					History			
	Ту	/pe		Autho	or		Citation	Literature Cutoff Date
	Full Ev	valuation S.	Kumar(a),	J. Chen(b) and F. G. Kond	lev	NDS 137, 1 (2016)	31-May-2016
$Q(\beta^{-}) = -2016$ Additional info	4; S(n)=73 prmation 1	323.1 <i>18</i> ; S(p)=	=8186.6 28	8; $Q(\alpha) = -$	2511.5 <i>19</i> 20)12Wa	38	
					¹⁰⁹ Cd Lev	rels		
				Cr	oss Reference (X	(REF)	Flags	
			A B C D E	¹⁰⁹ In ε do ¹⁰⁹ Cd IT ¹⁰⁹ Cd IT ⁹⁶ Zr(¹⁶ O, ⁹⁶ Zr(¹⁸ O,	ecay decay (11.8 μs) decay (10.6 μs) 3nγ) 5nγ)	F G H I	100 Mo(13 C,4n γ) 108 Pd(α ,3n γ) 109 Ag(p,n γ) 110 Cd(d,t)	
E(level) [†]	J^{π}	$T_{1/2}^{i}$	XREI				Comments	5
0.0	5/2+	461.9 d <i>4</i>	ABCDEF	$\begin{array}{ccc} \text{GHI} & \% \varepsilon \\ \mu = & \\ \mu = & \\ J^{\pi} : & I \\ T_{1/} & (\\ (\\ (\\ (\\ a \\ (\\ (\\ a \\ (\\ (\\$	=100 -0.8278461 15; optical-double r (d,t)=2. 2: using the Lim 2014Un01), 462 2004Sc04), 460. 1981Va11), 450 nd 470 d 8 (195 1982HoZJ), 463 uperseded by 20 from 2014StZZ, from 2013Yo02 969La06 by opt figuration: a mix	Q=+0 esonation .36 d 2 d 4 d 5 (0Gu5 .26 63 .14Un based by co ical do	0.604 25 nce (1976Fu06); dired n of Relative Statistic 33 and 461.92 d 76 ((1997Ma75), 463.1 d 1968Re04), 459 d 6 (4). Other: 330 d (194 c (1992Un01,2002Und 01. on 1972Sp09 and 19 Illinear laser spectrosco puble resonance. between $vd_{5/2}$ and vg	et ε to 7/2 ⁺ level in ¹⁰⁹ Ag; al Weight method and 462.3 d 8 2011Va02), 459.6 d <i>17</i> 4 (1982La25), 461.9 d <i>3</i> 1968Ea01),453 d 2 (1965Le06) 47Br05). Values of 463.2 <i>6</i> 02) and 462.6 <i>6</i> (2012Fi12) are 063By02 data. ropy. Other: +0.69 7 from 7/2 orbitals.
59.60 7	1/2+	11.8 μs <i>16</i>	AB	HI %I' J^{π} : $T_{1/}$	Γ =100 L(d,t)=0; 59.6 γ ₂ : weighted aver ⁰⁹ Cd IT decay.	E2 to rage o	5/2 ⁺ . f 11.7 μs 18 (1968Iv(()2) and 12 μ s 3 (1956Pe56) in
203.40 5	7/2+	36 ps +6-1	A CDEFO	GHI J^{π} : $T_{1/}$	L(d,t)=4, 203.5 γ 2: from microwa figuration: $\nu g_{7/2}$	v M1 ive mo	to $5/2^+$.	d lens spectrometer (1969Be37).
347.51 6	5/2 ⁺		A	$\begin{array}{cc} \mathbf{HI} & \mathbf{J}^{\pi} \\ \mathbf{HI} & \mathbf{J}^{\pi} \end{array}$	L(d,t)=2, 288.17	/ E2 t	$0 \frac{1}{2^+}$.	0./2 ⁺
463.10 [‡] 11	11/2 ⁻	10.6 μs 4	A CDEF	$\begin{array}{c} \mathbf{H} \mathbf{I} \mathbf{J}^{*} \\ \mathbf{SHI} \mathbf{\mathcal{G}} \\ \mathbf{Q} \\ \mathbf{Q} \\ \mathbf{J}^{\pi} \\ \mathbf{T}_{1/} \\ \mathbf{I} \\ \mathbf{\mathcal{G}} \\ \mathbf{Q} \\ \mathbf{Q} \\ \mathbf{Q} \\ \mathbf{C} \\ \mathbf{V} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{U} \\ \mathbf{U}$	E(u,t)=2, 420.3) Γ =100 =0.92; μ ==-1.090 L(d,t)=5, 259.7) 2: weighted aver 0.8 μ s 16 (1968 from a measuren Distribution (SOF from 1978Sp09 TDPAD) method y assuming that vith an increasing figuration: vh ₁₁ /	6 2 v M2 rage o Iv02), nent b PAD) by the l. Value the m g neuronal	to $7/2^+$. f 10.4 μ s 6 (1964Br2 and 10.8 μ s 7 in 197 y the Stroboscopic O method (2014StZZ). the Time Dependent Per the measured relative the magnitude of Q follow from number.	7), 10.4 μ s <i>10</i> (1966Mc06), 75Me22. bservation of Perturbed Angular rturbed Angular Distribution to Q for ¹⁰⁷ Cd and ¹¹¹ Cd and 's the relative h _{11/2} shell filling

¹⁰⁹Cd Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{i}$		XREF	Comments
623.88 7	7/2+	41 fs +25-15	A	HI	J^{π} : L(d,t)=4, 623.8 γ M1 to 5/2 ⁺ . T _{1/2} : from DSAM (1988Ch35) in (p.n γ).
673.41 8	3/2+	55 fs +15-12	Α	HI	J^{π} : L(d,t)=2; 613.6 γ M1 to 1/2 ⁺ .
721.67 7	5/2+	76 fs +21-13	A	HI	J^{π} : L(d,t)=2; J=3/2 is ruled out based on measured 721.8 $\gamma(\theta)$ compared with theoretical values using the χ^2 fits method in (p,n γ).
818 5	$3/2^+, 5/2^+$			I	$J^{\pi}: L(d,t)=2.$
822.04 7	9/2+	90 fs +49-28	A	EFGH	J^{π} : 618.5 γ M1 to 7/2 ⁺ , 822.0 γ E2 to 5/2 ⁺ .
891.25 7	3/2+,5/2+	36 fs +8-6	Α	HI	J^{π} : L(d,t)=2.
929.38 8	5/2+			HI	J^{π} : L(d,t)=2; measured C ² S=1.3 in (d,t) is considered too large for J=3/2 assignment based on comparisons with theoretical values of neighbouring nuclei by 1975Ch07 in (d,t).
985.51 [‡] <i>15</i>	15/2-	10.0 ps 4		DEFGH	J^{π} : 522.4 γ E2 to 11/2 ⁻ ; band assignment.
997.50 8	7/2+	64 fs +20-12	A	Н	J^{π} : direct ε decay from 9/2 ⁺ , 650.0 γ to 5/2 ⁺ , 324.4 γ to 3/2 ⁺ .
1066.09 11	$11/2^+$		Α	EFGH	J^{π} : 862.9 γ E2 to 7/2 ⁺ . Level considered as member of 7/2 ⁺ band.
1105 3	$3/2^+, 3/2^+$	73 fc ± 38 24	٨	с и 1	J [*] : L(0,1)=2. I^{π} : 1105 0 $_{22}$ (E2) to 5/2 ⁺ : direct EC decay from 0/2 ⁺ : absence of
1105.05 9	9/2 (1/0+ 2/0 5/0+)	75 18 +30-24	A	г п 	γ' s to 3/2 ⁺ .
1121.21 8	$(1/2^+, 3/2, 3/2^+)$ $7/2^+$	61 fs $\pm 32 - 18$	Δ	н	J [*] : 1001.57 to $1/2^{\circ}$, $7/5.77$ to $5/2^{\circ}$.
1152.71 21	1/2	01 13 + 52 - 10	п		929.5 $\gamma(\theta)$ compared with theoretical values using the χ^2 fits method in (p py)
1173.48 14	$3/2^+.5/2^+$		Α	HI	J^{π} : L(d,t)=2.
1219.01 18	1 / 1		A	Н	
1318.10 12	$3/2^+, 5/2^+$			HI	J^{π} : L(d,t)=2.
1352.15 7	$(7/2)^+$		A	Н	J^{π} : strong direct EC feeding from 9/2 ⁺ , 1352.2 γ to 5/2 ⁺ , 678.6 γ to 3/2 ⁺ .
1388.56 13	$(7/2^+, 9/2^+)$		A	H	J^{π} : direct ε feeding from 9/2 ⁺ , 1388.6 γ to 5/2 ⁺ .
1417.96 18	1/2 '			HI	J^{A} : L(d,t)=0.
1425.20 3	$(13/2^{-})$			EFGH	J^{π} : 962.3 γ (M1+E2) to 11/2 ⁻ , band assignment.
1430.1 4	$(1/2,9/2^{+})$		A	ц	J [*] : possible EC feeding from $9/2^\circ$, 1430.1 γ to $5/2^\circ$.
1475 69 9	$(7/2, 9/2)^+$		Α	н	I^{π} : strong direct EC feeding from $9/2^+$ 1475 6y to $5/2^+$
1479.77 20	(,,=,,,=)			Н	
1539.37 16	$(7/2^+, 9/2^+)$		A	Н	J ^{π} : direct EC feeding from 9/2 ⁺ , 1539.3 γ to 5/2 ⁺ .
1563.1 <i>3</i>	$11/2^{(+)}$			FΗ	J^{π} : 939.6 γ Q to 7/2 ⁺ , 740.3 γ D+Q to 9/2 ⁺ .
1580.71 18				Н	
1593.3 3	(7)(0)+			Н	
1622.46 8	(7/2)*		A	н	J [*] : strong direct EC feeding from $9/2^+$, 1622.3γ to $5/2^+$, 948.9γ to $3/2^+$.
1033.33 23				н	
1772.79 10	$(7/2,9/2)^+$		A	Н	J^{π} : strong direct EC feeding from 9/2 ⁺ , 1772.5 γ to 5/2 ⁺ .
1787.36 10	(.,=,,,=)			Н	
1813.42 12				Н	
1821.50 [‡] <i>17</i>	19/2-	0.59 ps 14		DEFG	J^{π} : 836.0 γ E2 γ to 15/2 ⁻ .
1854.0 4	$(13/2^+)$			EF H	J ^{π} : 1031.8 γ (E2) to 9/2 ⁺ , 788.0 γ (M1) to 11/2 ⁺ .
1861.42 10	$(7/2^+, 9/2^+)$		Α		J ^{π} : direct EC decay from 9/2 ⁺ , 1861.4 γ to 5/2 ⁺ .
1869.23 19				H	
1937.3 3				H U	
1956.0 6				Н	
1989.0 <i>3</i>				Н	
2033.78 17			A	Н	
2046.4 3				Н	

¹⁰⁹Cd Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{i}$	XREF	Comments
2064.67 9			FΗ	XREF: F(?). J^{π} : 1717.0 γ to 5/2 ⁺ , 1861.4 γ to 7/2 ⁺ .
2111.65 <i>19</i> 2141.41 22	15/2+		H EFGH	J^{π} : 1075.3 γ E2 to 11/2 ⁺ .
2165.94 ^b 23 2166.48 17 2198.92 17 2234.22 22 2271 3 5	(17/2 ⁻)	0.5 ps 3	EFGH H H H	J^{π} : 740.8 γ (E2) to (13/2 ⁻), 1180.2 γ (M1+E2) to 15/2 ⁻ , band assignment.
2282.46 25 2325.8 4 2372.3 3 2391.85 24 2589.8 5	19/2-	0.8 ps 4	H H H H EF	J^{π} : 1604.5 γ E2 to 15/2 ⁻ .
2687.1 [#] 4	$(17/2^+)$	010 F2 1	EF	J^{π} : 1701.8 γ (E1) to 15/2 ⁻ .
2700.5 [°] 4	(19/2 ⁻)		EF	J^{π} : 1715.0 γ (E2) to 15/2 ⁻ , band assignment.
2862.20 ⁺ 19	$\frac{23}{2^{-}}$	<1.2 ps	DEFG	J^{π} : 1040.7 γ E2 to 19/2 ⁻ .
$2800.70^{\circ} 20^{\circ}$	(21/2) 19/2 ⁺	<3.5 ps	FFG	I^{π} : 800 5 \times F2 to 15/2 ⁺
2974.0^{d} 3	$(21/2^{-})$	<7.6 ps	EF	J^{π} : 807.8 γ (E2) to (17/2 ⁻).
3042.6 ^b 4	$(21/2^{-})$	<3.5 ps	EF	J^{π} : 876.7 γ (E2) to (17/2 ⁻).
3058.78 [#] 19 3256.5 11	$(21/2^+)$	0.8 ps 5	DEFG E	J^{π} : 371.8 γ (E2) to (17/2 ⁺).
3282.4 <i>5</i> 3343.2 <i>6</i>	(21/2 ⁺) (25/2 ⁻)		EF D	J^{π} : proposed in 96 Zr(18 O,5n γ). J^{π} : 481.0 γ (M1+E2) to 23/2 ⁻ .
3354.0 ⁸ 4	$(21/2^{-})$	-2.5	EF	J^{π} : 491.8 γ (M1) to 23/2 ⁻ , 1188.0 γ to (17/2 ⁻).
3309.94	23/2	< 3.5 ps	EF	J [*] : 780.27 and 1548.57 E2 to $19/2$. M_{1} 441 0x E2 to $10/2^{+}$ 222 8x M1 E2 to $(21/2^{+})$
3411.1 [°] 4	$(23/2^{-})$	12.1 ps 9	EFG	J^{π} : 441.07 E2 to 19/2°, 525.87 M1+E2 to (21/2°), J^{π} : 436.77 (M1) to (21/2°), 710.57 (E2) to (19/2°).
3524.3 ^{<i>a</i>} 5	$(23/2^+)$ $(21/2^+)$		EF	J^{π} : based on band structure in ${}^{96}\text{Zr}({}^{18}\text{O},5n\gamma)$.
3524.41 ^{#} 21	$(25/2^+)$	12.1 ps 12	DEFG	J^{π} : 465.2 γ E2 to (21/2 ⁺).
3549.0 ⁸ 4	$(23/2^{-})$	<2.1 ps	EF	J^{π} : 195.0 γ (M1+E2) to (21/2 ⁻), band assignment.
3570.1° 4 3615.6.5	$(23/2^{+})$ $(23/2^{-})$		EFG FF	J [*] : 287.5 γ (M1) to (21/2 ⁺), 703.4 γ (M1) to (21/2 ⁺). I ^{π} : 1793.8 γ (F2) to 19/2 ⁻
$3620.6^{\&} 4$	$(23/2^+)$ $(23/2^+)$		EF	J^{π} : 561.6 γ (M1) to (21/2 ⁺), 758.6 γ (E1) to 23/2 ⁻ .
3837.1 9	$(25/2^+)$		E	J^{π} : proposed in ⁹⁶ Zr(¹⁸ O,5n γ).
3897.6 ^d 4	$(25/2^{-})$		EF	J^{π} : 923.4 γ (E2) to (21/2 ⁻).
3910.3 ^{<i>a</i>} 4	$(25/2^+)$	<13 ps	EF	J^{π} : 527.3 γ (M1) to 23/2 ⁺ , 851.4 γ (E2) to (21/2 ⁺).
3939.8 [@] 3	$27/2^+$	3.8 ps 4	EFG	J^{π} : 415.0 γ M1+E2 to (25/2 ⁺), 556.8 γ E2 to 23/2 ⁺ .
4021.3+ 4	$(27/2^{-})$	-2.9	DEFG	J^{π} : 1159.0 γ (E2) to 23/2 ⁻ .
$4030.0^{\circ} 4$	(25/2)	<2.8 ps	Er	J^{*} : 414.8 γ (M1) to (25/2), 481.7 γ (M1+E2) to (25/2). I^{π} : 1046 (γ (E2) to (21/2 ⁻)
4154.2 6	(23/2)		E	J : 1040.07 (L2) to (21/2).
4232.3 ^{&} 4	$(27/2^+)$		EF	J^{π} : 611.8 γ (E2) to (23/2 ⁺), 708.0 γ (M1) to (25/2 ⁺).
4246.2 [#] 4	$(29/2^+)$	<3.8 ps	DEFG	J^{π} : 721.8 γ E2 to (25/2 ⁺).
4293.2 ^e 5	$(25/2^+)$		EF	J^{π} : 1426.6 γ (E2) to (21/2 ⁺).
4296.0 5	$(27/2^{-})$		EF	J^{*} : 926.4 γ (E2) to 23/2 ⁻ .
4414.1 <i>10</i> 4431.9 6	$(21/2^{+})$ $(27/2^{+})$		E F	J [*] : proposed in $\sum Zr({}^{3}O, 5n\gamma)$. I^{π} : 811 3 γ (F2) to (23/2 ⁺)
4458.7 [°] 5	$(27/2^{-})$		Ē	J^{π} : 1048.1 γ (E2) to (23/2 ⁻).
4591.2 6	$(27/2^{-})$		E	J^{π} : 1729.0 γ (E2) to 23/2 ⁻ .

