109 Rh β^- decay 1978Ka10,1977Ba57,1978Fr21

History

Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	S. Kumar(a), J. Chen(b) and F. G. Kondev	NDS 137, 1 (2016)	31-May-2016		

Parent: ¹⁰⁹Rh: E=0.0; $J^{\pi}=7/2^+$; $T_{1/2}=80.8 \text{ s } 7$; $Q(\beta^-)=2607 4$; $\%\beta^-$ decay=100.0

 109 Rh-J^{π},T_{1/2}: From Adopted Levels of 109 Rh.

¹⁰⁹Rh-Q(β^{-}): From 2012Wa38.

- 1978Ka10: ¹⁰⁹Rh sources were produced by the (γ,p) reaction on 97.7% enriched metallic ¹¹⁰Pd using bremsstrahlung from the electron linear accelerator of the Japan Atomic Energy Research Institute. Low-energy γ rays were detected with a 25 mm2×5 mm pure Ge detector (FWHM=500 eV at Eγ=133 keV) and high energy γ rays were detected with a 40 cm³ coaxial Ge(Li) detector (FWHM=2.5 keV at Eγ=1333 keV);β rays were detected with a 2-cm-thick×5-cm dia. anthracene scintillator. Measured Eγ, Iγ, γγ-coin, γ(t), Eβ, Iβ. Deduced decay scheme, J^π, γ- and β-branching ratios, half-lives, α.
- 1977Ba57: ¹⁰⁹Rh sources were produced by activating a sample of 50 mg ¹¹⁰Pd metallic powder (96.98%) at the pulsed bremsstrahlung beam of the Giessen linear accelerator. γ rays were detected by a low energy photon Ge detector (FWHM=195 eV at 5.9 keV) or a Ge(Li) detector (FWHM=2.3 keV at 1333 keV). Measured E γ , I γ , $\gamma\gamma$ -coin, γ (t), E(x-ray), I(x-ray). Deduced decay scheme, J^{π} , γ - and β -ray branching ratios, half-lives, α .
- 1978Fr21: ¹⁰⁹Rh sources were produced by thermal-neutron induced fission of ²³⁹Pu. γ rays were detected with two Ge(Li) detectors of 35 cm³ active volume (FWHM=2.15 keV at 1333 keV). Measured E γ , I γ , $\gamma\gamma$ -coin. Deduced decay scheme, J^{π} , γ -ray branching ratios.
- 2015Bu15: mass=109 nuclides up to ¹⁰⁹Mo were produced via U(p,f) reaction with E=30 MeV proton beam provided by the K-130 cyclotron at Jyvaskyla, incident on a 15 mg/cm² uranium target. Fission fragments were separated using the Ion-Guide Isotope Separator On-Line (IGISOL) method and deposited onto an aluminum catcher. β partcles were detected with a plastic scintillator and a pair of LaBr₃(Ce) detectors; γ rays were detected with two HPGe detectors. Measured E γ , I γ , E β , $\beta\gamma\gamma$ (t). Deduced levels, half-lives, transition strengths.

1969WiZX: ¹⁰⁹Rh nuclides were produced from ²⁵²Cf fissions. Measured $T_{1/2}$, E γ , fission yields.

Others: 1975Fe12, 1971Ri02, 1959Pi49.

- The decay scheme is proposed by 1977Ba57, 1978Fr21 and 1978Ka10. Discrepancies exist for the placements of some γ -ray transitions. Due to the use of high-resolution Ge detector, 1978Ka10 resolve the doublets (and even a triplet of 211.9+213.8+215.3) that can not be resolved in 1977Ba57 and 1978Fr21. The evaluators thus have adopted the decay scheme that proposed by 1978Ka10, as are the γ -energies, intensities, and coincidence relations.
- 1978Ka10 measured the α (K)exp for three low-energy gammas. The results indicate M1(+E2) for the gammas. To calculate total transition intensity, the evaluators have assumed an M1 multipolarity for the 50.6 and 59.0 gammas and ignored the conversion for other gammas (all over 100 keV in energy). Since nearly all the low-energy gammas must be M1 and/or E2, the conversion can be ignored for E γ >200 keV when compared to the normalization uncertainty. For gammas in the 150-keV energy range the conversion increases the transition intensity by \approx 15%.
- The total average radiation energy released by ¹⁰⁹Rh is 2684 keV 232 (calculated by evaluators using the computer program radlst). This value agrees with $Q(\beta^-)=2607$ keV 4 (2012Wa38).

