}$ -6

 $^{109}_{46}\mathrm{Pd}_{63}\text{-}6$

From ENSDF

From ENSDF

 $^{109}_{46}{
m Pd}_{63}$

7

 $^{109}_{46}\mathrm{Pd}_{63}$ -7