¹⁰⁹Cd Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{i}$	XREF	Comments
4630.6 ^g 4	$(27/2^{-})$	<4.2 ps	EF	J^{π} : 600.0 γ (M1) to (25/2 ⁻).
4697.7 ^{<i>a</i>} 6	$(29/2^+)$		EF	J^{π} : 787.4 γ (E2) to (25/2 ⁺).
4724.5 [@] 5	$31/2^+$	<3.1 ps	EF	J^{π} : 785.1 γ E2 to 27/2 ⁺ , 478.0 γ (M1+E2) to (29/2 ⁺).
4875.2 5	$(27/2^{-})$		E	J^{π} : proposed in ${}^{96}Zr({}^{18}O,5n\gamma)$.
4950.9 ^e 8	$(27/2^+)$		E	J^{π} : band assignment.
5050.7 [‡] 5	(31/2 ⁻)	1.05 ps +4-5	EF	J ^{π} : 1029.6 γ (E2) to (27/2 ⁻), 754.7 γ E2 to to (27/2 ⁻). T _{1/2} : from 2000Ch04 in ⁹⁶ Zr(¹⁸ O,5n γ) using DSAM, weighted average of 1.26 ps +12–8, 1.25 ps 5 and 0.85 ps +7–6.
5063.7 5	$(27/2^{-})$		Е	J^{π} : proposed in ${}^{96}Zr({}^{18}O,5n\gamma)$.
5082.6 ^{&} 4	$(31/2^+)$		EF	J^{π} : 850.8 γ (E2) to (27/2 ⁺).
5122.7 ^d 7	$(29/2^{-})$		Е	J^{π} : 1225.1 γ (E2) to (25/2 ⁻).
5227.6 7			E	- 06 19
5254.6 11	$(29/2^{-})$		E	J^{π} : proposed in ${}^{90}Zr({}^{18}O,5n\gamma)$.
5261.1 [#] 7	$(33/2^+)$		E	J^{π} : 1014.8 γ (E2) to (29/2 ⁺).
52/9.78 4	$(29/2^{-})$	<7.6 ps	EF	J ^{<i>x</i>} : 649.0 γ (M1) to (27/2 ⁻), 1249.0 γ (E2) to (25/2 ⁻).
5287.6° 11	$(29/2^{-})$		E	J^{π} : band assignment. J^{π} , 1278 Oct (E2) to (27/2 ⁻)
5399.5 7 5441 3 <mark>8</mark> 7	(31/2) $(31/2^{-})$		E	$J^{\pi}: 1578.0\gamma$ (E2) to (27/2). $I^{\pi}: 161.6\gamma$ M1+E2 to (29/2)
5623.0 7	(31/2)		E	$3 \cdot 101.07 \text{ MITEZ to } (272).$
5650.5 ^e 9	$(29/2^+)$		E	J^{π} : band assignment.
5671.7 <mark>a</mark> 8	$(33/2^+)$		Е	J^{π} : 974.0 γ (E2) to (29/2 ⁺).
5731.2 ⁸ 8	(33/2 ⁻)	0.97 ps +2-3	EF	J ^{π} : 289.9 γ (M1) to (31/2 ⁻). T _{1/2} : from 2000Ch04 in ⁹⁶ Zr(¹⁸ O,5n γ) using DSAM, weighted average of 0.96 ps 3, 0.81 ps +1-8, and 1.12 ps 5.
5775.1 [@] 7	$(35/2^+)$		EF	J^{π} : 1050.6 γ (E2) to 31/2 ⁺ .
5788.0 10	$(31/2^{-})$		Е	J^{π} : proposed in 96 Zr(18 O,5n γ).
5813.2 ^f 12	$(29/2^+)$		Е	J^{π} : band assignment.
5862.0 8 5954.8 <i>10</i>	(31/2 ⁻)		E E	J ^{π} : proposed in ⁹⁶ Zr(¹⁸ O,5n γ).
5971.4 [‡] 7	(35/2-)	0.233 ps +15-8	EF	J ^{π} : 920.7 γ E2 to (31/2 ⁻). Two: from 2000Ch04 using DSAM in ⁹⁶ Zr(¹⁸ O 5n γ) weighted average
				of 0.214 ps $+14-21$, 0.277 ps $+21-14$, and 0.236 ps $+42-7$.
5995.8 7	$(31/2^+)$		Е	J^{π} : proposed in 96 Zr(18 O,5n γ).
6004.2 ^f 7	$(31/2^+)$		Е	J^{π} : band assignment.
6154.6 ^{&} 7	$(35/2^+)$		Е	J^{π} : 1072.0 γ (E2) to (31/2 ⁺).
6164.5 ^g 10	(35/2-)	0.189 ps +3-4	Е	J^{π} : 433.3 γ (M1) to (33/2 ⁻).
				T _{1/2} : from 2000Ch04 using DSAM in 96 Zr(18 O,5n γ), weighted average of 0.173 ps 7, 0.183 ps +5-6, and 0.202 +4-6.
6240.8 9	$(35/2^{-})$		E	J^{π} : 379.0 γ (E2) to (31/2 ⁻).
6305.2 ^J 8	$(33/2^+)$		E	J^{π} : 301.1 γ (M1) to (31/2 ⁺).
щ				$T_{1/2}$: from 2000Ch04 using DSAM in 90 Zr(16 O,5n γ), 0.248 ps +10-8, weighted average of 0.284 ps +27-21, 0.263 ps 14, and 0.222 ps 14.
6518.4# 8	$(37/2^+)$		E	J^{π} : 1257.3 γ (E2) to (33/2 ⁺).
03/2./ /	(27/2-)		E	π more and in $\frac{967r}{1805m}$
$\frac{10}{10}$	(31/2)	0.175	E	J : proposed in $\mathbb{Z}I(\mathbb{T}^{n}, \mathfrak{sn}\gamma)$.
6684.2 ³ 13	(35/2*)	0.175 ps +3-4	E	J [*] : band assignment. $T_{1/2}$: from 2000Ch04 using DSAM in ⁹⁶ Zr(¹⁸ O,5n γ), weighted average of 0.187 ps 7, 0.173 ps +6-5 and 0.166 ps +5-9.
6796.0 <mark>8</mark> 11	$(37/2^{-})$	0.150 ps +3-4	Е	J^{π} : 631.5 γ (M1) to (35/2 ⁻).
				T _{1/2} : from 2000Ch04 using DSAM in 96 Zr(18 O,5n γ), weighted average of 0.215 ps +14–21, 0.194 ps +7–14, and 0.142 ps +2–5.

¹⁰⁹Cd Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{i}$	XREF	Comments
6861.8 ^{<i>a</i>} 10	$(37/2^+)$		Е	J^{π} : band assignment.
7010.4 [‡] 9	$(39/2^{-})$	0.274 ps +10-9	EF	J^{π} : 1039.0 γ (E2) to (35/2 ⁻).
				T _{1/2} : from 2000Ch04 using DSAM in 96 Zr(18 O,5n γ), weighted average of 0.28 ps 3, 0.284 ps +14-7, and 0.24 ps 2.
7077.2 [@] 9	$(39/2^+)$		E	J^{π} : 1302.0 γ (E2) to (35/2 ⁺).
7147.2 ^f 14	$(37/2^+)$	0.146 ps +1-3	E	J^{π} : 463.0 γ (M1) to (35/2 ⁺).
0				T _{1/2} : from 2000Ch04 using DSAM in ${}^{96}Zr({}^{18}O,5n\gamma)$, weighted average of 0.148 ps +5-6, 0.146 ps 3, and 0.141 ps +3-15.
7384.6 ^{&} 8	$(39/2^+)$		E	J^{π} : 1230.0 γ (E2) to (35/2 ⁺); band assignment.
7555.0 ^g 12	$(39/2^{-})$	0.226 ps +8-11	E	J^{π} : 759.0 γ (M1) to (37/2 ⁻).
	(20 (2-)		_	$T_{1/2}$: from 2000Ch04 using DSAM in 50 Zr(10 O, Sn γ), weighted average of 0.187 ps +14–21, 0.235 ps 14, and 0.249 ps +14–21.
7562.0 15	(39/2 ⁻)		E	J^{π} : proposed in 90 Zr(10 O,5n γ).
7687.8 ^J 15	$(39/2^+)$	0.077 ps +2-3	E	J^{π} : 540.6 γ (M1) to (37/2 ⁺).
				average of 0.067 ps 4, 0.078 ps $+3-7$, and 0.091 ps $+4-6$.
7908.8 [#] 10	$(41/2^+)$		Е	J^{π} : 1390.4 γ (E2) to (37/2 ⁺).
7951.0 16	$(41/2^{-})$		Е	J^{π} : proposed in ${}^{96}Zr({}^{18}O,5n\gamma)$.
8202.0 [‡] 10	$(43/2^{-})$	0.129 ps +3-5	Е	J^{π} : 1191.6 γ (E2) to (39/2 ⁻).
		•		T _{1/2} : from 2000Ch04 using DSAM in ${}^{96}Zr({}^{18}O,5n\gamma)$, weighted average of 0.110 ps +7-14, 0.130 ps +3-13, and 0.133 ps +6-4.
8264.8 ^f 18	$(41/2^+)$	0.056 ps +2-4	Е	J^{π} : band assignment.
				T _{1/2} : from 2000Ch04 using DSAM in ${}^{96}Zr({}^{18}O,5n\gamma)$, weighted average of 0.059 ps +4-6, 0.049 ps +4-5, and 0.067 ps +3-9.
8598.6 [@] 10	$(43/2^+)$		E	J^{π} : 1521.4 γ (E2) to (39/2 ⁺).
8870.8 ^f 20	$(43/2^+)$		E	J^{π} : band assignment.
9377.7 [#] 11	$(45/2^+)$		E	J^{π} : band assignment.
9502.8 ^f 23	$(45/2^+)$		E	J^{π} : band assignment.
9569.0 [‡] 11	$(47/2^{-})$	0.124 ps 3	E	J^{π} : 1367.0 γ (E2) to (43/2 ⁻).
				T _{1/2} : from 2000Ch04 using DSAM in 96 Zr(18 O,5n γ), weighted average of 0.126 ps 5, 0.119 ps +6–5, and 0.126 ps +5–6.
10165.8 ^{<i>f</i>} 25	$(47/2^+)$		E	J^{π} : band assignment.
10898 ^{<i>f</i>} 3	$(49/2^+)$		E	J^{π} : band assignment.
11132.1 [‡] <i>12</i>	$(51/2^{-})$		E	J^{π} : band assignment.
x ^h	(37/2)		E	Additional information 2.
				 J^π: band assignment. E(level): x >5730, since transitions from this level feed members of bands #10 and #11 as labeled by 2000Ch04.
295.0+x ^h 10	(39/2)		Е	J^{π} : band assignment.
634.0+x ^h 15	(41/2)		Е	J^{π} : band assignment.
1054.0+x ^h 18	(43/2)		Е	J^{π} : band assignment.
1542.0+x ^h 20	(45/2)		Е	J^{π} : band assignment.
2100.0+x ^h 23	(47/2)		Е	J^{π} : band assignment.
2727.0+x ^h 25	(49/2)		Е	J^{π} : band assignment.

[†] From a least-squares fit to γ -ray energies. [‡] Band(A): $\Delta J=2$, $\nu h11/2^-$.

 $^{109}_{48}\text{Cd}_{61}\text{-}6$

Adopted Levels, Gammas (continued)

109Cd Levels (continued)

- [#] Band(B): $\Delta J=2$, based on $17/2^+$.
- ^(a) Band(C): $\Delta J=2$, based on 19/2⁺.
- [&] Band(D): $\Delta J=2$, based on (23/2⁺).
- ^{*a*} Band(E): $\Delta J=2$, based on (21/2⁺).
- ^b Band(F): $\Delta J=2$, based on (13/2⁻).
- ^c Band(G): $\Delta J=2$, based on (19/2⁻).
- ^d Band(H): $\Delta J=2$, based on (21/2⁻).
- ^e Band(I): $\Delta J=1$, based on (21/2⁺).
- ^{*f*} Band(J): $\Delta J=1$, magnetic-rotational band, based on (29/2⁺). Configuration= $\pi g_{9/2}^{-2} {}_{8+}\nu[(g_{7/2}/d_{5/2})h_{11/2}^2]$.
- ^g Band(K): $\Delta J=1$, magnetic-rotational band, based on (21/2⁻).
- ^{*h*} Band(L): $\Delta J=1$, (37/2) band.
- ^{*i*} From (p,n γ) by DSAM up to E=1133 keV level, and from 2001Ha09 in ¹⁰⁰Mo(¹³C,4n γ) using Recoil Distance Method above E=1133 keV level, unless otherwise noted.