¹⁰⁹Pd Levels

E(level) [†]	$J^{\pi \dagger}$	$T_{1/2}$	Comments
0	5/2+	13.59 h <i>12</i>	T _{1/2} : from Adopted Levels.
113.4000 14	$1/2^{+}$	380 ns 50	$T_{1/2}$: from (178.0 γ)(113.4 γ)(t) measurements by 1978Ka10.
245.0807 16	$(7/2)^{-}$	1.528 ns 56	
266.3424 15	$1/2^{+}$		
276.289 3	$7/2^+$	11.3 ps 34	
291.4339 16	$3/2^{+}$	136.5 ps 23	
325.2836 16	$3/2^{+}$	39.6 ps 35	
326.8689 22	$5/2^{+}$	0.832 ns 27	
426.140 3	$7/2^{+}$	73.6 ps 42	
491.589 <i>3</i>	$3/2^{+}$	62.9 ps 42	
540.6753 19	$5/2^{+}$	29.3 ps 43	
597.1 5	(9/2)+	*	

 109 Rh β^- decay 1978Ka10,1977Ba57,1978Fr21 (continued)

¹⁰⁹Pd Levels (continued)

E(level)[†]

667.3? 981.755 *10* 1317.23 *19*

[†] From Adopted Levels.

[±] From 2015Bu15 using the delayed coincidence $\beta\gamma\gamma(t)$, unless otherwise noted. The same values are adopted in Adopted Levels.

β^- radiations

E(decay)	E(level)	Iβ ^{-†‡}	Log ft	Comments	
(1290 4)	1317.23	0.22 7	6.36 14	av E β =472.8 18	
(2010 4)	597.1	0.16 7	7.26 19	av $E\beta = 793.8 \ 19$	
$(2066 \ 4)$	540.6753	9.7 10	5.53 5	av $E\beta = 819.5 \ 19$	
(2115 4)	491.589	2.2 3	6.21 6	av $E\beta = 842.0 \ 19$	
(2181 4)	426.140	8.3 11	5.69 6	av $E\beta = 872.1 \ 19$	
(2280 4)	326.8689	67 7	4.86 5	av $E\beta = 917.8 \ 19$	
				E(decay): $E\beta = 2250\ 50$.	
(2331 4)	276.289	1.1 <i>3</i>	6.69 12	av $E\beta = 941.2 \ 19$	
(2607 4)	0	13 8	5.8 <i>3</i>	av $E\beta = 1069.4 \ 19$	

[†] Deduced from I(γ +ce) intensity balances. g.s. feeding is from $\Sigma(\beta^-+\gamma+ce)$ to g.s.=100%.

[‡] Absolute intensity per 100 decays.

109 Rh β^- decay 1978Ka10,1977Ba57,1978Fr21 (continued)

 $\gamma(^{109}\text{Pd})$

Iy normalization: weighted average of 0.52 6, derived from the g.s. β^- feeding of 16% 10, based on I β (total)/I(326.83 γ) measured in 1978Ka10 and by assuming The formalization, weighted average of 0.52 b, derived from the g.s. β recenting of 10% 10, based on β (total) (1520.057) measured in 1576 and by assuming the $\Sigma(\beta^-+\gamma+ce)$ to g.s.=100% and 0.57 9, derived from the fraction of 3.42% 50 per ²⁵²Cf fission for 326.83 γ in 1969WiZX and the cumulative yield of 5.96% 24 for ¹⁰⁹Rh produced in ²⁵²Cf fissions from the JEFF library. 1969WiZX report photons per 100 ²⁵²Cf fissions for four γ rays at 151.4, 177.92, 215.1 and 326.8 keV, with values of 0.124 22, 0.675 16, 0.102 2 and 3.42 50,

respectively.

