					History					
		Туре	Aut	hor			Citation	Literature Cutoff Date		
	Full I	Evaluation S	S. Kumar(a), J. Chen	(b) and	F. G. Kondev	NDS	137, 1 (2016)	31-May-2016		
$Q(\beta^{-}) = -215.5$ Additional information	18; S(n) rmation	=9184.5 <i>27</i> ; S 1.	δ(p)=6484.5 <i>14</i> ; Q(α)=-329	4.2 28 2012	Wa38				
					¹⁰⁹ Ag Levels					
			(Cross Re	eference (XREF) Flag	5			
		A B C D	¹⁰⁹ Pd $β^-$ decay ¹⁰⁹ Cd ε decay ⁹⁶ Zr(¹⁸ O,p4nγ) ¹⁰⁰ Mo(¹³ C,p3nγ)	E F G) H	107 Ag(t,p) 108 Pd(3 He,d) 109 Ag(γ,γ) 109 Ag(p,p')	I J K L	$^{109} Ag(\alpha, \alpha')$ $^{110} Cd(d, {}^{3} He)$ $^{112} Cd(p, \alpha)$ Coulomb exce	itation		
E(level) [†]	J ^{πa}	T _{1/2}	XREF				Comment	S		
0.0	$1/2^{-}$	stable	ABCDEFGHI JKL	$\mu = -0.$	1306906 2 (197	4Sa25)			
88.0337 <i>10</i>	7/2+	39.79 s 21	ABCD G KL	J^{π} : from $L(^{3})$ μ : by config %IT= μ =+4. J^{π} : 88 $T_{1/2}$: 2 (1 (190) μ : by Q: by	by atomic beam He,d)=L(d, ³ He): means of the NI uration: $\pi(p_{1/2})^-$ 100 400 6 (1985Ed0 .0336 γ E3 to 1/2 weighted averag 947Br05), 40 s 57Ab07) and 38 means of the NI means of the Le	(1937 =L(p,c MR m -1.)1); Q= 2 ⁻ ; atc ge of 4 1 (195 .0 s 12 MR m evel M	Ja01,1950Cr26) y)=1, L(t,p)=0 a ethod. Other: -(=(+)1.02 <i>12</i> (190 pmic beam (196) 0 s 2 (1940Al01 i1W015), 39.80 2 (2000Y007). C ethod. fixing Resonance	 ; π=+ from nd μ. 0.13056 2 (1954So05). 86Be01) 55t18).), 40.4 s 2 (1945Wi11), 39.2 s s 10 (1967Mi11), 39.3 s 3 tther: 35 s 5 (1973Co10). e on Oriented Nuclei method. 		
132.762 ^c 8	9/2+	2.60 ns 12	A CD F JKL	J^{π} : L($5/2^{+}$	$\pi(g_{9/2})$ ³ He,d)=(d, ³ He)=	 =L(p,a	x)=4; 44.77γ M1	+E2 to $7/2^+$; 602.5 γ E2 from		
311.378 6	3/2-	5.9 ps <i>4</i>	A EF HI JKL	$\begin{array}{c} T_{1/2}: i \\ B(E2) \\ \mu = +1, \\ J^{\pi}: L(i \\ from \\ B(E2) \\ and \\ T_{1/2}: \\ Cou \\ \delta(3) \\ (19) \\ Q: -0 \\ of t \\ \mu; from \\ $	from $\gamma\gamma(t)$ in ¹⁰ $\uparrow=0.228$ <i>12</i> 10 9 ³ He,d)=(d, ³ He)= n 5/2 ⁻ . \uparrow : weighted averag lomb Excitation 11.3 γ)=0.192 7 ⁷ 70MiZS) and 6.3 .54 <i>10</i> , -0.64 <i>10</i> he matrix eleme m g=+0.73 6.	⁹ Pd $β^-$ =L(p,a) rage of Mc02) ge of 5 in (1974 in Cou 3 ps 18 0, -0.8 nts (19	⁻ decay (1972Jat y)=1; 311.36γ M f 0.222 <i>19</i> (1970 0 in Coulomb Ex 9 ps 7, using R Mi02) and 5.9 p lomb Excitation 8 (1970Ro14). 31 <i>10</i> or -0.91 <i>μ</i> 972Th16).	D1). I1+E2 to $1/2^-$; 103.9 γ M1+E2 DRo14), 0.210 <i>18</i> (1973Co10) actiation. ecoil Distance Method in ps 5 from BE2=0.228 12 and a. Others: 6.9 ps 7 by RDM <i>10</i> , depending on the relative sign		
415.193 8	5/2-	33.4 ps <i>13</i>	A EFGHI KL	g-fact (198 24 (B(E2)) μ =+0. J ^{π} : L(B(E2)) (197 T _{1/2} :	a (main the formation for	3; 415. rage o 0.377 ge of 3	17 γ E2 to 1/2 ⁻ . f 0.320 26 (1970) 26 (1958Mc02) 2.6 ps 16 (1989)	DRo14) and 0.315 24). Lo08) and 34.7 ps 21		