1						Ac	lopted Leve	els, Gammas (continued)
								γ ⁽¹⁰⁹ Cd)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	α &	Comments
59.60	1/2+	59.6 2	100	0.0	5/2+	E2	9.45 18	$\alpha(K)=5.72\ 10;\ \alpha(L)=3.02\ 7;\ \alpha(M)=0.607\ 13$ $\alpha(N)=0.0990\ 21;\ \alpha(O)=0.000976\ 17$ B(E2)(W.u.)=0.20 3 E : weighted average of 59.6.2 from ¹⁰⁹ In c decay 59.9.5 from ¹⁰⁹ Cd IT decay
203 40	7/2+	203 3 1	100	0.0	5/2+	M1	0.0659	(12 μ s), and 59.5 5 from ¹⁰⁹ Ag(p,n γ) (1983Ch34). Mult.: $\alpha(\exp)=13$ 3 (1956Pe56), K/L=0.85 8 (1956Pe56), 1.3 5 (1962No06) in ¹⁰⁹ In ε decay. $\alpha(K)=0.0572$ 8: $\alpha(L)=0.00705$ 10: $\alpha(M)=0.001354$ 19
203.40	1/2	205.5 1	100	0.0	572	111	0.0039	$\alpha(N)=0.00723, \alpha(D)=0.0070570, \alpha(M)=0.001354757$ $\alpha(N)=0.0002414; \alpha(O)=1.392\times10^{-5}20$ B(M1)(W.u.)=0.0683+19-98
								Mult.: $\alpha(\exp)=0.07 \ I$ and K/L=7.6 4 (1956Pe56), K/(L+M)=7 I (1962No06) from ¹⁰⁹ In ε decay; $\alpha(K)\exp(259.5\gamma)/\alpha(K)\exp(203.2\gamma)=2.06 \ 23$ (1969Be37) and I $\gamma(259.g\gamma)/I\gamma(203.2\gamma)=0.9$ (1966Mc06 and 1964Br27) from ¹⁰⁹ Cd IT decay (10.9 μ s) are consistent with mul(203 γ)=M1 and mul(259 γ)=M2.
347.51	5/2+	288.1 <i>1</i>	75 <i>3</i>	59.60	1/2+	E2	0.0371	$\alpha(K)=0.0314 5; \alpha(L)=0.00465 7; \alpha(M)=0.000902 13$ $\alpha(N)=0.0001564 22; \alpha(O)=6.80\times10^{-6} 10$
								I _γ : weighted average of 77 <i>3</i> from ¹⁰⁹ In ε decay and 71 5 from ¹⁰⁹ Ag(p,nγ). Mult.: $\alpha(\exp)=0.04$ <i>1</i> , K/L=5.0 (1956Pe56), K/(L+M)=6.6 <i>15</i> (1962No06) from ¹⁰⁹ In ε decay; A ₂ /A ₀ =+0.03 <i>3</i> , A ₄ /A ₀ =-0.06 <i>4</i> (1994Ju05) in (p,nγ).
		347.5 [‡] 1	100 [‡] 5	0.0	5/2+	M1+E2	0.01638	α (K)=0.01426 20; α (L)=0.001727 25; α (M)=0.000331 5 α (N)=5.91×10 ⁻⁵ 9; α (O)=3.45×10 ⁻⁶ 5
								Mult.: $\alpha(\exp)=0.020$ 8 from K/L=5.1 5 (1956Pe56), K/(L+M)=7 5 (1962No06) from ¹⁰⁹ In ε decay; A ₂ /A ₀ =+0.01 2, A ₄ /A ₀ =-0.06 4 (1994Ju05) in (p,n γ).
426.42	5/2+	223.0 <i>1</i> 426.3 <i>1</i>	4.7 8 100 <i>3</i>	203.40 0.0	7/2 ⁺ 5/2 ⁺	M1+E2	0.00984	I_{γ} : weighted average of 2.9 9 from ¹⁰⁹ In ε decay and 5.0 4 from (p,nγ). α (K)=0.00857 12; α (L)=0.001031 15; α (M)=0.000198 3
								$\alpha(N)=3.53\times10^{-5} 5; \alpha(O)=2.0/\times10^{-5} 3$ I _{γ} : from ¹⁰⁹ In ε decay. Other: 100 6 from (p,n γ). Mult.: $\alpha(\exp)=0.014$ 5 from K/L=8 1 (1956Pe56), K/(L+M)=8 2 (1962No06) from
463.10	11/2-	259.7 1	100	203.40	7/2+	M2	0.1676	¹⁰⁹ In ε decay; A ₂ /A ₀ =+0.10 4, A ₄ /A ₀ =+0.01 5 (1994Ju05) in (p,n γ). α (K)=0.1426 20; α (L)=0.0203 3; α (M)=0.00397 6
								$\alpha(N)=0.000705 \ I0; \ \alpha(O)=3.84\times10^{-5} \ 6$ B(M2)(W.u.)=0.093 4 Mult + $\alpha(V)=0.093 \ 4$
								Mult.: $\alpha(\mathbf{K})\exp(259.5\gamma)/\alpha(\mathbf{K})\exp(205.2\gamma)=2.06$ 25 (1969Be57) and I $\gamma(259.5\gamma)/I\gamma(203.2\gamma)=0.9$ (1966Mc06 and 1964Br27) from ¹⁰⁹ Cd IT decay (10.9 μ s) are consistent with mul(203 γ)=M1 and mul(259 γ)=M2; K/(L+M)=2.4 8 (1962No06) from ¹⁰⁹ In ε decay. A ₂ /A ₀ =+0.045 6, A ₄ /A ₀ =-0.005 6, pol=-0.13 5
623.88	7/2+	420.6 1	16.0 <i>13</i>	203.40	7/2+	(M1)	0.01017	from 96 Zr(16 O,3n γ). α (K)=0.00886 13; α (L)=0.001066 15; α (M)=0.000204 3
								α (N)=3.65×10 ⁻⁵ 6; α (O)=2.14×10 ⁻⁶ 3 B(M1)(W.u.)=1.0 +6-4
								I _γ : weighted average of 14.7 <i>I3</i> from ¹⁰⁹ In ε decay and 17.2 <i>I3</i> from ¹⁰⁹ Ag(p,nγ). Mult.: A ₂ /A ₀ =+0.22 <i>I</i> , A ₄ /A ₀ =+0.06 2 (1994Ju05) in (p,nγ).

 \neg

					Ad	opted Level	s, Gammas (continued)
						$\gamma(^{109}$	Cd) (continued)
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _f J	$\frac{\pi}{f}$ Mult. [#]	α &	Comments
623.88	7/2+	623.8 1	100 4	0.0 5/2	2+ M1	0.00392	$\begin{aligned} \alpha(\text{K}) = 0.00342 \ 5; \ \alpha(\text{L}) = 0.000407 \ 6; \ \alpha(\text{M}) = 7.79 \times 10^{-5} \ 11 \\ \alpha(\text{N}) = 1.392 \times 10^{-5} \ 20; \ \alpha(\text{O}) = 8.21 \times 10^{-7} \ 12 \\ \text{B}(\text{M}1)(\text{W.u.}) = 1.9 \ + 11 - 7 \\ \text{I}_{\gamma}: \ \text{from}^{109} \text{In} \ \varepsilon \ \text{decay. Other:} \ 100 \ 7 \ \text{from} \ (\text{p},\text{n}\gamma). \end{aligned}$
673.41	3/2+	326.3 2	24.6 8	347.51 5/2	2 ⁺ [M1]	0.0192	Mult.: $\alpha(\exp)=0.0032$ 15 (1956Pe56) from ¹⁰⁹ In ε decay; A ₂ /A ₀ =-0.41 3, A ₄ /A ₀ =-0.08 4 (1994Ju05) in (p,n γ). $\alpha(K)=0.01672$ 24; $\alpha(L)=0.00203$ 3; $\alpha(M)=0.000389$ 6 $\alpha(N)=6.95\times10^{-5}$ 10; $\alpha(O)=4.04\times10^{-6}$ 6 I _{γ} : weighted average of 24.3 10 from ¹⁰⁹ In ε decay and 25.1 13 from 109 A = (α m)
		470.4 2	2.8 3	203.40 7/2	2 ⁺ [E2]	0.00795	$\alpha(K) = 0.00684 \ 10; \ \alpha(L) = 0.000905 \ 13; \ \alpha(M) = 0.0001745 \ 25 \ \alpha(L) = 3.07 \times 10^{-5} \ 5; \ \alpha(Q) = 1.548 \times 10^{-6} \ 22$
		613.6 <i>1</i>	100 6	59.60 1/2	2+ M1	0.00408	$\alpha(\mathbf{N}) = 3.07 \times 10^{-5} \ 3, \ \alpha(\mathbf{O}) = 1.348 \times 10^{-2} \ 22$ $\alpha(\mathbf{K}) = 0.00356 \ 5; \ \alpha(\mathbf{L}) = 0.000423 \ 6; \ \alpha(\mathbf{M}) = 8.11 \times 10^{-5} \ 12$ $\alpha(\mathbf{N}) = 1.448 \times 10^{-5} \ 21; \ \alpha(\mathbf{O}) = 8.53 \times 10^{-7} \ 12$ Mult.: A ₂ /A ₀ =+0.09 2, A ₄ /A ₀ =-0.06 6 (1994Ju05) in (p,ny), mul=Q is ruled out
721.67	5/2+	374.3 4	2.5 5	347.51 5/2	2 ⁺ [M1]	0.01359	by $T_{1/2}$, polarity from level-parity change based L(d,t)=2. $\alpha(K)=0.01184\ 17;\ \alpha(L)=0.001429\ 21;\ \alpha(M)=0.000274\ 4$
		518.2 5	1.0 5	203.40 7/2	2 ⁺ [M1]	0.00611	$\alpha(N) = 4.89 \times 10^{-5}$ /; $\alpha(O) = 2.86 \times 10^{-6}$ 4 $\alpha(K) = 0.00533$ 8; $\alpha(L) = 0.000636$ 9; $\alpha(M) = 0.0001220$ 18 $\alpha(N) = 2.18 \times 10^{-5}$ 3; $\alpha(O) = 1.280 \times 10^{-6}$ 10
		721.8 <i>1</i>	100 5	0.0 5/2	2 ⁺ [M1]	0.00279	$\alpha(\mathbf{K}) = 2.18 \times 10^{-5} \text{ s, } \alpha(\mathbf{C}) = 1.280 \times 10^{-7} \text{ Jy}$ $\alpha(\mathbf{K}) = 0.00243 \text{ 4; } \alpha(\mathbf{L}) = 0.000288 \text{ 4; } \alpha(\mathbf{M}) = 5.52 \times 10^{-5} \text{ 8}$ $\alpha(\mathbf{K}) = 0.86 \times 10^{-6} \text{ J4; } \alpha(\mathbf{C}) = 5.83 \times 10^{-7} \text{ 0}$
822.04	9/2+	618.5 <i>1</i>	100 6	203.40 7/2	2+ M1	0.00400	$\alpha(\mathbf{K}) = 9.30 \times 10^{-7} 14, \ \alpha(\mathbf{O}) = 3.33 \times 10^{-7} 9$ $\alpha(\mathbf{K}) = 0.00349 \ 5; \ \alpha(\mathbf{L}) = 0.000415 \ 6; \ \alpha(\mathbf{M}) = 7.95 \times 10^{-5} \ 12$ $\alpha(\mathbf{N}) = 1.421 \times 10^{-5} \ 20; \ \alpha(\mathbf{O}) = 8.38 \times 10^{-7} \ 12$ F : from ¹⁰⁹ In c decay
		822.0.1	68.2	0.0 5/	2 ⁺ E2	0.00180	Mult.: R(angular)=0.64 7 from ${}^{96}\text{Zr}({}^{18}\text{O},5n\gamma)$, A ₂ /A ₀ =-0.67 3, A ₄ /A ₀ =-0.10 5 (1994Ju05) in (p,ny). $\alpha(\text{K})=0.001561.22$; $\alpha(\text{L})=0.000191.3$; $\alpha(\text{M})=3.67\times10^{-5}.6$
				,			$\alpha(N)=6.51\times10^{-6} \ 10; \ \alpha(O)=3.62\times10^{-7} \ 5$ E _{\gamma} : from ¹⁰⁹ In ε decay. I _γ : weighted average of 67 2 in ¹⁰⁹ In ε decay and 72 6 in (p,nγ) Others: 44 8 from (α 3nγ) 29 5 from ¹⁰⁰ Mo(¹³ C 4nγ)
891.25	3/2+,5/2+	169.3 <i>3</i> 464.8 <i>2</i> 831.7 <i>1</i>	2.3 8 7.6 8 100 <i>1</i>	721.67 5/ 426.42 5/ 59.60 1/	2^+ 2^+ 2^+		Mult.: Q from $A_2/A_0 = +0.24 4$, $A_4/A_0 = +0.03 6$ (p,n γ), M2 is ruled out by $T_{1/2}$.
929.38	5/2+	891.2 <i>I</i> 207.6 <i>I</i> 305.6 <i>3</i> 503.4 <i>3</i> 582.1 <i>3</i> 929.4 <i>I</i>	77 5 48 3 13.1 16 18.0 16 31.1 16 100 8	0.0 5/2 721.67 5/2 623.88 7/2 426.42 5/2 347.51 5/2 0.0 5/2	2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+		

 ∞

							Adopted	Levels, Gam	mas (continued)
								$\gamma(^{109}\text{Cd})$ (con	tinued)
	E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α &	Comments
	985.51	15/2-	522.4 1	100	463.10	11/2-	E2	0.00587	$\begin{aligned} &\alpha(\text{K}) = 0.00507 \ 7; \ \alpha(\text{L}) = 0.000659 \ 10; \ \alpha(\text{M}) = 0.0001268 \ 18 \\ &\alpha(\text{N}) = 2.23 \times 10^{-5} \ 4; \ \alpha(\text{O}) = 1.154 \times 10^{-6} \ 17 \\ &\text{B}(\text{E2})(\text{W.u.}) = 46.8 \ 19 \end{aligned}$
									E _y : weighted average of 522.0 5 from ${}^{96}\text{Zr}({}^{16}\text{O},3n\gamma)$, 522.4 <i>I</i> from ${}^{96}\text{Zr}({}^{18}\text{O},5n\gamma)$, 522.4 <i>I</i> from ${}^{100}\text{Mo}({}^{13}\text{C},4n\gamma)$, 522.2 2 from ${}^{108}\text{Pd}(\alpha,3n\gamma)$, and 522.2 4 from ${}^{109}\text{Ag}(\text{p},n\gamma)$. Mult.: A ₂ /A ₀ =+0.304 <i>I0</i> , A ₄ /A ₀ =-0.094 <i>II</i> (1978St01) in ${}^{96}\text{Zr}({}^{16}\text{O},3n\gamma)$; A ₂ /A ₀ =+0.292 3, A ₄ /A ₀ =-0.108 4 (1975Me22) in $(\alpha,3n\gamma)$; T _{1/2} rules out M2; R(angular)=1.33 2, DCO(Q)=1.01 <i>I</i> in ${}^{96}\text{Zr}({}^{18}\text{O},5n\gamma)$
	997.50	7/2+	324.4 2	12.9 5	673.41	3/2+			E _{γ} : from ¹⁰⁹ In ε decay. I _{γ} : weighted average of 12.8 5 from ¹⁰⁹ In ε decay and 13.3 <i>10</i> from ¹⁰⁹ A ₂ (n m)
			571.0 4	9.2 10	426.42	5/2+	[M1]	0.00484	$\alpha(K)=0.00422 \ 6; \ \alpha(L)=0.000503 \ 7; \ \alpha(M)=9.64\times10^{-5} \ 14$ $\alpha(N)=1.721\times10^{-5} \ 25; \ \alpha(O)=1.013\times10^{-6} \ 15$ E : weighted every of 570 4.5 from ¹⁰⁹ In a decay (1070Bi06) and
2									E_{γ} : weighted average of 570.4 5 from $^{-10}$ In ε decay (1970K100) and 571.2 3 from 109 Ag(p,n γ) (1988Vi03). I _{γ} : from (p,n γ). Other: 2.2 10 from 109 In ε decay.
			650.0 <i>1</i>	100 5	347.51	5/2+	(M1)	0.00356	α (K)=0.00311 5; α (L)=0.000369 6; α (M)=7.06×10 ⁻⁵ 10 α (N)=1.262×10 ⁻⁵ 18; α (O)=7.45×10 ⁻⁷ 11 Mult: $A_2/A_0 = +0.18$ 4, $A_4/A_0 = -0.06$ 6 (1994Ju05) in (p.px)
			793.9 1	19.7 15	203.40	7/2+	[M1]	0.00224	$\alpha(K)=0.00196 \ 3; \ \alpha(L)=0.000231 \ 4; \ \alpha(M)=4.42\times10^{-5} \ 7 \ \alpha(N)=7.89\times10^{-6} \ 11; \ \alpha(O)=4.67\times10^{-7} \ 7 \ L$: weighted average of 20.2 from ¹⁰⁹ In s decay and 19.4.21 from
			L++	L+				2	109 Ag(p,n γ).
			998.5 0 + 3	21.8 0 + <i>13</i>	0.0	5/2+	[M1]	1.33×10^{-3}	$\alpha(K)=0.001166 \ 17; \ \alpha(L)=0.0001368 \ 20; \ \alpha(M)=2.62\times10^{-5} \ 4$ $\alpha(N)=4.68\times10^{-6} \ 7; \ \alpha(O)=2.78\times10^{-7} \ 4$
	1066.09	$11/2^+$	243.8 5	7.9 8	822.04	9/2+	(M1)	0.0408	$\alpha(K) = 0.0354 6; \ \alpha(L) = 0.00434 7; \ \alpha(M) = 0.000834 13$
									I_{γ} : weighted average of 8.3 <i>17</i> from ${}^{96}\text{Zr}({}^{18}\text{O},5n\gamma)$ and 7.8 9 from ${}^{100}\text{Mo}({}^{13}\text{C},4n\gamma)$.
			862.7 1	100 4	203.40	7/2+	E2	1.60×10^{-3}	Mult.: R(angular)=1.00 <i>10</i> from ${}^{96}\text{Zr}({}^{18}\text{O},5n\gamma)$. $\alpha(\text{K})=0.001392$ <i>20</i> ; $\alpha(\text{L})=0.0001698$ <i>24</i> ; $\alpha(\text{M})=3.26\times10^{-5}$ <i>5</i> $\alpha(\text{N})=5.78\times10^{-6}$ <i>8</i> ; $\alpha(\text{O})=3.24\times10^{-7}$ <i>5</i> I_{γ} : from ${}^{100}\text{Mo}({}^{13}\text{C},4n\gamma)$.
	1105.83	9/2+	482.3 2	29 2	623.88	7/2+	(M1+E2)	0.00727	Mult.: $A_2/A_0 = +0.32$ 6, $A_4/A_0 = -0.02$ 8 (1975Me22) in (α , $3n\gamma$); $A_2/A_0 = +0.27$ 6, $A_4/A_0 = -0.018$ (1994Ju05) in ($p,n\gamma$); R(angular)=1.33 8, DCO(Q)=0.93 14 in ⁹⁶ Zr(¹⁸ O,5n\gamma). α (K)=0.00634 9; α (L)=0.000759 11; α (M)=0.0001455 21 α (N)=2.60×10 ⁻⁵ 4; α (O)=1.524×10 ⁻⁶ 22 Mult.: from $A_2/A_0 = -0.31$ 5, $A_4/A_0 = +0.11$ 6 (1994Ju05) in ($p,n\gamma$).

