²⁴⁸Cm SF decay 2006Ur01

History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Kumar(a), J. Chen(b) and F. G. Kondev	NDS 137, 1 (2016)	31-May-2016

Parent: ²⁴⁸Cm: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=3.48\times10^5$ y 6; %SF decay=8.39 *16* 2006Ur01: Source: ²⁴⁸Cm; Detectors: EUROGAM 2 array and four LEPS detectors, Measured E γ , $I\gamma$, $\gamma\gamma$ coin, $\gamma\gamma(\theta)$.

¹⁰⁹Mo Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0 [#]	$(5/2^+)$	0.61 s +3-4	$T_{1/2}$: from Adopted Levels.
144.01 ^{#} 25	$(7/2^+)$		
222.19 [@] 25	$(7/2^{-})$		
333.0 [@] 3	(9/2-)		
336.4 [#] 6	$(9/2^+)$		
472.0 [@] 4	$(11/2^{-})$		
553.3 [#] 4	$(11/2^+)$		
730.3 [@] 5	$(13/2^{-})$		
810.6 [#] 8	$(13/2^+)$		
885.7 [@] 5	$(15/2^{-})$		
1095.4 [#] 7	$(15/2^+)$		
1286.7 [@] 11	$(17/2^{-})$		
1442.7 [@] 6	$(19/2^{-})$		
2137.7 [@] 12	$(23/2^{-})$		

[†] From a least-square fit to E γ . [‡] From 2006Ur01, based on deduced transition multipolarities, using $\alpha(\exp)$ and $\gamma\gamma(\theta)$, and the proposed band structures.

[#] Band(A): v5/2[402] band; assignment is tentative. ^{(@} Band(B): v7/2[523] band; assignment is tentative.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ	α #	Comments
78.2 5	23 2	222.19	(7/2 ⁻)	144.01	(7/2+)	E1		0.257 6	$\alpha(K)=0.226\ 6;\ \alpha(L)=0.0264\ 7;\ \alpha(M)=0.00468\ 11$ $\alpha(N)=0.000694\ 17;\ \alpha(O)=3.37\times10^{-5}\ 8$ Mult.: from $\alpha(exp)$ in 2006Ur01 using intensity balance considerations.
110.8 <i>3</i>	77 3	333.0	(9/2 ⁻)	222.19	(7/2 ⁻)	M1+E2	0.55 20	0.34 9	α(K)=0.29 7; α(L)=0.044 14; α(M)=0.0079 25 $α(N)=0.0011 4; α(O)=4.6×10^{-5} 9$ Mult.: from α(exp) = 0.34 8, deduced by the evaluators from the intensity balances and Iγ in 2006Ur01; $A_2/A_0=+0.11 2, A_4/A_0=-0.03 2$ for (110.8γ)(222.2γ)(θ), gives $ΔJ=1$ for 110.8γ.
138.9 <i>3</i>	68 <i>3</i>	472.0	$(11/2^{-})$	333.0	(9/2 ⁻)	M1(+E2)		0.23 14	$\alpha(K) = 0.20 \ 11; \ \alpha(L) = 0.030 \ 20;$

 $\gamma(^{109}\text{Mo})$

Continued on next page (footnotes at end of table)

				248 C	m SF deca	ay 2006	Ur01 (cont	tinued)
$\gamma(^{109}\text{Mo})$ (continued)								
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [†]	α #	Comments
								$\begin{array}{c} \alpha(\mathrm{M}) = 0.005 \ 4 \\ \alpha(\mathrm{N}) = 0.008 \ 5; \ \alpha(\mathrm{O}) = 3.1 \times 10^{-5} \ 15 \\ \mathrm{Mult.:} \ A_2/A_0 = +0.07 \ I, \ A_4/A_0 = -0.0 \ 2 \ \mathrm{for} \\ (110.8\gamma)(138.9\gamma)(\theta), \ \mathrm{gives} \ \Delta \mathrm{J} = 1 \ \mathrm{for} \ 138.9 \\ \gamma; \ A_2/A_0 = -0.09 \ 2, \ A_4/A_0 = -0.0 \ 2 \\ (138.9\gamma)(413.7\gamma)(\theta), \ \mathrm{gives} \ \mathrm{also} \ \Delta \mathrm{J} = 1 \ \mathrm{for} \\ 138.9\gamma \ (2006\mathrm{Ur}01). \end{array}$
144.0 3 155.4 5 189.0 3 192.4 5 216 8 ^{‡@} 5	74 <i>4</i> 16 2 26 2 15 2	144.01 885.7 333.0 336.4 553.3	$(7/2^+)$ $(15/2^-)$ $(9/2^-)$ $(9/2^+)$ $(11/2^+)$	0.0 730.3 144.01 144.01 336.4	$(5/2^+)$ $(13/2^-)$ $(7/2^+)$ $(7/2^+)$ $(0/2^+)$			
222.2 3	100 5	222.19	(7/2 ⁻)	0.0	(5/2 ⁺)	E1	0.01262	$\alpha(K)=0.01110\ 17;\ \alpha(L)=0.001258\ 19;\ \alpha(M)=0.000224\ 4$ $\alpha(N)=3.37\times10^{-5}\ 5;\ \alpha(O)=1.81\times10^{-6}\ 3$ Mult.: from $\alpha(exp)$ in 2006Ur01 using intensity balance considerations; $A_2/A_0=+0.11\ 2,\ A_4/A_0=-0.03\ 2$ for (110.8 γ)(222.2 γ)(θ), gives $\Delta J=1$ for 222.2 γ .
250.0 <i>5</i> 258.3 <i>5</i>	19 2 23 2	472.0 730.3	(11/2 ⁻) (13/2 ⁻)	222.19 472.0	(7/2 ⁻) (11/2 ⁻)			
336 ^{‡@} 1	12.2	336.4	$(9/2^+)$	0.0	$(5/2^+)$			
397.3 5 401 <i>1</i>	13 2	730.3 1286.7	(13/2) $(17/2^{-})$	333.0 885.7	(9/2) $(15/2^{-})$			
409.3 3	26 <i>3</i>	553.3	$(11/2^+)$	144.01	$(7/2^+)$	52	0.00046	
413.73	55 <i>3</i>	885.7	(15/2)	472.0	(11/2)	E2	0.00846	α (K)=0.00737717; α (L)=0.00090473; α (M)=0.000161723 α (N)=2.42×10 ⁻⁵ 4; α (O)=1.226×10 ⁻⁶ 18 Mult.: A ₂ /A ₀ =-0.092, A ₄ /A ₀ =-0.02 (138.9 γ)(413.7 γ)(θ), gives Δ J=2 for 413.7 γ .
474.2 5		810.6	(13/2+)	336.4	$(9/2^+)$			
542.1 5	9 <i>3</i>	1095.4	$(15/2^+)$	553.3	$(11/2^{+})$			
557.0 <i>3</i>	29 3	1286.7 1442.7	$(1^{7}/2^{-})$ $(19/2^{-})$	730.3 885.7	$(13/2^{-})$ $(15/2^{-})$			
695 1	20 4	2137.7	$(23/2^{-})$	1442.7	$(19/2^{-})$			

[†] From 2006Ur01, ΔEγ is quoted as 0.1 keV for strong lines to 0.5 keV for weak lines. The evaluators have assigned 0.3 keV for Iγ>25, 0.5 keV for Iγ<25, and 1 keV for 336, 401, 556, 695 γ-rays.
[‡] Contaminated line.
[#] Additional information 1.
[@] Placement of transition in the level scheme is uncertain.

¹⁰⁹₄₂Mo₆₇