Continued on next page (footnotes at end of table)

¹⁰⁹Ag Levels (continued)

E(level) [†]	Jπa	T _{1/2}	XREF	Comments
				(1974Mi02), using the RDM method. Others: 35 ps 4 (1970MiZS,RDM), 40 ps 3 (1970Ro14), 40.2 ps 23 from B(E2)=0.317 18 and $\delta(103.5\gamma)$ =-0.039 17. μ : from g=+0.34 3. g-factor (transition field method): +0.34 3, weighted average of 0.36 6 (1984Ba72), +0.36 5 (1984Wo08) and 0.29 6 (1986Ba14). Q: -0.16, -0.26, -0.33, or -0.43, depending on the relative sign of the matrix elements (1972Th16).
420 [‡] 10	$(7/2^+, 9/2^+)$		J	J^{π} : L=(d, ³ He)=(4).
697.38? <i>14</i>	3/2-	0.27 m 7	A G	XREF: G(680). B(E2)(1-0.00087.10.(1070Po14))
тот.отт <i>э</i>	5/2	0.27 ps 7	A E II JKL	J^{π} : L(d, ³ He)=L(p, α)=1;701.85 γ M1+E2 to 1/2 ⁻ . T _{1/2} : weighted average of 0.24 ps 7 (1974Er05) and 0.5 ps 2 (1970Ro14), using the DSAM method.
706 [#] 5	$1/2^+$		F	J^{π} : L(³ He,d)=0.
724.381 6	(3/2,5/2) 3/2 ⁺	3.2 ns 8	A A	J^{π} : 707.059 to 1/2; probable feeding in 100 Pd β^{-} decay. J^{π} : 413.02 γ E1+M2 to 3/2 ⁻ , 636.29 γ E2 to 7/2 ⁺ . $\gamma\gamma(\theta)$ for 413.02 γ in ¹⁰⁹ Pd β^{-} decay (1977Bo04) is also consistent with J=3/2.
735.320 7	5/2+		A F J	$T_{1/2}$: from delayed coincidence in ¹⁰⁹ Pd β^- decay (1982Br19). J ^{π} : L(³ He,d)=L(d, ³ He)=2, 423.99 γ E1+M2 to 3/2 ⁻ , 647.27 γ M1 to 7/2 ⁺
773.42 ^c 12	$11/2^{+}$		CD	J^{π} : 640.6 γ M1+E2 to 9/2 ⁺ .
789? [@] 11			К	
811.74? <i>19</i> 862.633 <i>9</i>	5/2-	1.39 ps <i>19</i>	A A E GH JKL	B(E2)↑=0.0173 17 (1970Ro14)
				XREF: G(855)J(870)K(868). J^{π} : L(t,p)=2; L(p, α)=3; 862.82 γ E2 to 1/2 ⁻ ; 551.4 $\gamma(\theta)$ and 862.82 $\gamma(\theta)$ in Coulomb excitation (1970Ro14) are only consistent with J=5/2. T _{1/2} : weighted average of 1.42 ps 21 from BE2=0.0173 17 (1970Ro14) and 1.3 ps 4 from DSAM (1970Ro14). Other: 1.3 ps
869.426 6	5/2+		A F I	$^{+6-4}$ (19/4E103,DSAM). XREF: F(866). J^{π} : $L/^{3}$ He.d)=2: 736.64 γ E2 to 9/2 ⁺ . 558.1 γ E1+M2 to 3/2 ⁻ .
890 [‡] 10	$(7/2^+, 9/2^+)$		J	J^{π} : L(d, ³ He)=(4).
910.902 11	7/2+		A Fh	J^{π} : L(³ He,d)=L(t,p)=4; 778.24 γ M1 to 9/2 ⁺ ; possible feeding in ¹⁰⁹ Pd β^- decay ($J^{\pi}=5/2^+$).
912.205 25	7/2-		A E h L	B(E2) \uparrow <0.018 J ^{π} : L(t,p)=4; $\gamma(\theta)$ in Coulomb excitation (1989Lo08) is consistent with J=7/2, 601.1 γ to 3/2 ⁻ .
929 [@] 8 930.75 ^c 10	(9/2 ⁺) 13/2 ⁺		K CD	J ^{π} : proposed by 1977SmZM in (p, α) based on DWBA analysis. J ^{π} : 798.0 γ E2 to 9/2 ⁺ and band structure in ⁹⁶ Zr(¹⁸ O,p4n γ)and ¹⁰⁰ Mo(¹³ C,p3n γ).
1070 [@] 1090.7 5	9/2-	1.9 ps <i>3</i>	IK EHL	B(E2) \uparrow <0.006 J ^{π} : L(p,p')=4; $\gamma(\theta)$ in Coulomb excitation is consistent with J=9/2 (1989L008); 675.5 γ E2 to 5/2 ⁻ .
1099.11 4	(5/2,7/2 ⁻)		A	$J_{1/2}^{\pi}$: room KDW in Coulomb excitation (1989L008). J^{π} : 966.19 γ to 9/2 ⁺ ; 787.6 γ to 3/2 ⁻ ; possible feeding in ¹⁰⁹ Pd β^{-} decay (J^{π} =5/2 ⁺).
1200 [‡] <i>10</i>	(7/2+,9/2+)		FG JK	XREF: K(1230). J^{π} : L(d. ³ He)=(4).
1260 ^{&} 2	1/2-		EF HI	XREF: F(1255)I(1280).