					Adopted	Levels, Gall	inias (continu	
						$\gamma(^{109}\text{Cd})$ (co	ntinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [#]	α ^{&}	Comments
1105.83	9/2+	679.5 5	15.5 14	426.42	5/2+	[E2]	0.00288	$\alpha(K)=0.00250 \ 4; \ \alpha(L)=0.000313 \ 5; \ \alpha(M)=6.01\times10^{-5} \ 9 \ \alpha(N)=1.064\times10^{-5} \ 1.5; \ \alpha(Q)=5.77\times10^{-7} \ 9$
		901.8 2	43 5	203.40	7/2+	(M1+E2)	1.68×10^{-3}	$\alpha(K)=0.001464\ 21;\ \alpha(L)=0.0001722\ 25;\ \alpha(M)=3.30\times10^{-5}$
								α (N)=5.89×10 ⁻⁶ 9; α (O)=3.49×10 ⁻⁷ 5 Mult.: A ₂ /A ₀ =+0.33 12, A ₄ /A ₀ =+0.1 2 (1994Ju05) in (p,n γ).
		1105.9 <i>1</i>	100 10	0.0	5/2+	(E2)	9.15×10 ⁻⁴	$\alpha(K) = 0.000797 \ 12; \ \alpha(L) = 9.52 \times 10^{-5} \ 14; \ \alpha(M) = 1.82 \times 10^{-5}$
								$\alpha(N)=3.24\times10^{-6} 5; \alpha(O)=1.86\times10^{-7} 3; \alpha(IPF)=6.25\times10^{-7} 9$
								Mult.: $A_2/A_0 = +0.22 4$, $A_4/A_0 = -0.03 5$ (1994Ju05) in (p,n γ).
1121.21	$(1/2^+, 3/2, 5/2^+)$	694.8 <i>1</i>	100 6	426.42	5/2+			
		773.7 1	39 <i>4</i>	347.51	$5/2^+$			
1100.01	7/0+	1001.5 2	/3 ð	59.60	1/2			
1132.91	1/2' 3/2+ 5/2+	929.5° 2	100	203.40	7/2' 7/2+			E_{γ} : from ¹⁰ /ln ε decay. Other: 931.5.5 from (p,n γ).
11/3.40	5/2 ,5/2	746.9 <i>4</i>	33 4	426.42	$5/2^+$			
		826.2 2	100 8	347.51	5/2+			
1219.01		497.2 2	100 9	721.67	5/2+			
1010 10	2/0+ 5/0+	871.8 3	64 9	347.51	$5/2^+$			
1318.10	3/2+,5/2+	596.4 I	100 6	721.67	5/2 ' 5/2+			
1352 15	$(7/2)^+$	771.2 J 161 1 1	-1.5 15	247.31 801.25	3/2 3/2+ 5/2+			
1332.13	(1/2)	401.4 4 520 0 [‡] 2	2.2°3	822.04	$3/2$, $3/2^{+}$			$\mathbf{I} \cdot \mathbf{O}$ ther: $A1 \land from (\mathbf{n}, \mathbf{n}_{0})$
		$529.9 \cdot 2$	11.9.0	022.04	7/2 5/2+			1γ . Ouler. 41 4 Holli (p,ir γ).
		678 6 2	$1.0^{\circ} \angle$	672 /1	3/2+			I : Other: 26.4 from (p. p.)
		728 1 7	5773	673.91	5/2 7/2+			1_{γ} . Other: 26.4 from (p, n_{γ}).
		925.6 3	$15 2^{+} 11$	426 42	5/2+			1_{γ} . Other: 15.4 from (p, n_{γ}).
		1004 8 3	4 8 3	347 51	5/2+			r_{γ} . Other: 5.6 /9 from (p.ny).
		11/18 5 2	100 3	203.40	5/2 7/2+			1γ . Other: 100.8 from (p,ny).
		$11+0.3 \cdot 2$ $1252 2 \cdot 1$	15 0 4	203.40	1/2 5/2+			1γ . Other: 63.8 from (p, $n\gamma$)
1388.56	$(7/2^+, 9/2^+)$	764.5 4	40.5	623.88	5/2 7/2 ⁺			1γ . Other. 05 8 from (p,ir γ).
	\·/= -/- /	962.2 2	55 5	426.42	5/2+			
		1185.0 <i>3</i>	40 5	203.40	7/2+			
		1388.6 2	100 5	0.0	$5/2^+$			
1417 04	1 /0+		4 1 (1)	xu1 95				
1417.96	$1/2^{+}$	526.6 5	4.1 22 10 1	125	5/2+,5/2			

L

From ENSDF

					Adopte	d Levels, Ga	<mark>mmas</mark> (conti	inued)	
						$\gamma(^{109}\text{Cd})$ (c	ontinued)		
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult. [#]	δ^{a}	α &	Comments
1425.2	(13/2 ⁻)	962.2 3	100	463.10	11/2-	M1(+E2)	-0.08 21	1.45×10 ⁻³ 3	$ \frac{\alpha(N)=1.442\times10^{-5}\ 21;\ \alpha(O)=8.33\times10^{-7}\ 12;}{\alpha(IPF)=3.80\times10^{-7}\ 6} \\ \alpha(K)=0.001265\ 22;\ \alpha(L)=0.0001486\ 25; \\ \alpha(M)=2.84\times10^{-5}\ 5 \\ \alpha(N)=5.08\times10^{-6}\ 9;\ \alpha(O)=3.02\times10^{-7}\ 6 \\ Mult_{\delta_{1}}\ from\ \alpha\alpha(DCO)\ ip\ ^{96}Tr(^{18}O\ 5m) $
1430.1 1458.75	(7/2,9/2+)	1430.1 <i>4</i> 834.9 2 1255 3 2	100 100 <i>3</i> 15 9 <i>1</i> 5	0.0 623.88 203.40	5/2 ⁺ 7/2 ⁺ 7/2 ⁺				DCO(Q)=0.52 <i>19</i> . E_{γ} : from ¹⁰⁹ In ε decay.
1475.69	(7/2,9/2)+	$584.3^{\ddagger} 2$ $653.4^{\ddagger} 2$	$13.6^{\ddagger} 23$ $100^{\ddagger} 9$	891.25 822.04	3/2 ⁺ ,5/2 ⁺ 9/2 ⁺				
		753.8 [‡] 4 851.8 [‡] 3	$23.2^{\ddagger} 14$ $8.6^{\ddagger} 5$	721.67 623.88	5/2 ⁺ 7/2 ⁺				
		$1049.4^{\ddagger} 2$ $1128.4^{\ddagger} 3$ $1272.6^{\ddagger} 2$	71.8+ 23 7 $\ddagger 3$ 25.0 $\ddagger 14$	426.42 347.51 203.40	5/2 ⁺ 5/2 ⁺ 7/2 ⁺				
1479.77		$1272.0^{\circ} 2$ $1475.6^{\ddagger} 2$ 758.6 6	30 [‡] 2 37 7	0.0 721.67	5/2 ⁺ 5/2 ⁺				
1539.37	(7/2+,9/2+)	1276.3 2 542 [‡] 2 1113.0 3 1336.1 4	$ \begin{array}{c} 100 \ 9 \\ 63^{\ddagger} \ 6 \\ 60 \ 30 \\ 54 \ 8 \\ 100 \ 9 \end{array} $	203.40 997.50 426.42 203.40	7/2+ 7/2+ 5/2+ 7/2+				
1563.1	11/2 ⁽⁺⁾	1539.3 2 457.5 5 740.3 5	100 8 27 <i>13</i> 67 7	0.0 1105.83 822.04	5/2 ⁺ 9/2 ⁺ 9/2 ⁺	D+Q			Mult.: A ₂ /A ₀ =-0.74 8, A ₄ /A ₀ =+0.06 12 from
		939.6 5	100 13	623.88	7/2+	Q			(p,n γ). Mult.: A ₂ /A ₀ =+0.23 8, A ₄ /A ₀ =-0.15 11 from (p,n γ).
1580.71 1593.3		907.2 2 1233.4 <i>3</i> 1245.8 <i>3</i>	100 <i>11</i> 42 5 100	673.41 347.51 347.51	3/2 ⁺ 5/2 ⁺ 5/2 ⁺				
1622.46	(7/2)+	$731.0^{\ddagger} 4$ $800.3^{\ddagger} 3$ $901.7^{b\ddagger} 2$ $948.9^{\ddagger} 2$	$16.4^{\ddagger} 14$ $14.3^{\ddagger} 11$ $17.9^{b\ddagger} 11$ $70^{\ddagger} 3$	891.25 822.04 721.67 673.41	3/2 ⁺ ,5/2 ⁺ 9/2 ⁺ 5/2 ⁺ 3/2 ⁺				
		998.5 ^{b‡} 3 1195.7 [‡] 2 1419.0 [‡] 1	$31^{b^{\ddagger}} 2$ $79^{\ddagger} 3$ $60^{\ddagger} 2$	623.88 426.42 203.40	7/2 ⁺ 5/2 ⁺ 7/2 ⁺				

From ENSDF

						Adopted	Levels, Gam	mas (continued)
							$\gamma(^{109}\text{Cd})$ (con	ntinued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α ^{&}	Comments
1622.46 1633.55	(7/2)+	1622.3 [‡] 3 960.1 6 1207.1 3	100 [‡] 4 50 13 100 13 88 13	0.0 673.41 426.42 203.40	5/2 ⁺ 3/2 ⁺ 5/2 ⁺ 7/2 ⁺			
1729.99		1382.4 <i>4</i> 1526.6 2	58 8 100 8	203.40 347.51 203.40	5/2 ⁺ 7/2 ⁺			
1772.79	(7/2,9/2)+	1346.4^{\ddagger} <i>1</i> 1569.9^{\ddagger} <i>4</i> 1772.5^{\ddagger} <i>2</i>	$100^{\ddagger} 6$ $19^{\ddagger} 3$ $72^{\ddagger} 4$	426.42 203.40 0.0	5/2 ⁺ 7/2 ⁺ 5/2 ⁺			
1787.36		1066.2 2 1360.8 <i>1</i>	57 5 100 5	721.67 426.42	$5/2^+$ $5/2^+$			
1813.42		1465.9 <i>1</i>	100	347.51	$5/2^{+}$			
1821.50	19/2-	836.0 <i>1</i>	100	985.51	15/2-	E2	1.72×10 ⁻³	$\begin{aligned} \alpha(K) &= 0.001499\ 21;\ \alpha(L) &= 0.000183\ 3;\ \alpha(M) &= 3.52 \times 10^{-5}\ 5\\ \alpha(N) &= 6.24 \times 10^{-6}\ 9;\ \alpha(O) &= 3.48 \times 10^{-7}\ 5\\ B(E2)(W.u.) &= 76\ 18\\ E_{\gamma}:\ from\ ^{96}Zr(^{18}O,5n\gamma)\ (1994Ju05).\\ Mult.:\ A_2/A_0 &= +0.284\ 8,\ A_4/A_0 &= -0.079\ 8\ in\ ^{96}Zr(^{16}O,3n\gamma);\\ A_2/A_0 &= +0.284\ 8,\ A_4/A_0 &= -0.093\ 8\ in\ (\alpha\ 3n\gamma)\ T_{12}\ rules\ out\ M2. \end{aligned}$
1854.0	(13/2 ⁺)	788.0 5	49 5	1066.09	11/2+	(M1)	0.00228	$\alpha(K)=0.00199 \ 3; \ \alpha(L)=0.000235 \ 4; \ \alpha(M)=4.49\times10^{-5} \ 7 \\ \alpha(N)=8.03\times10^{-6} \ 12; \ \alpha(O)=4.75\times10^{-7} \ 7 \\ Mult.: R(angular)=0.38 \ 11 \ in \ {}^{96}Zr({}^{18}O.5n\gamma).$
		1031.8 5	100 9	822.04	9/2+	(E2)	1.06×10 ⁻³	$\alpha(K)=0.000927 \ 13; \ \alpha(L)=0.0001113 \ 16; \ \alpha(M)=2.13\times10^{-5} \ 3 \alpha(N)=3.79\times10^{-6} \ 6; \ \alpha(O)=2.16\times10^{-7} \ 3 Mult.; \ R(angular)=1.15 \ 13 \ in \ {}^{96}Zr({}^{18}O.5n\gamma).$
1861.42	$(7/2^+, 9/2^+)$	1861.4 <i>1</i>	100	0.0	$5/2^{+}$			E _v : from ¹⁰⁹ In ε decay (1988Vi03).
1869.23	(),- ,- ,	1442.8 <i>4</i> 1521.7 <i>2</i>	30 <i>4</i> 100 <i>4</i>	426.42 347.51	$5/2^+$ $5/2^+$			
1937.5		1511.0 <i>3</i> 1734.2 <i>5</i>	100 <i>11</i> 57 6	426.42 203.40	5/2+ 7/2+			
1944.03		1270.6 2 1740.7 5	100 <i>10</i> 52 6	673.41 203.40	3/2+ 7/2+			
1956.0		1752.6 6	100	203.40	$7/2^{+}$			
1989.0		1785.6 <i>3</i>	100	203.40	7/2+			
2033.78		1410.2 6 1607.3 2 2033.8 3	15 5 100 6 76 6	623.88 426.42 0.0	$7/2^+$ $5/2^+$ $5/2^+$			
2046.4		1698.9 <i>3</i>	100	347.51	$5/2^+$			
2064.67		959.0 ^c 5 999.0 ^c 5 1717.0 <i>I</i>	75 <i>10</i> 40 <i>15</i> 100 <i>5</i>	1105.83 1066.09 347.51	9/2 ⁺ 11/2 ⁺ 5/2 ⁺			