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger b}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	δ ^{@a}	α &	Comments
25.1 ^c	0.06 5	291.4339	3/2+	266.3424	1/2+	[M1+E2]	≤0.9	21	%Iγ=0.03 3, using the calculated normalization. E_{γ} : this γ was not observed in the singles spectra but was inferred from γγ-coincidence measurements (1978Ka10). Mult.: measurements by 1978Ka10 indicate the 25.1γ may be M1 (+0-50% E2).
35.34 10	2.4 3	326.8689	5/2+	291.4339	3/2+	M1		7.65 13	$\alpha(K)=6.64 \ 11; \ \alpha(L)=0.830 \ 14; \ \alpha(M)=0.156 \ 3 \ \alpha(N)=0.0262 \ 5 \ \% I_{7}=1.30 \ 19, \text{ using the calculated normalization.}$ $E_{\gamma}: 35.34 \ 10 \ (1978Ka10).$ $I_{\gamma}: \text{ others: } 2.8 \ 10 \ (1978Fr21), \ 0.7 \ 2 \ (1977Ba57).$ Mult : $\alpha(K)=n=9 \ 5 \ (1978Ka10)$
50.6 ^c 3	0.06 2	326.8689	5/2+	276.289	7/2+	[M1]		2.68 6	$\alpha(K) = 2.32 \ 6; \ \alpha(L) = 0.289 \ 7; \ \alpha(M) = 0.0545 \ 13 \ \alpha(N) = 0.00914 \ 21 \ \% Iy = 0.032 \ 12, \text{ using the calculated normalization.}$
59.0 ^c 3	0.06 2	325.2836	3/2+	266.3424	1/2+	[M1]		1.71 4	α (K)=1.49 3; α (L)=0.185 4; α (M)=0.0348 8 α (N)=0.00585 12 %I γ =0.032 12, using the calculated normalization. E $_{\gamma}$: from 1978Ka10 only.
81.78 <i>5</i>	1.3 <i>I</i>	326.8689	5/2+	245.0807	(7/2)-	E1(+M2)	0.3 +2-3	0.9 10	$ α'(K)=0.8 & β; α(L)=0.13 & 15; α(M)=0.02 & 3 \\ α(N)=0.004 & 5 \\ %Iy=0.70 & 9, using the calculated normalization. Eγ: 81.78 & 5 (1978Ka10). Iγ: others: 1.3 & 1 (1978Fr21), 1.1 & 2 (1977Ba57). Mult.: α(K)exp=0.7 & 6 (1978Ka10). \\ δ: the authors report M1(+E2) with δ=0.3 +21-3 which is not compatible with change in parity between the two levels. $
^x 98.2 5	0.19 2								% I γ =0.103 <i>15</i> , using the calculated normalization. E _{γ} ,I _{γ} : observed only by 1978Fr21 and placed from the E=426.1 keV 7/2 ⁺ level. A 98.258 γ de-excites a 9/2 ⁻ level at E=287.25 in Adopted Levels.
113.401 2	10.5 6	113.4000	1/2+	0	5/2+	E2		0.891	$\alpha(K)=0.704 \ 10; \ \alpha(L)=0.1527 \ 22; \ \alpha(M)=0.0294 \ 5 \ \alpha(N)=0.00463 \ 7 \ \%I\gamma=5.7 \ 6$, using the calculated normalization.