Continued on next page (footnotes at end of table)

¹⁰⁹Ag Levels (continued)

E(level) [†]	Jπa	T _{1/2}	XREF	Comments
1310 [‡] 10 1324 2 7	1/2 ⁻ ,3/2 ⁻	0.31 ps 9	Е Н КІ Е Ј	J^{π} : L(t,p)=L(p,p')=0 from 1/2 ⁻ . J^{π} : L(d, ³ He)=1. XREF: K(1331)
1324.2 /	5/2	0.31 p3 2		J^{π} : L(t,p)=2; 1012.9 $\gamma(\theta)$ in Coulomb excitation is consistent with J=3/2 or, with smaller probability, J=5/2 (1970Ro14). 1970Ro14 suggest J=3/2 based on spin of analogous level in ¹⁰⁷ Ag. T _{1/2} : from DSAM in Coulomb excitation (1970Ro14).
1430 [#] 10	1/2+		F	J^{π} : L(³ He,d)=0.
1490 [#]	3/2+,5/2+		Fg	E(level): unresolved multiplet; 1480 10 from (γ, γ') . J ^{π} : L(³ He,d)=2.
1500 & 5	3/2-		E gHIJk	XREF: $H(1510)J(1510)$. J^{π} : $L=(t,p)=2$, $L(d,^{3}He)=1$.
1524 & 5	$(3/2, 5/2)^{-}$		E k	J^{π} : L(t,p)=2.
1599 ^{&} 5			EF	
1613 ^{&} 5	$1/2^{-}$		ΕH	XREF: H(1610). J^{π} : L(t,p)=0.
1658 [#] 10	$1/2^{+}$		F	J^{π} : L(³ He,d)=0.
1675? 10			G	E(level): proposed only from (γ, γ) .
1702.9 3	$15/2^{+}$		CD	
1736 ^{&} 5	(3/2,5/2)-		EF	XREF: $F(1750)$. J^{π} : $L(t,p)=2$.
1792 5	$(7/2, 9/2)^{-}$		E	J^{π} : L(t,p)=4.
1815 ^{&} 5	$(3/2, 5/2)^{-}$		E	J^{π} : L(t,p)=2.
1839 ^{&} 5	(5/2) ⁻		E K	XREF: K(1844). E(level): from (t,p), J=5/2 ⁻ ,7/2 ⁻ based on DWBA analysis in (p,α) (1977SmZM). J ^{π} : L(t,p)=2.
1841 [#] 10	3/2+,5/2+		F	J^{π} : L(³ He,d)=2.
1860 [‡] <i>10</i>	$(7/2^+, 9/2^+)$		J	J^{π} : L(d, ³ He)=(4).
1891 ^{&} 5	(7/2,9/2)-		E K	XREF: K(1887). J^{π} : L(t,p)=4.
1894.28 ^c 14	$17/2^{+}$	0.57 ^b ps 5	CD	
1950 ^{&} 5	(7/2,9/2) ⁻		E K	XREF: K(1940). E(level): Possible multiplet in (p,α) (1977SmZM). J^{π} : L(t,p)=4. J=(9/2 ⁺) based on DWBA analysis in (p,α) is inconsistent.