						Adopte	d Levels, Gan	mas (continued)
							γ (¹⁰⁹ Cd) (co	ntinued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [#]	α ^{&}	Comments
2064.67		1861.4 <i>1</i>	100 5	203.40	7/2+			
2111.65		1685.3 4	30 5	426.42	5/2+			
0141 41	15/0+	1764.1 2	100 5	347.51	$5/2^+$	50	0.71.10-4	(T) 0.000047.10 (T) 0.0001014.15 (D) 1.04 10 ⁻⁵ 2
2141.41	15/2+	1075.3 2	100	1066.09	11/2+	E2	9.71×10 ⁻⁴	$\alpha(\mathbf{K})=0.000847 \ 12; \ \alpha(\mathbf{L})=0.0001014 \ 15; \ \alpha(\mathbf{M})=1.94\times10^{-5} \ 3$ $\alpha(\mathbf{N})=3.45\times10^{-6} \ 5; \ \alpha(\mathbf{O})=1.98\times10^{-7} \ 3$
								E_{γ} : weighted average of 1075.7 5 from ¹⁰⁰ Mo(¹³ C,4n γ) (1994Ju05),
								1075.3 3 from ${}^{96}\text{Zr}({}^{18}\text{O},5n\gamma)$ (1994Re06) and 1075.1 4 from (α ,3n γ).
								Mult.: R(angular)=1.40 7, DCO(Q)=1.06 22 in 90 Zr(10 O,5n γ), A ₂ /A ₀ =+0.20 8, A ₄ /A ₀ =-0.04 12 in (p,n γ), A ₂ /A ₀ =+0.23 9,
								$A_4/A_0 = +0.30 \ 16 \ in \ (\alpha, 3n\gamma).$
2165.94	$(17/2^{-})$	740.8 <i>3</i>	10 1	1425.2	$(13/2^{-})$	(E2)	0.00232	$\alpha(K)=0.00201$ 3; $\alpha(L)=0.000249$ 4; $\alpha(M)=4.78\times10^{-5}$ 7
								$\alpha(N)=8.47\times10^{-6}$ 12; $\alpha(O)=4.65\times10^{-7}$ 7 B(E2)(W.u.)=15 9
								E_{γ} : weighted average of 740.7 3 from ${}^{96}Zr({}^{18}O,5n\gamma)$ and 740.9 4 from (α 3ny) A 740.3 α deexcites the 1563 level in (n ny)
								L_{c} : from 96 Zr(18 O.5ny). Others: 23.2 from 100 Mo(13 C.4ny). 25.8 from
								$(\alpha, 3n\gamma).$
								Mult.: DCO(Q)=0.86 19 in 96 Zr(18 O,5n γ).
		1180.2 3	100 2	985.51	$15/2^{-}$	M1(+E2)	9.28×10^{-4}	$\alpha(K)=0.000808$ 12; $\alpha(L)=9.44\times10^{-5}$ 14; $\alpha(M)=1.80\times10^{-5}$ 3
								$\alpha(N) = 3.23 \times 10^{-6} 5; \ \alpha(O) = 1.92 \times 10^{-7} 3; \ \alpha(IPF) = 4.13 \times 10^{-6} 7$
								E_{γ} : weighted average of 1180.4 2 from ${}^{50}Zr({}^{10}O, 5n\gamma)$, 1180.9 5 from
								$(\alpha, 3n\gamma)$. Not seen in (p,n γ).
								r_{γ} . Holli Zi((0,5)ry). Mult : R(angular)=2.0.2 DCO(O)=0.71.26 in $\frac{96}{7}r(180.5n\gamma)$
2166.48		1493.2 <i>3</i>	69 8	673.41	$3/2^{+}$			(100, 100, 100, 100, 100, 100, 100, 100,
		2166.4 2	100 8	0.0	5/2+			
2198.92		1995.5 <i>3</i>	31 3	203.40	7/2+			
2224.22		2198.9 2	100 7	0.0	$5/2^+$			
2234.22		2031.0.3	100 0 56 6	203.40	7/2 · 5/2+			
2271.3		1923.8 5	100	347.51	$5/2^+$			
2282.46		1855.7 4	86 14	426.42	5/2+			
		2079.3 5	47 13	203.40	7/2+			
2225.9		2282.6 4	100 14	0.0	$5/2^+$			
2323.8		2122.4 3 2325 7 ₫	8/15	203.40	1/2 · 5/2+			
2372.3		1698.9 3	100 55	673.41	$3/2^+$			
2391.85		2044.0 4	100 13	347.51	5/2+			
		2392.0 3	88 25	0.0	5/2+			
2589.8	19/2-	1604.5 5	100	985.51	15/2-	E2	5.50×10^{-4}	α (K)=0.000374 6; α (L)=4.37×10 ⁻⁵ 7; α (M)=8.35×10 ⁻⁶ 12 α (N)=1.490×10 ⁻⁶ 21; α (O)=8.75×10 ⁻⁸ 13; α (IPF)=0.0001219 18

 $^{109}_{48}$ Cd₆₁-13

γ (¹⁰⁹Cd) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α &	Comments
								B(E2)(W.u.)=2.1 11
								Mult.: R(angular)=1.41 11, DCO(Q)=1.12 18 in 96 Zr(18 O,5n γ), T _{1/2} rules out M2.
2687.1	$(17/2^+)$	1701.8 5	100	985.51	$15/2^{-}$	(E1)	5.79×10^{-4}	$\alpha(K)=0.0001677$ 24; $\alpha(L)=1.92\times10^{-5}$ 3; $\alpha(M)=3.65\times10^{-6}$ 6
								$\alpha(N)=6.52\times10^{-7}$ 10; $\alpha(O)=3.88\times10^{-8}$ 6; $\alpha(IPF)=0.000387$ 6
2700.5	$(10/2^{-})$	979 0 5	100.20	1921 50	10/2-	(E2)	1.52×10^{-3}	Mult.: R(angular)= $0.79 \ I0$, for $1/01.8\gamma + 1/02.8\gamma$ in 5° Zr(10 O,Sn γ).
2700.3	(19/2)	070.9 5	100 20	1621.30	19/2	(E2)	1.55×10	$\alpha(\mathbf{N}) = 0.001355 \ 19, \ \alpha(\mathbf{L}) = 0.0001025 \ 25, \ \alpha(\mathbf{M}) = 5.11\times10^{-5} \ 5$ $\alpha(\mathbf{N}) = 5.2\times10^{-6} \ 8. \ \alpha(\mathbf{O}) = 3.10\times10^{-7} \ 5$
								Mult.: R(angular)= $1.32 \ I3 \ in \ {}^{96}Zr({}^{18}O,5n\gamma).$
		1715.0 5	44 5	985.51	$15/2^{-}$	(E2)	5.45×10^{-4}	$\alpha(K)=0.000329 5; \alpha(L)=3.83\times10^{-5} 6; \alpha(M)=7.33\times10^{-6} 11$
								$\alpha(N)=1.308\times10^{-6}$ 19; $\alpha(O)=7.70\times10^{-8}$ 11; $\alpha(IPF)=0.0001690$ 24
20/2 20	22/2-	1040 7 1	100	1001 50	10/2-	52	1.04.10-3	Mult.: R(angular)=1.4 2 in 90 Zr(10 O,5n γ).
2862.20	23/2	1040.7 1	100	1821.50	19/2	E2	1.04×10 ⁻⁵	$\alpha(\mathbf{K}) = 0.000910 \ 13; \ \alpha(\mathbf{L}) = 0.0001091 \ 10; \ \alpha(\mathbf{M}) = 2.09 \times 10^{-5} \ 3$ $\alpha(\mathbf{N}) = 3.72 \times 10^{-6} \ 6; \ \alpha(\mathbf{O}) = 2.12 \times 10^{-7} \ 3$
								B(E2)(W.u.)>12
								Mult.: $A_2/A_0 = +0.295 \ 15, A_4/A_0 = -0.096 \ 18, \ pol = +0.44 \ 12 \ in$
								96 Zr(16 O,3n γ), A ₂ /A ₀ =+0.26 4, A ₄ /A ₀ =-0.09 5 in (α ,3n γ),
								R(angular)=1.36 3, DCO(Q)=0.96 5 in 90 Zr(10 O,5n γ), T _{1/2} rules out M2
2866.70	$(21/2^+)$	1045.2 <i>1</i>	100	1821.50	$19/2^{-}$	(E1)	4.47×10^{-4}	$\alpha(K)=0.000391\ 6;\ \alpha(L)=4.52\times10^{-5}\ 7;\ \alpha(M)=8.62\times10^{-6}\ 12$
	,					. ,		$\alpha(N)=1.537\times10^{-6}\ 22;\ \alpha(O)=9.03\times10^{-8}\ 13$
								$B(E1)(W.u.)=2.1\times10^{-7} 4$
								E_{γ} : from ¹⁰⁰ Mo(¹³ C,4n γ).
								Mult.: R(angular)=0.80 14 in $(2\pi)^{-1}$ ($(3\pi)^{-1}$) and $A_2/A_0 = -0.06 2$, $A_4/A_0 = -0.06$ in $(\alpha 3n\gamma)$.
2942.0	19/2+	776.0 5	28 4	2165.94	$(17/2^{-})$	(E1)	8.04×10^{-4}	$\alpha(K)=0.000703 \ 10; \ \alpha(L)=8.18\times10^{-5} \ 12; \ \alpha(M)=1.561\times10^{-5} \ 22$
								$\alpha(N)=2.78\times10^{-6}$ 4; $\alpha(O)=1.617\times10^{-7}$ 23
								$B(E1)(W.u.) > 3.4 \times 10^{-5}$
		<u> 200 5 5</u>	21.4	2141 41	15/2+	E2	0.00101	Mult.: R(angular)=0.83 8, DCO(Q)=0.47 11 in 90 Zr(10 O,5n γ).
		800.5 5	214	2141.41	13/2	E2	0.00191	$\alpha(\mathbf{K})=0.001005\ 24$; $\alpha(\mathbf{L})=0.000204\ 5$; $\alpha(\mathbf{M})=5.92\times10^{-6}\ 6$ $\alpha(\mathbf{N})=6\ 95\times10^{-6}\ 10$; $\alpha(\mathbf{O})=3\ 86\times10^{-7}\ 6$
								B(E2)(W.u.)>2.2
								Mult.: R(angular)=1.5 2, DCO(Q)=0.90 18 in 96 Zr(18 O,5n γ), T _{1/2} rules out M2.
		1120.8 5	100 2	1821.50	19/2-	(E1)	4.00×10^{-4}	$\alpha(K)=0.000344$ 5; $\alpha(L)=3.96\times10^{-5}$ 6; $\alpha(M)=7.56\times10^{-6}$ 11
								$\alpha(N)=1.348\times10^{-6}$ 19; $\alpha(O)=7.93\times10^{-8}$ 12; $\alpha(IPF)=7.24\times10^{-6}$ 14
								$B(E1)(W.u.)>4.0\times10^{-5}$ $B(angular)=1.37.9$ DCO(O)=0.78 12 in ${}^{96}7r/{}^{18}O(5mr)$
2974.0	$(21/2^{-})$	273.4 5	10.7 14	2700.5	$(19/2^{-})$	(M1)	0.0303	$\alpha(K) = 0.0263 4; \alpha(L) = 0.00321 5; \alpha(M) = 0.000616 10$
	~ / /				· · /	~ /		α (N)=0.0001099 17; α (O)=6.38×10 ⁻⁶ 10
								Mult.: R(angular)=0.63 13 in 96 Zr(18 O,5n γ).
1		807.8 5	32.1 18	2165.94	$(17/2^{-})$	(E2)	0.00187	$\alpha(K)=0.001627\ 23;\ \alpha(L)=0.000200\ 3;\ \alpha(M)=3.83\times10^{-5}\ 6$

14

Adopted Levels, Gammas (continued) γ (¹⁰⁹Cd) (continued) Mult.# $\alpha^{\&}$ E_{γ}^{\dagger} I_{γ}^{\dagger} E_i (level) \mathbf{E}_{f} J_f^{π} Comments $\alpha(N) = 6.80 \times 10^{-6} 10; \alpha(O) = 3.78 \times 10^{-7} 6$ B(E2)(W.u.)>1.6 Mult.: R(angular)=1.30 7 in 96 Zr(18 O,5n γ). Mult.: R(angular)=1.8 3 in 96 Zr(18 O,5n γ). 2974.0 $(21/2^{-})$ 1152.4 5 100 4 1821.50 19/2- 1.54×10^{-3} α (K)=0.001341 19; α (L)=0.0001633 23; α (M)=3.13×10⁻⁵ 5 3042.6 $(21/2^{-})$ 876.7.5 67 7 2165.94 (17/2⁻) (E2) $\alpha(N)=5.56\times10^{-6}$ 8; $\alpha(O)=3.12\times10^{-7}$ 5 B(E2)(W.u.)>4.0 Mult.: R(angular)=1.29 14 in 96 Zr(18 O,5n γ). 8.66×10^{-4} $\alpha(K)=0.000750 \ 11; \ \alpha(L)=8.76\times 10^{-5} \ 13; \ \alpha(M)=1.675\times 10^{-5} \ 24$ 100 7 1221.2 5 1821.50 19/2-(M1) $\alpha(N)=2.99\times10^{-6}$ 5; $\alpha(O)=1.78\times10^{-7}$ 3; $\alpha(IPF)=8.58\times10^{-6}$ 14 Mult.: R(angular)=1.33 11 in 96 Zr(18 O.5n γ). $\alpha(K)=0.01389\ 21;\ \alpha(L)=0.00193\ 3;\ \alpha(M)=0.000373\ 6$ 3058.78 $(21/2^+)$ 371.8 5 $2687.1 (17/2^+)$ (E2) 0.01626 1.3 3 $\alpha(N)=6.51\times10^{-5}$ 10: $\alpha(O)=3.09\times10^{-6}$ 5 B(E2)(W.u.)=4.E+1 3 Mult.: R(angular)=1.13 10 in 96 Zr(18 O,5n γ). $\alpha(K)=0.000288 4; \alpha(L)=3.31\times10^{-5} 5; \alpha(M)=6.31\times10^{-6} 9$ 3.84×10^{-4} 100 *I* 1237.2 *I* 1821.50 19/2-(E1) $\alpha(N)=1.126\times10^{-6}$ 16: $\alpha(O)=6.64\times10^{-8}$ 10: $\alpha(IPF)=5.61\times10^{-5}$ 8 B(E1)(W.u.)=0.00019 12 Mult.: $A_2/A_0 = -0.257 \ 15$, $A_4/A_0 = -0.005 \ 17$, pol = +0.4 3 in 96 Zr(16 O,3n γ), A₂/A₀=-0.29 2, A₄/A₀=+0.05 3 in (α ,3n γ), R(angular)=0.81 3, DCO(O)=0.53 3 in 96 Zr(18 O.5n γ). 3256.5 1435 *1* 100 1821.50 19/2- $\alpha(K)=0.00987\ 15;\ \alpha(L)=0.001338\ 20;\ \alpha(M)=0.000258\ 4$ 3282.4 $(21/2^+)$ 415.6 5 100 $2866.70 (21/2^+)$ 0.01152 $\alpha(N)=4.53\times10^{-5}$ 7; $\alpha(O)=2.21\times10^{-6}$ 4 Mult.: R(angular)=1.51 14 in 96 Zr(18 O.5n γ). $\alpha(K)=0.00638$ 9; $\alpha(L)=0.000764$ 11; $\alpha(M)=0.0001465$ 21 0.00732 3343.2 $(25/2^{-})$ 481.0 5 100 2862.20 23/2-(M1 + E2) $\alpha(N)=2.62\times10^{-5}$ 4: $\alpha(O)=1.534\times10^{-6}$ 22 E_{γ} : from ${}^{96}Zr({}^{16}O, 3n\gamma)$. Mult.: $A_2/A_0 = -0.25 4$, $A_4/A_0 = +0.12 5$, pol = -0.5 4 in ${}^{96}Zr({}^{16}O, 3n\gamma)$. $\alpha(K)=0.00604$ 9; $\alpha(L)=0.000723$ 11; $\alpha(M)=0.0001387$ 20 3354.0 $(21/2^{-})$ 491.8 5 100 25 2862.20 23/2-(M1) 0.00693 $\alpha(N)=2.48\times10^{-5}$ 4; $\alpha(O)=1.453\times10^{-6}$ 21 Mult.: R(angular)=0.76 5 in 96 Zr(18 O,5n γ). 1188.0 5 75 25 $2165.94 (17/2^{-})$

75 25 1821.50 19/2-1532.5 5 $\alpha(K)=0.001770\ 25;\ \alpha(L)=0.000218\ 3;\ \alpha(M)=4.18\times10^{-5}\ 6$ $23/2^{-}$ 780.2 5 74 3 0.00204 2589.8 19/2-E2 $\alpha(N)=7.42\times10^{-6}$ 11; $\alpha(O)=4.10\times10^{-7}$ 6 B(E2)(W.u.) > 7.7Mult.: R(angular)=1.47 7, DCO(O)=0.98 15 in 96 Zr(18 O.5n γ), T_{1/2} rules out M2. $\alpha(K)=0.000401~6; \alpha(L)=4.69\times10^{-5}~7; \alpha(M)=8.96\times10^{-6}~13$ 5.58×10^{-4} 1548.5 5 100 7 1821.50 19/2-E2 $\alpha(N)=1.598\times10^{-6}\ 23;\ \alpha(O)=9.37\times10^{-8}\ 14;\ \alpha(IPF)=9.97\times10^{-5}\ 14$