 $\boldsymbol{\omega}$

				1	⁰⁹ Rh β	^a decay	1978Ka10,19	77Ba57,197	8Fr21 (continued)
							$\gamma(^{109}\text{Pd})$ (co	ontinued)	
${\rm E_{\gamma}}^{\dagger}$	I_{γ} [‡] <i>b</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	δ [@] a	α &	Comments
									E _γ : 113.35 5 (1978Ka10).
									I_{γ} : others: 10.0 7 (1978Fr21), 12.0 11 (1977Ba57).
^x 114 0 2	<1								Mull.: $\alpha(\mathbf{K})\exp[=0.7/2]$ (1977Ba57).
114.0 2	<1 <1								$E_{\gamma} I_{\gamma}$: observed only by 1977Ba57 and placed from the E=540.7 keV
									$5/2^+$ level.
149.854 <i>3</i>	1.1 <i>1</i>	426.140	7/2+	276.289	$7/2^{+}$				$\%$ I γ =0.59 8, using the calculated normalization.
									E _γ : 149.82 7 (1978Ka10).
									E_{γ} : placed by 1977Ba57 from a level at E=263.1 keV that is not in Adopted Levels.
152 042 1	121	266 2424	1/2+	112 4000	1/2+	M1		0 1170	I_{γ} : others: 1.1 <i>I</i> (19/8Fr21), 1.1 <i>3</i> (197/Ba57).
132.942 1	1.2 1	200.3424	1/2	115.4000	1/2	IVI I		0.1170	$\alpha(\mathbf{N})=0.1018 \ 15; \ \alpha(\mathbf{L})=0.01242 \ 16; \ \alpha(\mathbf{M})=0.00254 \ 4 \ \alpha(\mathbf{N})=0.00393 \ 6$
									$\%$ I γ =0.65 8, using the calculated normalization.
									E _y : 152.91 7 (1978Ka10).
									E_{γ} : placed by 1977Ba57 and 1978Fr21 from a level at E=694 keV
									that is not in Adopted Levels.
166 306 8	0.10.5	401 580	3/2+	375 7836	3/2+				I_{γ} : others: 1.0 <i>I</i> (19/8Ff21), 1.3 3 (19//Ba5/).
100.500 8	0.10 5	471.307	5/2	525.2650	5/2				F_{ac} : 166 3 5 (1978Ka10).
178.034 <i>1</i>	14.1 7	291.4339	$3/2^{+}$	113.4000	$1/2^{+}$	M1		0.0776	$\alpha(K)=0.0676 \ 10; \ \alpha(L)=0.00820 \ 12; \ \alpha(M)=0.001543 \ 22$
									$\alpha(N)=0.000260 \ 4$
									$\%$ I γ =7.6 8, using the calculated normalization.
									E_{γ} : 1/8.05 5 (19/8Ka10).
200.153.4	0.9.1	491.589	$3/2^{+}$	291,4339	$3/2^{+}$	M1		0.0567	$\alpha(K) = 0.0494$ 7: $\alpha(L) = 0.00598$ 9: $\alpha(M) = 0.001125$ 16
2001100 1	017 1	1711007	0/2		0/2			010207	$\alpha(n) = 0.000189 3$
									%I γ =0.49 7, using the calculated normalization.
									E_{γ} : 200.13 7 (1978Ka10).
211 004 2	122	225 2026	2/2+	112 4000	1/2+	$M1(\pm E2)$	02 12 2	0.052.6	I_{γ} : others: 0.83 / (19/8Fr21), 0.9 2 (19//Ba5/).
211.004 5	1.2 2	525.2850	5/2	113.4000	1/2	$WII(\pm L2)$	0.5 +2-5	0.055 0	$\alpha(\mathbf{N}) = 0.0018 \ 3$
									$\%$ I γ =0.65 13, using the calculated normalization.
									E _γ : 211.88 <i>10</i> (1978Ka10).
213.806 4	1.0 2	540.6753	5/2+	326.8689	5/2+				$\%$ I γ =0.54 <i>12</i> , using the calculated normalization.
									E_{γ} : 213.81 <i>10</i> (1978Ka10).
									E_{γ} , praced by 1977 Ba37 and 1978 Fr21 from the 320.7-KeV level. L.: others: 0.97.9 (1978 Fr21) 4.4.14 (1977 Ras7)
215.390 2	3.2 2	540.6753	$5/2^{+}$	325.2836	$3/2^{+}$	M1		0.0467	$\alpha(K)=0.0407\ 6;\ \alpha(L)=0.00492\ 7;\ \alpha(M)=0.000924\ 13$
			,		,				α(N)=0.0001557 22
									$\%$ I γ =1.73 20, using the calculated normalization.
									E_{γ} : 215.28 / (1978Kal0).
245 080 2	242	245 0807	$(7/2)^{-}$	0	5/2+	F1		0.01200	a_{γ} : others: 2.9.2 (19/8FT21), 4.3 14 (19/7Ba57). $\alpha(K) = 0.01050.75; \alpha(L) = 0.001233.18; \alpha(M) = 0.000230.4$
200.153 <i>4</i> 211.884 <i>3</i> 213.806 <i>4</i> 215.390 <i>2</i> 245.080 <i>2</i>	0.9 <i>I</i> 1.2 <i>2</i> 1.0 <i>2</i> 3.2 <i>2</i> 2.4 <i>2</i>	 491.589 325.2836 540.6753 540.6753 245.0807 	3/2 ⁺ 3/2 ⁺ 5/2 ⁺ 5/2 ⁺ (7/2) ⁻	291.4339 113.4000 326.8689 325.2836 0	3/2 ⁺ 1/2 ⁺ 5/2 ⁺ 3/2 ⁺ 5/2 ⁺	M1 M1(+E2) M1 E1	0.3 +2-3	0.0567 0.053 <i>6</i> 0.0467 0.01200	$\alpha(K)=0.0494 7; \alpha(L)=0.00598 9; \alpha(M)=0.001125 16$ $\alpha(N)=0.000189 3$ %Iy=0.49 7, using the calculated normalization. $E_{\gamma}: 200.13 7 (1978Ka10).$ $I_{\gamma}: others: 0.83 7 (1978Fr21), 0.9 2 (1977Ba57).$ $\alpha(K)=0.046 5; \alpha(L)=0.0058 9; \alpha(M)=0.00108 17$ $\alpha(N)=0.00018 3$ %Iy=0.65 13, using the calculated normalization. $E_{\gamma}: 211.88 10 (1978Ka10).$ %Iy=0.54 12, using the calculated normalization. $E_{\gamma}: 213.81 10 (1978Ka10).$ $E_{\gamma}: placed by 1977Ba57 and 1978Fr21 from the 326.7-keV level.$ $I_{\gamma}: others: 0.97 9 (1978Fr21), 4.4 14 (1977Ba57).$ $\alpha(K)=0.0407 6; \alpha(L)=0.00492 7; \alpha(M)=0.000924 13$ $\alpha(N)=0.0001557 22$ %Iy=1.73 20, using the calculated normalization. $E_{\gamma}: 215.28 7 (1978Ka10).$ $I_{\gamma}: others: 2.9 2 (1978Fr21), 4.5 14 (1977Ba57).$ $\alpha(K)=0.01050 15; \alpha(L)=0.001233 18; \alpha(M)=0.000230 4$

