¹⁰⁹Cd IT decay (10.6 μs)

	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	S. Kumar(a), J. Chen(b) and F. G. Kondev	NDS 137, 1 (2016)	31-May-2016	

Parent: ¹⁰⁹Cd: E=462.7 4; $J^{\pi}=11/2^{-}$; $T_{1/2}=10.6 \ \mu s$ 4; %IT decay=100.0

1969Be37: (p,n γ) E=8.8 MeV. Measured E γ , I γ , I(ce), γ (t) with Ge(Li) and Si(Li) detectors. Deduced cc-ratio, T_{1/2} using a microwave pulsing method.

1966Mc06: (p,n γ) E=17.5 MeV. Measured E γ , I γ , γ (t) with Li-Ge detectors. Deduced T_{1/2}.

1964Br27: (γ ,n γ). Measured E γ , I γ , γ (t) with NaI(Tl) detectors. Deduced T_{1/2}.

1968Iv02: (p,n γ) E=9-11 MeV. Measured E γ , γ (t). Deduced T_{1/2}.

109Cd Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0 203.20 20	$\frac{5/2^+}{7/2^+}$	461.9 d 4	T _{1/2} : from Adopted Levels.
462.7 4	11/2-	10.6 µs 4	T _{1/2} : weighted average of 10.4 μs 6 (1964Br27), 10.4 μs 10 (1966Mc06), 10.8 μs 16 (1968Iv02), 10.8 μs 7 in 1975Me22.

[†] From a least-squares fit to γ -ray energies.

[‡] From Adopted Levels.

 $\gamma(^{109}{\rm Cd})$

E _γ ‡	Ι _γ #&	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	α^{\dagger}	Comments
203.2 2	93.81 9	203.20	7/2+	0.0	5/2+	M1	0.0660 10	$\alpha(K)=0.0573 \ 9; \ \alpha(L)=0.00706 \ 10; \ \alpha(M)=0.001356 \ 20$
259.5 <i>3</i>	85.61 <i>18</i>	462.7	11/2-	203.20	7/2+	M2	0.1681 25	α (N)=0.000242 4; α (O)=1.394×10 ⁻⁵ 20 α (K)=0.1429 21; α (L)=0.0204 3; α (M)=0.00398 6 α (N)=0.000707 11; α (O)=3.85×10 ⁻⁵ 6

[†] Additional information 1.

[‡] From 1969Be37.

[#] From $I(\gamma+ce)(203\gamma)=I(\gamma+ce)(259 \gamma)=100$ and calculated conversion coefficients by the BrICC program based on adopted multipolarities. Uncertainties are from $\Delta \alpha$ (th) by BrICC.

^(a) From Adopted Gammas. Arguments from this data are: $\alpha(K)\exp(259.5\gamma)/\alpha(K)\exp(203.2\gamma)=2.06\ 23\ (1969Be37)$, and $I\gamma(259.g\gamma)/I\gamma(203.2\gamma)=0.9\ (1966Mc06$ and 1964Br27).

[&] Absolute intensity per 100 decays.

$\frac{109}{100}$ Cd IT decay (10.6 μ s)