3369.9

						Adopted L	evels, Gam	mas (continu	ued)
						<u> </u>	(¹⁰⁹ Cd) (con	ntinued)	
E _i (level)	J^{π}_i	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ^{a}	α &	Comments
3382.9	23/2+	323.8 5	92.4 15	3058.78	(21/2 ⁺)	M1+E2	0.31 5	0.0201 4	B(E2)(W.u.)>0.34 Mult.: R(angular)=1.50 10, DCO(Q)=1.05 3 in 96 Zr(18 O,5nγ), T _{1/2} rules out M2. α (K)=0.0174 3; α (L)=0.00216 5; α (M)=0.000415 9 α (N)=7.37×10 ⁻⁵ 14; α (O)=4.18×10 ⁻⁶ 7 B(M1)(W.u.)=0.0221 19; B(E2)(W.u.)=17 6 Mult. δ: R(angular)=1.19 3, DCO(O)=0.89 5 in 96 Zr(18 O 5nγ).
		340.3 5	9 <i>3</i>	3042.6	(21/2 ⁻)	[E1]		0.00555	$\begin{array}{l} A_2/A_0 = +0.13 \ 3, \ A_4/A_0 = -0.08 \ 4 \ \text{from} \ (\alpha, 3n\gamma). \\ \alpha(\text{K}) = 0.00484 \ 7; \ \alpha(\text{L}) = 0.000575 \ 9; \ \alpha(\text{M}) = 0.0001098 \ 16 \\ \alpha(\text{N}) = 1.95 \times 10^{-5} \ 3; \ \alpha(\text{O}) = 1.086 \times 10^{-6} \ 16 \end{array}$
		441.0 5	100 2	2942.0	19/2+	E2		0.00963	B(E1)(W.u.)= 2.7×10^{-5} 10 α (K)= 0.00827 12; α (L)= 0.001108 16; α (M)= 0.000214 3 α (N)= 3.75×10^{-5} 6; α (O)= 1.86×10^{-6} 3 B(E2)(W.u.)= 44 4
3411.1	(23/2 ⁻)	436.7 5	100 <i>10</i>	2974.0	(21/2 ⁻)	(M1)		0.00927	Mult.: R(angular)=1.32 16, DCO(Q)=1.05 9 in 96 Zr(18 O,5n γ), T _{1/2} rules out M2. α (K)=0.00808 12; α (L)=0.000970 14; α (M)=0.000186 3 α (N)=3.32×10 ⁻⁵ 5; α (O)=1.95×10 ⁻⁶ 3 Mult : R(angular)=0.42, 5 in 96 Zr(18 O,5n γ).
		710.5 5	80 10	2700.5	(19/2 ⁻)	(E2)		0.00257	$\alpha(K)=0.00223 \ 4; \ \alpha(L)=0.000278 \ 4; \ \alpha(M)=5.34\times10^{-5} \ 8 \\ \alpha(N)=9.45\times10^{-6} \ 14; \ \alpha(O)=5.16\times10^{-7} \ 8 \\ Mult : R(angular)=1.20 \ 15 in \ {}^{96}Zr({}^{18}O \ 5n\gamma).$
3524.3	(21/2+)	1591.0 <i>5</i> 1702.8 <i>5</i>	60 <i>10</i> 100	1821.50 1821.50	19/2 ⁻ 19/2 ⁻				Mult.: R(angular)=0.79 <i>10</i> , for 1701.8 γ +1702.8 γ in
3524.41	(25/2+)	141.4 5	1.08 21	3382.9	23/2+	(M1)		0.176 3	$\alpha(K)=0.153 \ 3; \ \alpha(L)=0.0190 \ 4; \ \alpha(M)=0.00366 \ 7 \ \alpha(N)=0.000651 \ 12; \ \alpha(O)=3.73\times10^{-5} \ 7 \ B(M1)(W.u.)=0.0046 \ 11$
		465.6 <i>1</i>	100 2	3058.78	(21/2+)	E2		0.00819	Mult.: R(angular)=0.99 14 in 96 Zr(18 O,5n γ). α (K)=0.00705 10; α (L)=0.000935 13; α (M)=0.000180 3 α (N)=3.16×10 ⁻⁵ 5; α (O)=1.593×10 ⁻⁶ 23 B(E2)(W.u.)=46 5 Mult.: A ₂ /A ₀ =+0.303 16, A ₄ /A ₀ =-0.109 19, pol=+0.25 9 in 96 Zr(16 O,3n γ), A ₂ /A ₀ =+0.29 2, A ₄ /A ₀ =-0.13 2 in (α ,3n γ), R(angular)=1.33 5, DCO(Q)=1.04 3 in 96 Zr(18 O,5n γ), T _{1/2}
		662.8 5	47.7 15	2862.20	23/2-	(E1+M2)	0.01 6	0.00112 5	rules out M2. $\alpha(K)=0.00098 \ 4; \ \alpha(L)=0.000115 \ 5; \ \alpha(M)=2.19\times10^{-5} \ 10$
3549.0	(23/2 ⁻)	195.0 5	26 <i>3</i>	3354.0	(21/2 ⁻)	M1(+E2)	-0.05 5	0.0738 13	$\begin{array}{l} \alpha(N)=3.90\times10^{-5} \ 1/; \ \alpha(O)=2.25\times10^{-7} \ 10 \\ \alpha(K)=0.0641 \ 1/; \ \alpha(L)=0.00792 \ 16; \ \alpha(M)=0.00152 \ 3 \\ \alpha(N)=0.000271 \ 6; \ \alpha(O)=1.56\times10^{-5} \ 3 \end{array}$
		686.9 5	100 6	2862.20	23/2-	E2		0.00280	Mult., δ : R(angular)=0.84 7, DCO(Q)=0.50 9 in 96 Zr(18 O,5n γ). α (K)=0.00243 4; α (L)=0.000304 5; α (M)=5.84×10 ⁻⁵ 9

 $^{109}_{48}$ Cd₆₁-16

						Adopt	ed Levels,	Gammas (cor	ntinued)
							γ (¹⁰⁹ Co	l) (continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	J_f^{π}	Mult. [#]	δ^{a}	α &	Comments
									$\alpha(N)=1.034\times10^{-5}$ 15; $\alpha(O)=5.61\times10^{-7}$ 8 B(E2)(W.u.)>44 Mult.: R(angular)=1.54 8, DCO(Q)=1.28 14 in $\frac{9^{67}\pi}{4^{18}O}$ 5m)
3570.1	(23/2 ⁺)	287.5 5	14 3	3282.4	(21/2 ⁺)	(M1)		0.0266	$\alpha(K)=0.0231 4; \alpha(L)=0.00281 5; \alpha(M)=0.000540 8$ $\alpha(N)=9.64\times10^{-5} 15; \alpha(O)=5.60\times10^{-6} 9$ Mult : R(angular)=0.76 14 in ${}^{96}Tr({}^{18}O 5n\chi)$
		703.4 5	100 6	2866.70	(21/2 ⁺)	(M1)		0.00296	$\alpha(K)=0.00258 \ 4; \ \alpha(L)=0.000306 \ 5; \ \alpha(M)=5.86\times10^{-5} \ 9 \\ \alpha(N)=1.047\times10^{-5} \ 15; \ \alpha(O)=6.19\times10^{-7} \ 9 \\ Mult : \ P(angular)=1.0.2 \ in \ {}^{96}Tr({}^{18}O \ 5nx)$
3615.6	(23/2 ⁻)	1793.8 5	100	1821.50	19/2-	(E2)		5.50×10 ⁻⁴	$\alpha(K) = 0.00303 \ 5; \ \alpha(L) = 3.52 \times 10^{-5} \ 5; \ \alpha(M) = 6.72 \times 10^{-6} \ 10$ $\alpha(N) = 1.199 \times 10^{-6} \ 17; \ \alpha(O) = 7.08 \times 10^{-8} \ 10;$ $\alpha(IPF) = 0.000205 \ 3$
3620.6	(23/2 ⁺)	561.6 5	100 14	3058.78	(21/2 ⁺)	(M1)		0.00503	Mult.: R(angular)=1.8 4 in ${}^{50}Zr({}^{10}O, 5n\gamma)$. $\alpha(K)=0.00439$ 7; $\alpha(L)=0.000524$ 8; $\alpha(M)=0.0001003$ 15 $\alpha(N)=1.79\times10^{-5}$ 3; $\alpha(O)=1.054\times10^{-6}$ 15 Mult : R(angular)=0.98 8 in ${}^{96}Zr({}^{18}O, 5n\gamma)$
		678.7 5	36 7	2942.0	19/2+				Watt. K(anguna)=0.900 m Zh(0,517).
		758.6 5	36 14	2862.20	23/2-	(E1)		8.42×10^{-4}	$\alpha(K)=0.000737 \ 11; \ \alpha(L)=8.58\times10^{-5} \ 12; \ \alpha(M)=1.637\times10^{-5} \ 23 \ \alpha(M)=2.02\times10^{-6} \ 5; \ \alpha(O)=1.604\times10^{-7} \ 24$
									Mult.: $R(angular)=1.32$ in ${}^{96}Zr({}^{18}O,5n\gamma)$.
3837.1	$(25/2^+)$	267 1	45	3570.1	$(23/2^+)$				
3897.6	(25/2)	487.05 923.45	<45 100 <i>18</i>	3411.1 2974.0	(23/2) $(21/2^{-})$	(E2)		1.37×10^{-3}	$\alpha(K)=0.001189 \ 17; \ \alpha(L)=0.0001441 \ 21; \ \alpha(M)=2.76\times10^{-5} \ 4$ $\alpha(N)=4.91\times10^{-6} \ 7; \ \alpha(O)=2.77\times10^{-7} \ 4$
		1035.0.5	36.18	2862.20	23/2-				Mult.: R(angular)=1.6 2 in 90 Zr(10 O,5n γ).
3910.3	(25/2+)	386.0 5	33 7	3524.3	$(21/2^+)$	(E2)		0.01446	α (K)=0.01237 <i>18</i> ; α (L)=0.001703 <i>25</i> ; α (M)=0.000329 <i>5</i> α (N)=5.75×10 ⁻⁵ <i>9</i> ; α (O)=2.76×10 ⁻⁶ <i>4</i> B(E2)(W.u.)>21
		527.3 5	100 <i>13</i>	3382.9	23/2+	(M1)		0.00586	Mult.: R(angular)=1.1 2 in ${}^{96}\text{Zr}({}^{18}\text{O},5n\gamma)$. $\alpha(\text{K})=0.00511 \ 8; \ \alpha(\text{L})=0.000610 \ 9; \ \alpha(\text{M})=0.0001169 \ 17$ $\alpha(\text{N})=2.09\times10^{-5} \ 3; \ \alpha(\text{O})=1.227\times10^{-6} \ 18$
		851.4 5	100 20	3058.78	(21/2+)	(E2)		1.65×10 ⁻³	Mult.: R(angular)=0.59 2 in 50 Zr(10 O,Sn γ). α (K)=0.001436 21; α (L)=0.0001754 25; α (M)=3.36×10 ⁻⁵ 5 α (N)=5.97×10 ⁻⁶ 9; α (O)=3.34×10 ⁻⁷ 5 B(E2)(W.u.)>1.2 Mult.: R(angular)=1.41 10 in 96 Zr(18 O,Sn γ).
3939.8	27/2+	1048.4 <i>5</i> 415.0 <i>5</i>	27 7 56 2	2862.20 3524.41	23/2 ⁻ (25/2 ⁺)	M1+E2	0.29 5	0.01059 16	α (K)=0.00922 <i>14</i> ; α (L)=0.001121 <i>18</i> ; α (M)=0.000215 <i>4</i> α (N)=3.83×10 ⁻⁵ <i>6</i> ; α (O)=2.21×10 ⁻⁶ <i>4</i>

						Adopte	d Levels,	Gammas (con	tinued)
							$\gamma(^{109}\text{Cd})$	(continued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [#]	δ^{a}	α &	Comments
3939.8	27/2+	556.8 <i>1</i>	100 3	3382.9	23/2+	E2		0.00491	B(M1)(W.u.)=0.027 4; B(E2)(W.u.)=11 4 Mult.: $A_2/A_0=+0.04$ 3, $A_4/A_0=-0.02$ 5 from (α ,3n γ), R(angular)=1.30 6, DCO(Q)=0.87 5 in ⁹⁶ Zr(¹⁸ O,5n γ). α (K)=0.00424 6; α (L)=0.000546 8; α (M)=0.0001051 15 α (N)=1.85×10 ⁻⁵ 3; α (O)=9.70×10 ⁻⁷ 14 B(E2)(W.u.)=57 7 Mult: $A_2/A_0=+0.35$ 3, $A_4/A_0=-0.19$ 4 from (α 3n γ)
4021.3	(27/2 ⁻)	1159.0 <i>5</i>	100	2862.20	23/2-	(E2)		8.30×10 ⁻⁴	R(angular)=1.50 7, DCO(Q)=1.01 6 in ${}^{96}\text{Zr}({}^{18}\text{O},5n\gamma)$, T _{1/2} rules out M2. $\alpha(\text{K})=0.000721 \ 11$; $\alpha(\text{L})=8.58\times10^{-5} \ 12$; $\alpha(\text{M})=1.643\times10^{-5} \ 23$ $\alpha(\text{N})=2.92\times10^{-6} \ 5$; $\alpha(\text{O})=1.684\times10^{-7} \ 24$; $\alpha(\text{IPF})=3.00\times10^{-6} \ 6$
4030.6	(25/2 ⁻)	414.8 5	10 <i>3</i>	3615.6	(23/2 ⁻)	(M1)		0.01052	Mult.: $A_2/A_0 = +0.265$, $A_4/A_0 = -0.106$, pol=+1.39 from ${}^{96}\text{Zr}({}^{16}\text{O},3n\gamma)$, $A_2/A_0 = +0.185$, $A_4/A_0 = -0.047$ from $(\alpha,3n\gamma)$, R(angular)=1.445, DCO(Q)= 0.9610 from ${}^{96}\text{Zr}({}^{18}\text{O},5n\gamma)$. $\alpha(\text{K})=0.0091714$; $\alpha(\text{L})=0.00110416$; $\alpha(\text{M})=0.0002123$ $\alpha(\text{N})=3.78 \times 10^{-5}6$; $\alpha(\text{O})=2.21 \times 10^{-6}4$ Mult.: $B(\alpha,\alpha,\beta) = 0.00129672({}^{18}\text{O},5n\gamma)$.
		481.7 5	100 5	3549.0	(23/2 ⁻)	M1(+E2)	0.04 6	0.00729	with: R(angular)=0.90 12 * 21(*0,317). $\alpha(K)=0.00635 \ 9; \alpha(L)=0.000761 \ 11; \alpha(M)=0.0001460 \ 21$ $\alpha(N)=2.61\times10^{-5} \ 4; \alpha(O)=1.529\times10^{-6} \ 22$ Mult.,δ: M\$R(angular)=0.80 3, DCO(Q)=0.63 5 from $^{96}Zr(^{18}O,5n\gamma).$
4088.6	(25/2-)	1168.5 5 1046.0 5	13.3	2862.20 3042.6	23/2 (21/2 ⁻)	(E2)		1.03×10 ⁻³	α (K)=0.000900 <i>13</i> ; α (L)=0.0001079 <i>16</i> ; α (M)=2.07×10 ⁻⁵ <i>3</i> α (N)=3.67×10 ⁻⁶ <i>6</i> ; α (O)=2.10×10 ⁻⁷ <i>3</i> Mult.: R(angular)=1.39 <i>9</i> in ⁹⁶ Zr(¹⁸ O,5n γ).
4154.2 4232.3	(27/2 ⁺)	1292.0 5 611.8 5	100 32 7	2862.20 3620.6	23/2 ⁻ (23/2 ⁺)	(E2)		0.00380	$\alpha(K)=0.00329 \ 5; \ \alpha(L)=0.000417 \ 6; \ \alpha(M)=8.03\times10^{-5} \ 12 \ \alpha(N)=1.418\times10^{-5} \ 21; \ \alpha(O)=7.55\times10^{-7} \ 11 \ Mult: R(angular)=1.4.2 \ in \ {}^{96}Zr({}^{18}O \ 5n\gamma)$
		708.0 5	100 11	3524.41	(25/2+)	(M1)		0.00292	$\alpha(K)=0.00255 \ 4; \ \alpha(L)=0.000301 \ 5; \ \alpha(M)=5.77\times10^{-5} \ 9 \\ \alpha(N)=1.031\times10^{-5} \ 15; \ \alpha(O)=6.09\times10^{-7} \ 9 \\ Mult.: \ R(angular)=0.53 \ 6 \ in \ {}^{96}Zr({}^{18}O,5n\gamma).$
4246.2	(29/2+)	849.5 <i>5</i> 721.8 <i>5</i>	18 7 100	3382.9 3524.41	23/2 ⁺ (25/2 ⁺)	E2		0.00247	$\begin{aligned} &\alpha(\text{K}) = 0.00214 \ 3; \ \alpha(\text{L}) = 0.000267 \ 4; \ \alpha(\text{M}) = 5.12 \times 10^{-5} \ 8 \\ &\alpha(\text{N}) = 9.07 \times 10^{-6} \ 13; \ \alpha(\text{O}) = 4.96 \times 10^{-7} \ 7 \\ &\text{B(E2)(W.u.)} > 24 \\ &\text{Mult.: } \ A_2/A_0 = +0.255 \ 20, \ A_4/A_0 = -0.111 \ 26, \ \text{pol} = +29 \ 15 \ \text{from} \\ &9^6\text{Zr}(^{16}\text{O},3n\gamma), \ A_2/A_0 = +0.37 \ 3, \ A_4/A_0 = -0.16 \ 5 \ \text{from} \\ &(\alpha,3n\gamma), \ \text{R(angular)} = 1.37 \ 5, \ \text{DCO}(\text{Q}) = 1.06 \ 7 \ \text{in} \\ &9^6\text{Zr}(^{18}\text{O},5n\gamma), \ T_{1/2} \ \text{limit rules out M2.} \end{aligned}$