4

From ENSDF

 $^{109}_{46}\mathrm{Pd}_{63}$ -4

$\frac{\gamma(^{109}\text{Pd}) \text{ (continued)}}{e_{\gamma}^{\ddagger 0}} = \frac{I_{\gamma}^{\ddagger 0}}{I_{\gamma}^{\ddagger 0}} = \frac{I_{f}}{I_{i}} = \frac{J_{f}^{\pi}}{I_{f}} = \frac{J_{f}^{\pi}}{Mult.} = \frac{Mult.}{e_{i}} = \frac{\delta^{\textcircled{a}a}}{a^{\textcircled{a}a}} = \frac{a^{\textcircled{a}a}}{a(N)=3.85\times10^{-5} 6}$ $\frac{\alpha(N)=3.85\times10^{-5} 6}{(\Im_{1}\gamma=1.30 \ 16, \text{ using the calculated normalization.}}$ $E_{\gamma}: 245.03 \ 7 \ (1978Ka10).$ $I_{\gamma}: \text{ others: } 2.1 \ 2 \ (1978Fr21), 2.5 \ 3 \ (1977Ba57).$ $\alpha(K)=0.00278 \ 4; \ \alpha(L)=0.00334 \ 5; \ \alpha(M)=0.000628$ $\alpha(N)=0.0001058 \ 15$ $(\Im_{1}\gamma=5.8 \ 7, \text{ using the calculated normalization.}$ $E_{\gamma}: 249.16 \ 5 \ (1978Ka10).$ $I_{\gamma}: \text{ others: } 9.1 \ 6 \ (1978Kr21). 11 \ 3 \ 11 \ (1977Ba57).$	
$\frac{E_{\gamma}^{\dagger}}{E_{\gamma}^{\dagger}} = \frac{I_{\gamma}^{\ddagger b}}{I_{\gamma}^{\ddagger b}} = \frac{E_{i}(\text{level})}{E_{i}(\text{level})} = \frac{J_{i}^{\pi}}{I_{i}} = \frac{E_{f}}{I_{f}} = \frac{J_{f}^{\pi}}{I_{f}} = \frac{Mult}{\theta} = \frac{\delta^{@}a}{\alpha^{\&}} = \frac{\alpha^{\&}}{\alpha^{(N)=3.85\times10^{-5}\ 6}} = \frac{Comments}{\alpha^{(N)=3.85\times10^{-5}\ 6}} = 1000000000000000000000000000000000000$	
$\begin{array}{c} \alpha(\mathrm{N})=3.85\times10^{-5}\ 6\\ \%\mathrm{I}\gamma=1.30\ 16,\ \mathrm{using\ the\ calculated\ normalization.}\\ \mathrm{E}_{\gamma}:\ 245.03\ 7\ (1978\mathrm{Ka10}).\\ \mathrm{I}_{\gamma}:\ \mathrm{others:}\ 2.1\ 2\ (1978\mathrm{Fr21}),\ 2.5\ 3\ (1977\mathrm{Ba57}).\\ \alpha(\mathrm{K})=0.0278\ 4;\ \alpha(\mathrm{L})=0.00334\ 5;\ \alpha(\mathrm{M})=0.000628\\ \alpha(\mathrm{N})=0.0001058\ 15\\ \%\mathrm{I}\gamma=5.8\ 7,\ \mathrm{using\ the\ calculated\ normalization.}\\ \mathrm{E}_{\gamma}:\ 249.16\ 5\ (1978\mathrm{Ka10}).\\ \mathrm{L_{\circ}:\ others:\ 9.1\ 6\ (197$	
E_{γ} : 249.16 5 (1978Ka10). L.: others: 9.1 6 (1978Fr21), 11.3 11 (1977Ba57).	9
