109 Cd ε decay

		Туре	History Author	Citation	Literature Cutoff Date		
	Full	Evaluation	S. Kumar(a), J. Chen(b) and F. G. Kondev	NDS 137, 1 (2016)	31-May-2016		
Parent: ¹⁰⁹ Cd: E=0.0; J ^{π} =5/2 ⁺ ; T _{1/2} =461.9 d 4; Q(ε)=215.5 18; % ε decay=100.0							
			¹⁰⁹ Ag Levels				
E(level)	J^{π}	T _{1/2}		Comments			
0.0 88.0341 <i>11</i>	1/2 ⁻ 7/2 ⁺	stable 39.79 s 21	$T_{1/2}$: from Adopted Levels of ¹⁰⁹ Ag.				

ε radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	Comments
(127.5 18)	88.0341	100	5.987 15	εK=0.8131 10; εL=0.1484 8; εM+=0.03845 23

[†] Absolute intensity per 100 decays.

$\gamma(^{109}\text{Ag})$

There have been many precise measurements of the decay of ¹⁰⁹Cd to the 88.032 level of ¹⁰⁹Ag. Tabulated below are the measured values for $E\gamma$, $I\gamma(88\gamma)$, α_T , K x ray/ $\gamma(88)$, $\varepsilon L/\varepsilon K$, $\varepsilon L+/\varepsilon K$ and $\varepsilon M+/\varepsilon L$.

Other Ey measurements: 1947Br05, 1950Co60, 1954Mo38, 1954Wa15, 1966En05, and 1968Ea01. Other ce measurement: 1947Br05.

Eγ	Reference				
88 008	42	 1966Fr12			
88.035	6	1967DiZZ			
88.05	5	1967Li10			
88.033	42	1967Pi05			
88.041	87	1967Sc22			
88.09	3	1968Fo03			
88.21	3	1968Fu05			
88.036	8	1969HeZY			
88.036	8	1970Gr13			
88.035	6	197 0 Ra37			
88.023	8	1976Dr07			
88.0341	11	1978He21			
88.035	4	1978Mo22			
88.0336	10	2000He14			

Ιγ(88γ)	<i>α</i> _T		Reference
3.57 31 3.89 7 3.97 22 3.29 23 3.65 5 3.79 7 3.65 4 3.62 2 3.65 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a	1953Br73 1965Le03 1965Se08 1968Fo03 1973Le29 1976Dr07 1979P104 UVVVR & IER &

	3.59 11 3.70 6 3.60 2 3.57 10 3.65 8 3.675 10 3.66 5 3.68 4 3.663 3 	8 3 intra-lab r _K =12.7	26.9 26.0 26.78 27.0 26.4 26.2 26.3 26.2 26.3 26.2 26.3 0 compa: 9 ar	9 5 8 6 1 15 4 5 0 25 risor	 ns in ′(L+M+	IMM & KSRI & LMRI & NPL & OMH & 1988Ba 1989Ha 1992Sa 2006Ka 1994Ra -N)=0.76	& & i01 & cZZ & c27 37 5 2		
	Кхга	$ay/\gamma(88)$							
	23.8 7 26.2 6 29.0 10 22.2 6 29.1 10 30 4 25.6 9 27.0 3 27.3 6 27.3 3	195 196 196 196 196 196 197 197 197	57Wa05 55Le06 56En05 56Ja01 56Fr12 58Fo03 72Ca16 76Dr07 79P104 32HoZF						
	εL/εK	£L+/ғ	э К	<i>е</i> М+	/ <i>ɛ</i> L	Re	eference		
	0.28 3 0.32 4 0.195 5 0.232 1 0.193 3	0.24 4 0.2 5 0.26 4 0.2	4 228 3 4 226 3	0.2	0.17 205 20 0.17	199 199 199 199 199 190 4	53De26 54Be41 57Wa05 1965 1965Mo0 66Du01 1970	Le06 6 Go39	
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}^{π}	Ef	J_c^{π}	Mult.	α^{\ddagger}	$I_{(\gamma + c_{\ell})}^{\dagger}$	Comments
- <u>y</u> 88.0336 <i>10</i>	3.644 16	88.0341	- <u>1</u> 7/2+	<u>-</u> , 0.0	<u>-</u> <u>1</u> /2 ⁻	E3	26.3 4	100	$ce(K)/(\gamma+ce)=0.418 7; ce(L)/(\gamma+ce)=0.441 7; ce(M)/(\gamma+ce)=0.0903 17 ce(N)/(\gamma+ce)=0.0141 3; ce(O)/(\gamma+ce)=5.11\times10^{-5} 10 \alpha(K)=11.41 16; \alpha(L)=12.06 17; \alpha(M)=2.47 4; \alpha(N)=0.386 6; \alpha(O)=0.001398 20 E_{\gamma}: from relative wavelength measurement in 2000He14. Other values are given in the table above. I\gamma: From I(\gamma+ce)=100 and \alpha=26.3 4. Other values are given in the table above.Mult.: from ce data listed in the table above.Mult.: from ce data listed in the table above.Others: L1:L2:L3=0.148 7:0.86 2:1 (1980Da23); \alpha(K)exp=11.4 3 (1979Pl04); L1:L2:L3=0.159 13:0.860 20:1 and K/L/M/N=0.98 5:1:0.20 1:0.050 5 (1978Sh08); \alpha(K)exp=11.4 3, \alpha(L1)exp=0.63 13, \alpha(L2)exp=5.48 18, \alpha(L3)exp=6.11 20, \alpha(M)exp=2.40 8 (1976Dr07); L1:L2=0.994 12, L1:L3=1.020 14 and L2:L3=0.99 2 (1975Ma32);$

$^{109}{\rm Cd}\ \varepsilon$ decay (continued)

$\gamma(^{109}\text{Ag})$ (continued)

Eγ	E _i (level)	Comments						
	L1:L2:L3=0.132 8:0.830 20:1 (1972Br02); α(K)exp=10.6 5 (1970Ba37); K/(L+M+N)=0.76 2 (1969P							
		α (K)exp=12.7 9, and K/(L+M)=0.76 2 (1968Fo03); α (K)exp=11.3 4 K/(L+M)=0.866 27 (1965Se08);						
		α (K)exp=11.0 3, α (L)exp=11.7 8 and (α (M)exp + α (N)exp)=2.0 11 (1965Le06); K/L=0.95 3 (1964Bo12);						
		α (K)exp=10.3 5 (1957Wa05); α (K)exp=9.5 1 and K/(L+M+N)=0.80 4 (1954Wa15); α (K)exp=8.6 1						
		(1953Av25); α (K)exp=12.4 <i>10</i> and K/(L+M+N)=0.85 <i>2</i> (1953Br73).						
		Double K-shell vacancy per K-shell internal conversion: 2.8×10 ⁻⁵ 7 (1977Va05), 1.02×10 ⁻⁵ 36 (1977Va05) and						
		1.53×10^{-4} 24 (1975Na01).						

Double photon decay: $I(\gamma \gamma)/I(\gamma) < 6 \times 10^{-7}$ (1988II01).

[†] Absolute intensity per 100 decays.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

109Cd ε decay

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