$\gamma(^{109}\text{Cd})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [#]	δ ^{<i>a</i>}	α ^{&}	Comments
4293.2	(25/2+)	723.0 <i>5</i> 1426.6 <i>5</i>	40 <i>13</i> 100 <i>9</i>	3570.1 2866.70	(23/2 ⁺) (21/2 ⁺)	(E2)		5.96×10 ⁻⁴	$\alpha(K)=0.000471$ 7; $\alpha(L)=5.53\times10^{-5}$ 8; $\alpha(M)=1.057\times10^{-5}$
4296.0	(27/2 ⁻)	926.4 5	100	3369.9	23/2-	(E2)		1.36×10 ⁻³	$\alpha(N)=1.89\times10^{-6} 3; \alpha(O)=1.101\times10^{-7} 16;$ $\alpha(IPF)=5.71\times10^{-5} 9$ Mult.: R(angular)=1.39 14 in 96 Zr(18 O,5n γ). $\alpha(K)=0.001180 17; \alpha(L)=0.0001430 21; \alpha(M)=2.74\times10^{-5} 4$ $\alpha(N)=4.87\times10^{-6} 7; \alpha(O)=2.75\times10^{-7} 4$ Mult.: R(angular)=1.7 2, DCO(O)=1.15 16 in
4414-1	$(27/2^{+})$	577 1	100	3837 1	$(25/2^+)$				96 Zr(18 O,5n γ).
4431.9	$(27/2^+)$ $(27/2^+)$	811.3 5	100	3620.6	$(23/2^{+})$ $(23/2^{+})$	(E2)		0.00185	$\alpha(K)=0.001610\ 23;\ \alpha(L)=0.000198\ 3;\ \alpha(M)=3.79\times10^{-5}\ 6$
								2	Mult.: $R(angular)=1.7 2 in {}^{96}Zr({}^{18}O,5n\gamma).$
4458.7	(27/2 ⁻)	1048.1 5	100 50	3411.1	(23/2 ⁻)	(E2)		1.03×10^{-3}	$\alpha(K)=0.000896 \ I3; \ \alpha(L)=0.0001074 \ I5; \ \alpha(M)=2.06\times10^{-5} \ 3 \ \alpha(N)=3.66\times10^{-6} \ 6; \ \alpha(O)=2.09\times10^{-7} \ 3$
		1596.0 5	50 25	2862.20	23/2-				Mult.: R(angular)=1.7 3 in 96 Zr(18 O,5n γ).
4591.2	(27/2 ⁻)	1729.0 5	100	2862.20	23/2-	(E2)		5.46×10 ⁻⁴	α (K)=0.000324 5; α (L)=3.77×10 ⁻⁵ 6; α (M)=7.21×10 ⁻⁶ 11 α (N)=1.287×10 ⁻⁶ 18; α (O)=7.58×10 ⁻⁸ 11; α (IPF)=0.0001753 25
4630.6	(27/2-)	542.1 5	11 3	4088.6	(25/2 ⁻)	(M1)		0.00548	Mult.: R(angular)=1.5 4 in 96 Zr(18 O,5n γ). α (K)=0.00478 7; α (L)=0.000570 8; α (M)=0.0001093 16 α (N)=1.95×10 ⁻⁵ 3; α (O)=1.148×10 ⁻⁶ 17 B(M1)(W,u,)>0.0030
		(00.0.5	100 5	4020 6	$(25/2^{-})$			0.00420	Mult.: R(angular)=0.76 9 in ${}^{96}Zr({}^{18}O,5n\gamma)$.
		600.0 5	100 3	4030.0	(23/2)	(M11)		0.00430	$\alpha(\mathbf{K})=0.00575 \text{ b}; \alpha(\mathbf{L})=0.000446 \text{ /}; \alpha(\mathbf{M})=8.55\times10^{-5} 12 \text{ a}(\mathbf{N})=1.528\times10^{-5} 22; \alpha(\mathbf{O})=9.00\times10^{-7} 13 \text{ b}$
		609.0 <i>5</i>	7.1 8	4021.3	(27/2 ⁻)	(E2)		0.00385	B(M1)(W.u.)>0.020 α (K)=0.00333 5; α (L)=0.000423 6; α (M)=8.13×10 ⁻⁵ 12 α (N)=1.436×10 ⁻⁵ 21; α (O)=7.64×10 ⁻⁷ 11 B(E2)(W.u.)>3.1
4697 7	$(29/2^{+})$	787 4 5	100	3910-3	$(25/2^{+})$	(F2)		0 00199	Mult.: R(angular)=1.30 <i>12</i> in 96 Zr(18 O,5n γ). α (K)=0.001731 25: α (L)=0.000213 3: α (M)=4.09×10 ⁻⁵ 6
+071.1	(2)[2])	707.4 5	100	5710.5	(23/2)	(L2)		0.00177	$\alpha(R) = 0.00713125, \alpha(E) = 0.002135, \alpha(R) = 0.00716 = 0.00716$
4724.5	31/2+	478.0 5	9.8 18	4246.2	(29/2+)	M1(+E2)	0.19 22	0.00743	Mult.: R(angular)=1.6 2 in 90 Zr(10 O,5n γ). α (K)=0.00648 10; α (L)=0.000779 15; α (M)=0.000149 3 α (N)=2.66×10 ⁻⁵ 5: α (O)=1.555×10 ⁻⁶ 24
									Mult.: R(angular)=1.7 3, DCO(Q)=0.77 20 in 96 Zr(18 O,5n γ).
		785.1 5	100 2	3939.8	$27/2^+$	E2		0.00201	$\alpha(K)=0.001743\ 25;\ \alpha(L)=0.000215\ 3;\ \alpha(M)=4.12\times10^{-5}\ 6$

19

 $^{109}_{48}$ Cd₆₁-19

					Adopt	ted Levels, Ga	mmas (continued)
						$\gamma(^{109}\text{Cd})$ (c	continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f = J_f^{\pi}$	f Mult. [#]	α &	Comments
							$\alpha(N)=7.30\times10^{-6}$ 11; $\alpha(O)=4.04\times10^{-7}$ 6
							B(E2)(W.u.)>18 Mult.: R(angular)=1.48 6, DCO(Q)=1.07 6 in 96 Zr(18 O,5n γ), T _{1/2} limit
1875 2	$(27/2^{-})$	844 5 5	100	1030 6 (25/	2-)		rules out M2.
4950.9	$(27/2^+)$ $(27/2^+)$	658 <i>I</i> 1381 <i>I</i>	100	4030.0 (23) 4293.2 (25) 3570.1 (23)	2 ⁺) 2 ⁺)		
5050.7	(31/2 ⁻)	754.7 5	23.2 12	4296.0 (27/2	2 ⁻) E2	0.00221	$\alpha(K)=0.00192$ 3; $\alpha(L)=0.000237$ 4; $\alpha(M)=4.56\times10^{-5}$ 7 $\alpha(N)=8.08\times10^{-6}$ 12: $\alpha(Q)=4.45\times10^{-7}$ 7
							Mult.: R(angular)=1.40 7, DCO(Q)=1.16 17 in 96 Zr(18 O,5n γ), T _{1/2} rules out M2.
		804.3 5		4246.2 (29/2	2+)		
		1029.6 5	100 3	4021.3 (27/2	2 ⁻) E2	1.07×10^{-3}	$\alpha(K)=0.000931 \ I3; \ \alpha(L)=0.0001118 \ I6; \ \alpha(M)=2.14\times10^{-5} \ 3$
							Mult.: R(angular)=1.54 6, DCO(Q)=1.04 16 in 96 Zr(18 O,5n γ), T _{1/2} rules out M2.
5063.7	$(27/2^{-})$	768.0 5	100	4296.0 (27/2	2-)		
5082.6	$(31/2^+)$	836.8 5	34 <i>14</i> 100 <i>14</i>	4246.2 (29/2	(E^{+}) (E2)	1.65×10^{-3}	$\alpha(\mathbf{K}) = 0.001438 21; \alpha(\mathbf{L}) = 0.0001757 25; \alpha(\mathbf{M}) = 3.37 \times 10^{-5} 5$
		050.0 5	100 14	4252.5 (21)	2) (L2)	1.05×10	$\alpha(N)=5.98 \times 10^{-6} \ 9; \ \alpha(O)=3.34 \times 10^{-7} \ 5$
							Mult.: R(angular)=1.26 <i>12</i> in 96 Zr(18 O,5n γ).
5100 7	(20/2-)	1142.0 5	<10	3939.8 27/2	+ (E2)	7 46 10-4	$(X) = 0.000(42, 0)$ $(X) = 7.(1, 10^{-5}, 1)$ $(X) = 1.45(10^{-5}, 2)$
5122.7	(29/2)	1225.1 5	100	3897.6 (23/2	2) (E2)	7.46×10	$\alpha(K)=0.000642$ 9; $\alpha(L)=7.01\times10^{-5}$ 17; $\alpha(M)=1.456\times10^{-5}$ 21 $\alpha(N)=2.59\times10^{-6}$ 4; $\alpha(O)=1.499\times10^{-7}$ 21; $\alpha(IPF)=1.060\times10^{-5}$ 17 Mult : R(angular)=1.37 14 in 96 Tr({}^{18}O 5nx)
5227.6		1612.0 5	100	3615.6 (23/2	2-)		$Mutt.: R(angular) = 1.5774 \text{ m} \Sigma I(-0,517).$
5254.6	$(29/2^{-})$	624 <i>1</i>		4630.6 (27/2	2-)	2	
5261.1	(33/2+)	1014.8 5	100	4246.2 (29/2	2 ⁺) (E2)	1.10×10^{-3}	$\alpha(K) = 0.000962 \ 14; \ \alpha(L) = 0.0001156 \ 17; \ \alpha(M) = 2.21 \times 10^{-5} \ 4$ $\alpha(N) = 3.94 \times 10^{-6} \ 6; \ \alpha(O) = 2.24 \times 10^{-7} \ 4$
5279.7	$(29/2^{-})$	216.4.5	11.3	5063.7 (27/2	2 ⁻) (M1)	0.0558	Mult.: R(angular)=1.40 13, DCO(Q)=0.94 8 in 90 Zr(10 O,5n γ). α (K)=0.0485 8: α (L)=0.00596 10: α (M)=0.001145 18
02////	(_>/_)	210110		200011 (21)	_) (111)	010000	$\alpha(N) = 0.000204 4; \alpha(O) = 1.179 \times 10^{-5} 18$
		404.4.5	11.2	1075 0 (07)		0.01101	Mult.: R(angular)= $0.84 \ 4 \ in \ {}^{96}Zr({}^{18}O,5n\gamma).$
		404.4 5	11 2	4875.2 (27)	2) (M1)	0.01121	$\alpha(K)=0.00976\ 14;\ \alpha(L)=0.001176\ 17;\ \alpha(M)=0.000226\ 4$ $\alpha(N)=4.03\times10^{-5}\ 6;\ \alpha(O)=2.35\times10^{-6}\ 4$
							Mult.: R(angular)= $0.85 \ 11 \ \text{in}^{96} \text{Zr}(^{18}\text{O},5n\gamma).$
		649.0 5	100 8	4630.6 (27/2	2 ⁻) (M1)	0.00357	$\alpha(K)=0.003125; \alpha(L)=0.0003706; \alpha(M)=7.09\times10^{-5}10$
							$\alpha(N) = 1.267 \times 10^{-5} \ 18; \ \alpha(O) = 7.47 \times 10^{-7} \ 11$ Mult : P (appular) = 0.87.5 PCO(D) = 1.00.21 in $\frac{96}{7}$ = (180.5m)
		1191.2.5	5.6 14	4088.6 (25/2	2 ⁻) (E2)	7.86×10^{-4}	$\alpha(K)=0.000681 \ 10; \ \alpha(L)=8.09\times10^{-5} \ 12; \ \alpha(M)=1.547\times10^{-5} \ 22$
			210 11		, (22)		α (N)=2.76×10 ⁻⁶ 4; α (O)=1.590×10 ⁻⁷ 23; α (IPF)=6.06×10 ⁻⁶ 11 Mult.: R(angular)=1.4 2 in ⁹⁶ Zr(¹⁸ O,5n γ).

$^{109}_{48}\mathrm{Cd}_{61}\text{--}20$

 $^{109}_{48}$ Cd₆₁-20

From ENSDF

Adopted Levels, Gammas (continued) $\gamma(^{109}\text{Cd})$ (continued) α**&** E_{γ}^{\dagger} Mult.# I_{γ}^{\dagger} \mathbf{E}_{f} J_f^{π} δ^{a} Comments $\alpha(K)=0.000617 9; \alpha(L)=7.30\times10^{-5} 11; \alpha(M)=1.397\times10^{-5} 20$ 4030.6 (25/2⁻) 7.21×10^{-4} 1249.0 5 173 (E2) $\alpha(N)=2.49\times10^{-6}$ 4; $\alpha(O)=1.441\times10^{-7}$ 21; $\alpha(IPF)=1.440\times10^{-5}$ 22 Mult.: R(angular)=1.6 2 in 96 Zr(18 O,5n γ). (29/2⁻) 1199 1 4088.6 (25/2-) $\alpha(K)=0.000505\ 7;\ \alpha(L)=5.94\times10^{-5}\ 9;\ \alpha(M)=1.136\times10^{-5}\ 16$ 6.20×10^{-4} 1378.0 5 100 4021.3 (27/2⁻) (E2) $\alpha(N)=2.02\times10^{-6}$ 3; $\alpha(O)=1.179\times10^{-7}$ 17; $\alpha(IPF)=4.28\times10^{-5}$ 7 Mult.: R(angular)=0.77 3, DCO(Q)=0.80 6 in 96 Zr(18 O,5n γ). 153 *I* 5287.6 (29/2) $\alpha(K)=0.111$ 4; $\alpha(L)=0.0145$ 8; $\alpha(M)=0.00279$ 16 161.6 5 100 5279.7 (29/2⁻) M1+E20.22 6 0.129 5 $\alpha(N)=0.00049 \ 3; \ \alpha(O)=2.67\times 10^{-5} \ 7$ Mult.: R(angular)=0.77 3, DCO(Q)=0.80 6 in ⁹⁶Zr(¹⁸O,5ny). Mult.: R(angular)=1.0 2 in 96 Zr(18 O,5n γ). 1327.0 5 100 4296.0 (27/2-)

4950.9	$(27/2^+)$			
4697.7	$(29/2^+)$	(E2)	1.21×10^{-3}	$\alpha(K)=0.001054 \ 15; \ \alpha(L)=0.0001271 \ 18; \ \alpha(M)=2.44\times10^{-5} \ 4$
				$\alpha(N) = 4.33 \times 10^{-6} 6; \alpha(O) = 2.45 \times 10^{-7} 4$ Mult : R(angular) = 1 39 9 in 96 Tr(18 O 5ny)
5441.3	(31/2 ⁻)	(M1)	0.0260	$\alpha(K)=0.0226 4; \alpha(L)=0.00275 4; \alpha(M)=0.000529 8$
				$\alpha(N) = 9.43 \times 10^{-5} \ 14; \ \alpha(O) = 5.48 \times 10^{-6} \ 8$
4724.5	$31/2^{+}$	(E2)	1.02×10^{-3}	Mult.: R(angular)=0.81 5, DCO(D)=0.97 17 in $^{-2}$ Zr($^{-0}$ O,Sn γ). α (K)=0.000891 13; α (L)=0.0001068 15; α (M)=2.05×10 ⁻⁵ 3
		()		$\alpha(N)=3.64\times10^{-6} 6; \alpha(O)=2.08\times10^{-7} 3$
				Mult.: R(angular)=1.27 10, DCO(Q)=1.08 13 in 96 Zr(18 O,5n γ).
4591.2	$(27/2^{-})$			
4591.2	$(27/2^{-})$			

1.28×10^{-3}	$\alpha(K) = 0.001107.17$, $\alpha(L) = 0.0001451.21$, $\alpha(M) = 2.78 \times 10^{-5}.4$
1.36X10	$\alpha(\mathbf{K}) = 0.001197 17; \alpha(\mathbf{L}) = 0.0001431 21; \alpha(\mathbf{M}) = 2.78 \times 10^{-4} 4$
	$\alpha(N) = 4.94 \times 10^{-6} 7; \alpha(O) = 2.79 \times 10^{-7} 4$
	Mult.: R(angular)=1.43 8, DCO(Q)=0.98 16 in ⁹⁶ Zr(¹⁸ O,5n\gamma),
	$T_{1/2}$ rules out M2.