264.378 11 0.7 2 540.6753 5/2 ⁺ 276.289 7/2 ⁺ $\%$ [γ =0.38 12, using the calculated normalization. E _{γ} : 264.33 10 (1978Ka10). E _{γ} : 1977Ba57 place a transition of E γ =263.1 2 from E _{γ} : 1977Ba57 place a transition of E γ =263.1 2 from E _{γ} : 1977Ba57 place a transition of E γ =263.1 2 from E _{γ} : 1977Ba57 place a transition of E γ =263.1 2 from E _{γ} : 1977Ba57 place a transition of E γ =263.1 2 from E _{γ} : 1977Ba57 place a transition of E γ =263.1 2 from E _{γ} : 1977Ba57 place a transition of E γ =263.1 2 from E _{γ} : 1977Ba57 place a transition of E γ =263.1 2 from E _{γ} : 1977Ba57 place a transition of E γ =263.1 2 from E _{γ} : 1977Ba57 place a transition of E γ =263.1 2 from E _{γ} : 1977Ba57 place a transition of E γ =263.1 2 from E _{γ} : 1977Ba57 place a transition of E γ =263.1 2 from E γ : 1977Ba57 place a transition of E γ =263.1 2 from E γ : 1977Ba57 place a transition of E γ =263.1 2 from E γ : 1977Ba57 place a transition of E γ =263.1 2 from E γ : 1977Ba57 place a transition of E γ =263.1 2 from E γ =263.1 keV level that is post in Adopted Level	rom a level at
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 15
$ \begin{array}{c} E_{\gamma}: \text{ placed by 1978Fr21 from a level at E=806.8 k} \\ \text{Adopted Levels.} \\ \text{I}_{\gamma}: \text{ others: } 0.48 \ 7 \ (1978Fr21), \ 0.9 \ 2 \ (1977Ba57). \\ \% \text{ I}_{\gamma}=0.11 \ 6, \text{ using the calculated normalization.} \\ \text{E}_{\gamma}: 274.21 \ 10 \ (1978Ka10). \\ \end{array} $	keV that is not in
276.296 5 4.0 3 276.289 7/2 ⁺ 0 5/2 ⁺ M1+E2 0.5 3 0.027 3 $\alpha'(K)=0.0237 23; \alpha(L)=0.0030 5; \alpha(M)=0.00056 8 \alpha(N)=9.4\times10^{-5} 13$ % $I\gamma=2.2 3$, using the calculated normalization. $E_{\gamma}: 276.26 7$ (1978Ka10).	8
$ \begin{array}{c} E_{\gamma}: \text{ placed by } 1977\text{Ba57 from a level at } E=389.7 \text{ I} \\ \text{Adopted Levels.} \\ I_{\gamma}: \text{ others: } 3.9 \ 3 \ (1978\text{Fr}21), \ 4.3 \ 6 \ (1977\text{Ba57}). \\ (1977\text{Ba57}). \\ (1977\text{Ba57}) \\ (1977\text{Ba57}) \\ (1977\text{Ba57}). \\ (1977B$	keV that is not in 8
295.597 3 0.6 1 540.6753 5/2 ⁺ 245.0807 (7/2) ⁻ $E_{\gamma}: 291.36 7 (1978Ka10).$ $I_{\gamma}: others: 13.2 9 (1978Fr21), 12.8 14 (1977Ba57)$ $\% I_{\gamma}=0.32 7, using the calculated normalization.$ $E_{\gamma}: 295.54 10 (1978Ka10).$ L: others: 0.60 7 (1978Ka10).).
*298.0 5 0.05 3 *298.0 5 0.05 3 $\%$ [γ =0.027 17, using the calculated normalization. E_{γ} , I_{γ} : observed only by 1978Fr21 and placed from keV. A 298.197 γ de-excites a 1/2 ⁺ level at E=6? Levels. %I γ =0.05 3, using the calculated normalization.	n a level at E=624.7 i23.48 in Adopted

S

				-	$\sim \mathbf{Kn} \beta$	decay	1978Ka10,19	//ba5/,19/8	Fr21 (continued)
							$\gamma(^{109}\text{Pd})$ (co	ontinued)	
E_{γ}^{\dagger}	I_{γ} ‡ b	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	$\delta^{@a}$	α &	Comments
									E_{γ} : from 1978Ka10. A 320.164 γ de-excites a 3/2 ⁺ level at
325 284 4	275	325 2836	$3/2^{+}$	0	5/2+	M1(+E2)	0.5 + 3 - 5	0 0174 14	E=433.56 in Adopted Levels. $\alpha(K)=0.0151.11: \alpha(L)=0.00187.20: \alpha(M)=0.00035.4$
02012011	21, 0	02012000	0,2	0	0/2			01017117	$\alpha(N) = 5.9 \times 10^{-5} 6$
									$\%$ I γ =1.5 3, using the calculated normalization.
276 868 1	100	276 8680	5/2+	0	5/2+	$E_2(+M_1)$		0.010 4	E_{γ} : 325.43 20 (1978Ka10).
520.808 4	100	520.8089	5/2	0	5/2	$L_2(\pm W11)$		0.019 4	$\alpha(N)=6.7\times10^{-5}$ 15
									$\%$ I γ =54 5, using the calculated normalization.
									E _γ : 326.450 <i>10</i> (1979Bo26) and 326.83 <i>5</i> (1978Ka10).
^x 338.2 4	0.19 2								$\%$ I γ =0.103 15, using the calculated normalization.
									E_{γ} : not observed in 1978Ka10. Placed by 1977Ba57 from a level at E=338 keV and by 1978Fr21 from a level at E=765.2 keV
									with both levels not in Adopted Levels.
									I_{γ} : weighted average of 0.18 2 (1978Fr21) and 0.3 1 (1977Ba57).
x361.8 5	0.24 4								$\%$ I γ =0.130 25, using the calculated normalization.
									E_{γ} , I_{γ} : observed only by 19/8Fr21 and placed from a level at E_{\pm} = 361.8 keV that is not in Adopted Levels
378.191 5	2.3 2	491.589	$3/2^{+}$	113.4000	$1/2^{+}$	E2		0.01395	$\alpha(K)=0.01200 \ 17; \ \alpha(L)=0.001598 \ 23; \ \alpha(M)=0.000302 \ 5$
									$\alpha(N)=4.98\times10^{-5}$ 7
									$\%$ I γ =1.24 <i>16</i> , using the calculated normalization.
									E_{γ} : 3/8.05 / (19/8Ka10).
389.8 [°] 3	0.10 5	667.3?		276.289	$7/2^{+}$				γ : others: 1.7.2 (1976) 121), 1.9.5 (1977) bas(7). %I γ =0.05.3, using the calculated normalization.
									E_{γ} : weighted average of 391 <i>l</i> (1978Ka10) and 389.7 2
									(1977Ba57). 1977Ba57 place this γ ray from a E=389.7 keV
									level. I : others: 0.8.2 (1977Ba57)
^x 420.8 5	0.05 3								γ of
									E_{γ} , I_{γ} : observed only by 1978Fr21 and placed from a level at
									E=712.2 keV. A level at 712 is in Adopted Levels and observed
426 135 4	14313	426 140	7/2+	0	5/2+	M1		0.00822	1n (d,t). $\alpha(K) = 0.00719.10; \alpha(L) = 0.000849.12; \alpha(M) = 0.0001593.23$
420.155 4	14.3 13	420.140	1/2	0	5/2	1411		0.00822	$\alpha(N) = 2.69 \times 10^{-5} 4$
									$\%$ I γ =7.7 10, using the calculated normalization.
									E _γ : 426.14 7 (1978Ka10).
127 2C 0	<0.5	510 6752	5/2+	112 4000	1/2+				I_{γ} : others: 15.2 <i>11</i> (1978Fr21), 14.0 <i>14</i> (1977Ba57).
421.5 9	<0.3	340.0733	5/2	115.4000	1/2				$\gamma_{01\gamma=0.14}$ 14, using the calculated normalization. E _v : from 1978Ka10.
^x 474.5 5	0.10 5								$\%$ I γ =0.05 3, using the calculated normalization.
X (00 0 -	0								$E_{\gamma}I_{\gamma}$: observed only by 1978Fr21.
^489.0 5	0.03 3								$\%$ 1 γ =0.016 17, using the calculated normalization.
									E_{α} , I_{α} , observed only by $I_{\alpha}/\delta \Gamma I_{\alpha}$ and placed from a level at