9.78×10^{-4}	α (K)=0.000853 <i>12</i> ; α (L)=0.0001021 <i>15</i> ; α (M)=1.95×10 ⁻⁵ <i>3</i>
	$\alpha(N)=3.48\times10^{-6} 5; \alpha(O)=1.99\times10^{-7} 3$
	Mult.: R(angular)=1.5 2 in 96 Zr(18 O,5n γ).
0.00945	α (K)=0.00823 <i>12</i> ; α (L)=0.000990 <i>15</i> ; α (M)=0.000190 <i>3</i>
	$\alpha(N)=3.39\times10^{-5} 5; \alpha(O)=1.98\times10^{-6} 3$
	Mult.: R(angular)=0.81 5, DCO(Q)= 0.59 8 in 96 Zr(18 O,5n γ).

 $^{109}_{48}$ Cd₆₁-21

21

 E_i (level)

5279.7

5287.6

5399.3

5441.3

5623.0

5650.5

5671.7

5731.2

5775.1

5788.0

5862.0

5954.8

5971.4

5995.8

6004.2

6154.6

6164.5

 J_i^{π}

 $(29/2^{-})$

 $(31/2^{-})$

 $(31/2^{-})$

 $(29/2^+)$

 $(33/2^+)$

 $(33/2^{-})$

 $(35/2^+)$

 $(31/2^{-})$

 $(31/2^{-})$

 $(35/2^{-})$

 $(31/2^+)$

 $(31/2^+)$

 $(35/2^+)$

 $(35/2^{-})$

700 *1*

974.0 5

289.9 5

1050.6 5

1196 *1*

1271.0 5

223.6 5

920.7 5

1271 *I*

2056 1

191 *1*

354 1

1280 *I* 1590 *1*

2064 1

1072.0 5

433.3 5

100

100

100

100

100

100

100

100

100

5731.2 (33/2-)

4724.5 31/2+ 3939.8 27/2+

5813.2 (29/2+)

5650.5 (29/2+) 4724.5 31/2+

 $4414.1 (27/2^+)$

 $5082.6 (31/2^+)$

5731.2 (33/2-)

(E2)

(M1)

3939.8 27/2+

5050.7 (31/2⁻) E2

$\gamma(^{109}\text{Cd})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α &	Comments
6240.8	(35/2-)	379.0 5		5862.0 ((31/2 ⁻)	(E2)	0.01531	α (K)=0.01309 <i>19</i> ; α (L)=0.00181 <i>3</i> ; α (M)=0.000349 <i>6</i> α (N)=6.11×10 ⁻⁵ <i>9</i> ; α (O)=2.91×10 ⁻⁶ <i>5</i> Mult.: R(angular)=0.84 <i>5</i> in ⁹⁶ Zr(¹⁸ O,5n\gamma).
6305.2	(33/2+)	452 <i>1</i> 301.1 <i>5</i>	100	5788.0 (6004.2 ((31/2 ⁻) (31/2 ⁺)	(M1)	0.0236	$\alpha(K)=0.0205 \ 3; \ \alpha(L)=0.00250 \ 4; \ \alpha(M)=0.000479 \ 7 \ \alpha(N)=8.55\times10^{-5} \ 13; \ \alpha(O)=4.97\times10^{-6} \ 8 \ Mult.: R(angular)=0.78 \ 5 \ in \ {}^{96}Zr({}^{18}O,5n\gamma).$
		309 1		5995.8 ($(31/2^+)$			
6518.4	(37/2 ⁺)	1257.3 5	100	5261.1 ((33/2+)	(E2)	7.12×10 ⁻⁴	$\alpha(K)=0.000608 \ 9; \ \alpha(L)=7.20\times10^{-5} \ 10; \ \alpha(M)=1.377\times10^{-5} \ 20 \ \alpha(N)=2.45\times10^{-6} \ 4; \ \alpha(O)=1.421\times10^{-7} \ 20; \ \alpha(IPF)=1.581\times10^{-5} \ 24 \ Mult.; \ R(angular)=1.41 \ 12, \ DCO(O)=0.99 \ 10 \ in \ {}^{96}Zr({}^{18}O.5n\gamma).$
6572.7		1522.0 5	100	5050.7 ($(31/2^{-})$			
6670.8	$(37/2^{-})$	430 1	100	6240.8 ((35/2-)			
6684.2	$(35/2^+)$	379 1	100	6305.2 ($(33/2^+)$			5
6796.0	$(37/2^{-})$	631.5 5	100	6164.5 ((35/2 ⁻)	(M1)	0.00381	$\alpha(K) = 0.003335; \alpha(L) = 0.0003956; \alpha(M) = 7.57 \times 10^{-5}11$
								$\alpha(N)=1.352\times10^{-5}$ 19; $\alpha(O)=7.9/\times10^{-5}$ 12
6861.8	$(37/2^{+})$	1100.0.5	100	56717 ((22/2+)			Mult.: $R(angular)=0.88 \ 0, \ DCO(D)=1.09 \ 21 \ in \ \sqrt{2}r(\sqrt{0}, 5n\gamma).$
7010.4	$(37/2^{-})$ $(39/2^{-})$	1039.0.5	100	5971.4 ($(35/2^{-})$	(E2)	1.05×10^{-3}	$\alpha(K) = 0.000913 \ 13^{\circ} \ \alpha(L) = 0.0001095 \ 16^{\circ} \ \alpha(M) = 2.10 \times 10^{-5} \ 3$
/010.1	(3)/2)	105910 5	100	5771.1	(55/2)	(112)	1.05/(10	$\alpha(N) = 3.73 \times 10^{-6} 6; \alpha(\Omega) = 2.13 \times 10^{-7} 3$
								Mult.: R(angular)=1.36 3 for $1039\gamma+1040.7\gamma$, DCO(Q)= 0.87 20 in 96 Zr(18 O,5n γ).
7077.2	(39/2+)	1302.0 5	100	5775.1 ((35/2+)	(E2)	6.72×10 ⁻⁴	$\alpha(K)=0.000566 \ 8; \ \alpha(L)=6.69\times10^{-5} \ 10; \ \alpha(M)=1.279\times10^{-5} \ 18 \ \alpha(N)=2.28\times10^{-6} \ 4; \ \alpha(O)=1.323\times10^{-7} \ 19; \ \alpha(IPF)=2.42\times10^{-5} \ 4 \ Mult : \ R(angular)=1.40 \ 13 \ DCO(O)=1.05 \ 17 \ in \ {}^{96}Tr({}^{18}O \ 5nz)$
7147.2	$(37/2^+)$	463.0 5	100	6684.2 ((35/2+)	(M1)	0.00803	$\alpha(K) = 0.00700 \ 10; \ \alpha(L) = 0.000839 \ 12; \ \alpha(M) = 0.0001609 \ 23 \ \alpha(N) = 2.87 \times 10^{-5} \ 4; \ \alpha(O) = 1.684 \times 10^{-6} \ 24$
								$Mult : R(angular) = 1.1.2 in \frac{96}{7}r(^{18}O 5ny)$
7384.6	$(39/2^+)$	1230.0 5	100	6154.6 ($(35/2^+)$	(E2)		$\operatorname{Hum}_{\operatorname{Hum}}(\operatorname{Hum}_{\operatorname{Hum}}) \operatorname{Hum}_{\operatorname{Hum}}(\operatorname{Hum}_{\operatorname{Hum}}).$
7555.0	$(39/2^{-})$	759.0 5	100	6796.0 ((37/2-)	(M1)	0.00248	$\alpha(K)=0.00217 \ 3; \ \alpha(L)=0.000256 \ 4; \ \alpha(M)=4.90\times 10^{-5} \ 7$
								$\alpha(N)=8.76\times10^{-6}$ 13; $\alpha(O)=5.18\times10^{-7}$ 8
								Mult.: R(angular)= $0.9 \ 2 \ in \ {}^{96}Zr({}^{18}O,5n\gamma).$
7562.0	$(39/2^{-})$	766 1	100	6796.0 ($(37/2^{-})$	a m	0.00550	
7687.8	$(39/2^+)$	540.6 5	100	/14/.2 ($(37/2^+)$	(M1)	0.00552	$\alpha(K)=0.00481$ 7; $\alpha(L)=0.000574$ 9; $\alpha(M)=0.0001100$ 16
								$\alpha(N) = 1.9 / \times 10^{-5} 3; \alpha(O) = 1.156 \times 10^{-6} 1 / Multa D(an analysis) = 0.07 / 11 in \frac{967}{10} - \frac{180}{10} 5 multa$
7008.8	$(41/2^{+})$	1300 / 5	100	6518 / ((37/2+)	(F2)	6.13×10^{-4}	Mult.: $R(aligurar)=0.97.17 \text{ m}^{-5} 21(-0,50)$, $\alpha(K)=0.000/496.7; \alpha(L)=5.83\times10^{-5}.9; \alpha(M)=1.115\times10^{-5}.16$
7900.0	(+1/2)	1570.4 5	100	0510.4 (5112)	(L2)	0.15×10	$\alpha(N) = 1.99 \times 10^{-6} 3$; $\alpha(\Omega) = 1.158 \times 10^{-7} 17$; $\alpha(IPF) = 4.63 \times 10^{-5} 7$
								Mult.: R(angular)=1.29 11, DCO(O)= $0.85 20$ in 96 Zr(18 O.5nv).
7951.0	$(41/2^{-})$	396 1	100	7555.0 ($(39/2^{-})$			
8202.0	(43/2 ⁻)	1191.6 5	100	7010.4 ((39/2-)	(E2)	7.86×10^{-4}	α (K)=0.000680 <i>10</i> ; α (L)=8.08×10 ⁻⁵ <i>12</i> ; α (M)=1.546×10 ⁻⁵ <i>22</i>

22

 $^{109}_{48}$ Cd₆₁-22

							Adopte	d Levels, Gan	amas (continued)
								$\gamma(^{109}\text{Cd})$ (co	ntinued)
]	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α ^{&}	Comments
	8264.8 8598.6	(41/2 ⁺) (43/2 ⁺)	577 <i>1</i> 1521.4 <i>5</i>	100 100	7687.8 7077.2	(39/2 ⁺) (39/2 ⁺)	(E2)	5.64×10 ⁻⁴	$\alpha(N)=2.75\times10^{-6} 4; \ \alpha(O)=1.588\times10^{-7} 23; \ \alpha(IPF)=6.10\times10^{-6} 11$ Mult.: R(angular)=1.5 2, DCO(Q)= 1.11 24 in ⁹⁶ Zr(¹⁸ O,5n\gamma). $\alpha(K)=0.000415 6; \ \alpha(L)=4.86\times10^{-5} 7; \ \alpha(M)=9.28\times10^{-6} 13$
	8870.8	(43/2 ⁺)	606 1	100	8264.8	(41/2 ⁺)			$\alpha(N)=1.656\times10^{-6}24; \ \alpha(O)=9.70\times10^{-6}14; \ \alpha(IPF)=8.95\times10^{-5}13$ Mult.: R(angular)=1.5 2, DCO(Q)= 0.91 18 in ${}^{96}\text{Zr}({}^{18}\text{O},5n\gamma)$.
	9377.7 9502.8	$(45/2^+)$ $(45/2^+)$	1468.9 5 632 <i>1</i>	100 100	7908.8 8870.8	$(41/2^+)$ $(43/2^+)$			
	9569.0	(47/2 ⁻)	1367.0 5	100	8202.0	(43/2 ⁻)	E2	6.27×10 ⁻⁴	$\alpha(K)=0.000513 \ 8; \ \alpha(L)=6.04\times10^{-5} \ 9; \ \alpha(M)=1.155\times10^{-5} \ 17$ $\alpha(N)=2.06\times10^{-6} \ 3; \ \alpha(O)=1.199\times10^{-7} \ 17; \ \alpha(IPF)=3.97\times10^{-5} \ 6$ B(E2)(W.u.)=30.9 8
									Mult.: R(angular)=1.40 <i>14</i> , DCO(Q)= 0.86 <i>17</i> in 96 Zr(18 O,5n γ), T _{1/2} rules out M2.
1	0165.8 0898	$(47/2^+)$ $(49/2^+)$	663 <i>1</i> 732 <i>1</i>	100 100	9502.8 10165.8	$(45/2^+)$ $(47/2^+)$			
1	1132.1	$(51/2^{-})$	1563.0 5	100	9569.0	$(47/2^{-})$			
	295.0+x	(39/2)	295 1	100	Х	(37/2)			
	634.0+x	(41/2)	339 1	100	295.0+x	(39/2)			
	1054.0+x	(43/2)	420 1	100	634.0+x	(41/2)			
	1542.0+x	(45/2)	488 1	100	1054.0+x	(43/2)			
	2100.0+x	(47/2)	558 <i>1</i>	100	1542.0+x	(45/2)			
	2727.0+x	(49/2)	627 <i>1</i>	100	2100.0+x	(47/2)			

[†] From (p,n γ) up to E=2392 level and from ⁹⁶Zr(¹⁸O,5n γ) after that, unless otherwise noted.

[‡] From ¹⁰⁹In ε decay.

23

[#] Based on R(angular) and DCO ratios in 96 Zr(18 O,5n γ), ce data in 109 In ε decay, and $\gamma(\theta)$ in (p,n γ), (α ,3n γ) and 96 Zr(16 O,3n γ). For Δ I=0 dipole and Δ I=2 quadrupole transitions R(angular) \approx 1.3-1.5, for stretched dipole transitions R(angular) \approx 0.80. Expected DCO values are: 0.56 for Δ J=1, dipole and 1.0 for Δ J=2, with gate on Δ J=2 quadrupole; 1.0 for Δ J=1, dipole, with gate on Δ J=1 dipole.

[@] 1988Vi03 placed this transition from the 930 level, but confirmed by 1992Si05.

& Additional information 3.

^{*a*} If No value given it was assumed δ =0.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^b Multiply placed with undivided intensity.

^c Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

¹⁰⁹₄₈Cd₆₁

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{109}_{48}\text{Cd}_{61}$

Level Scheme (continued)

 $^{109}_{48}\text{Cd}_{61}$

Level Scheme (continued)

Legend

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $^{109}_{48}\text{Cd}_{61}$

Level Scheme (continued) Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $^{109}_{48}\text{Cd}_{61}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

¹⁰⁹₄₈Cd₆₁

 $^{109}_{\ 48}\mathrm{Cd}_{61}$

 $^{109}_{48}\text{Cd}_{61}$