6

				109 Rh β	[–] deca	y 1978Ka10,1977Ba57,1978Fr21 (continued)
						$\gamma(^{109}\text{Pd})$ (continued)
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger b}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
491.575 10	0.7 1	491.589	3/2+	0	5/2+	%I γ =0.38 7, using the calculated normalization.
						E_{γ} : 491.7 2 (1978Ka10).
^x 515.0 5	< 0.03					% Iy=0.008 9, using the calculated normalization.
						E_{γ}, I_{γ} : observed only by 1978Fr21. A 515.128 γ de-excites a $J^{\pi}=3/2^+, 5/2^+$ at E=791.43 in
540 697 10	091	540 6753	$5/2^{+}$	0	$5/2^{+}$	Adopted Levels. %Iv=0.49.7 using the calculated normalization
510.097 10	0.9 1	510.0755	5/2	0	5/2	E_{γ} : 540.7 2 (1978Ka10).
щ	ш					I_{γ} : others: 2.4 2 (1978Fr21), 1.4 3 (1977Ba57).
555.614# 13	0.06# 3	981.755		426.140	7/2+	%Iy=0.032 17, using the calculated normalization.
						f_{γ} . Ionnalized to $f_{\gamma}(090.5\gamma)=0.27$ based on $f_{\gamma}(555.014\gamma)/f_{\gamma}(050.5\gamma)=52.4/100.7$ in Adopted Gammas.
^x 586.1 2	0.7 3					$\%$ I γ =0.38 <i>17</i> , using the calculated normalization.
						E_{γ} , I_{γ} : observed only by 1977/Ba57 and placed from a level at E=975.2 keV that is not in Adopted Levels A 585 908 α de-excites a 572 ⁺ level at E=911.25 in Adopted Levels
597.3 5	0.2 1	597.1	$(9/2)^+$	0	$5/2^{+}$	$\%$ I γ =0.11 6, using the calculated normalization.
X(1= 0, 10)						E _y : 597.3 5 (1978Ka10).
~617.9 10	0.2 1					$%1\gamma=0.11$ 6, using the calculated normalization. E _w I _v : from 1978Ka10.
654.892 [#] 16	0.07 [#] 4	981.755		326.8689	$5/2^{+}$	%Iy=0.038 22, using the calculated normalization.
						I _{γ} : normalized to I γ (690.3 γ)=0.2 <i>1</i> based on I γ (654.892 γ)/I γ (630.3 γ)=37 4/100 7 in Adopted
690 30 ^C 3	021	981 755		201 4330	3/2+	Gammas. %Iv=0.11.6 using the calculated normalization
070.50 5	0.2 1	701.755		271.1557	5/2	E_{γ} : 690.6 5 from weighted average of 692 2 (1978Ka10) and 690.5 5 (1978Fr21).
щ	щ					I_{γ} : others: 0.23 <i>1</i> (1978Fr21).
705.43# 5	0.03# 2	981.755		276.289	7/2+	%Iy=0.016 <i>11</i> , using the calculated normalization.
						f_{γ} . Ionnalized to $f_{\gamma}(090.5\gamma) = 0.27$ based on $f_{\gamma}(705.45\gamma)/f_{\gamma}(050.5\gamma) = 175/1007$ in Adopted Gammas.
^x 777.9 5	0.30 15					$\%$ I γ =0.16 9, using the calculated normalization.
x975 2 2	103					E_{γ} , I_{γ} : observed only by 1978Fr21. %Ix=0.54, 17, using the calculated normalization
<i>)13.2</i> 2	1.0 5					E_{γ}, I_{γ} : observed only by 1978Fr21 and placed from a level at E=975.2 keV that is not in
1041 7 5	0.20.5	1217 22		276 280	7/2+	Adopted Levels.
1041.7 3	0.20 3	1317.23		270.289	1/2	$\kappa_{17} = 0.11$ s, using the calculated normalization. E _v : 1041.7 5 (1978Ka10).
^x 1072.4 2	0.10 5					$\%$ I γ =0.05 3, using the calculated normalization.
						E_{γ} : from 1977Ba57, placed from a level at E=1612.8 keV that is not in Adopted Levels. 1072 <i>I</i> from 1978Ka10
						I_{γ} : others: 0.4 2 (1977Ba57).
1317.1 2	0.2 1	1317.23		0	$5/2^{+}$	$\%$ I γ =0.11 6, using the calculated normalization.
						E_{γ} : 1317.1.2 (1978Ka10). E.: weighted average of 1318 J (1978Ka10) and 1317.1.2 (1977Ra57) 1977Ra57 place this γ
						ray from a level at $E=1857.8$ keV.
						I_{γ} : others: 0.4 2 (1977Ba57).

7

¹⁰⁹Rh β^- decay **1978Ka10,1977Ba57,1978Fr21** (continued)

γ (¹⁰⁹Pd) (continued)

%I γ =0.49 17, using the calculated normalization.

 E_{γ} , I_{γ} : observed only by 1977Ba57 and placed from a level at E=1612.8 keV that is not in Adopted Levels.

Comments

[†] From Adopted Gammas, unless otherwise noted. Values from this dataset are given in comments. Unplaced γ rays are from this dataset.

[‡] From 1978Ka10, unless otherwise noted. I γ are normalized to I γ (326.8)=100. I γ from 1977Ba57 and 1978Fr21 are in comments.

[#] Not observed in this dataset and data are taken from Adopted Gammas. Iγ is normalized to absolute value of the strongest transition from each level in this dataset based on relative intensities in Adopted Gammas.

[@] From Adopted Gammas, unless otherwise noted. ce data in this dataset are from α (K)exp based on I γ /K x ray ratio in coincidence spectra (1978Ka10, 1977Ba57).

[&] Additional information 1.

^{*a*} If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^b For absolute intensity per 100 decays, multiply by 0.54 5.

^c Placement of transition in the level scheme is uncertain.

^{*x*} γ ray not placed in level scheme.

From ENSDF

109 Rh β^- decay 1978Ka10,1977Ba57,1978Fr21