1970 [#] 10	3/2+,5/2+		F	J^{π} : L(³ He,d)=2.
1993 ^{&} 5	(3/2,5/2)-		EF	XREF: F(?). J^{π} : L(t,p)=2.
2043 [@] 11	(9/2+)		F K	XREF: F(?). J^{π} : based on DWBA analysis in (p, α) (1977SmZM).
2062 ^{&} 10	(7/2,9/2)-		EF	XREF: $F(?)$. J^{π} : $L(t,p)=4$.
2093 <mark>&</mark> 10	(3/2,5/2)-		E	J^{π} : L(t,p)=2.
2124 ^{&} 10	(5/2,7/2)+		EF H	XREF: H(2150). J^{π} : L(t,p)=3, L(³ He,d)=4(+2).
2185 ^{&} 10	(9/2 ⁺)		EIK	XREF: I(2173)K(2171). E(level): Possible multiplet in (p, α) (1977SmZM). J ^{π} : based on DWBA analysis in (p, α) (1977SmZM).
2199 <mark>&</mark> <i>10</i>	(7/2 ⁻ ,9/2 ⁻)		Е	J^{π} : L(t,p)=(4).

Continued on next page (footnotes at end of table)

¹⁰⁹Ag Levels (continued)

E(level) [†]	Jπa	T _{1/2}	XREF		Comments			
2206.46 ^d 22	15/2-		С					
2222 <mark>&</mark> 10	$(7/2^{-}, 9/2^{-})$		Е		J^{π} : L(t,p)=(4).			
2230 5	$(5/2,7/2)^+$		FΗ	K	XREF: F(2220).			
					E(level): from (p,p') .			
and the second			_		J^{n} : L(p,p')=3, L(³ He,d)=(2+4).			
2256 ^{cc} 10	$(9/2,11/2)^+$		E		J^{n} : L(t,p)=5.			
2267 10	$(5/2,7/2)^+$		E		J^{n} : L(t,p)=3.			
2314 10	$(3/2^{-}, 5/2^{-})$		E		J^{n} : L(t,p)=(2).			
2320" 5	1/2+		F	K	XREF: K(2350). I_{π} , multiplet but makes a summary that L(3) I_{π} and I_{π}			
22648 10	$(0/2, 1, 1/2)^{+}$				J ^{\sim} : multiplet, but major component has L(^{\circ} He,d)=0.			
2364 10	(9/2,11/2)*		EF		XREF: $F(2400)$. J^{π} : L(t,p)=5.			
2419.96 ^d 25	$17/2^{-}$		С					
2434 ^{&} 10	$(7/2, 9/2)^{-}$		Е		J^{π} : L(t,p)=4.			
2466 ^{&} 10	$(7/2, 9/2)^{-}$		Е		J^{π} : L(t,p)=4.			
2471 [@] 6	$1/2^{+}$		F	K	XREF: F(2470).			
					J^{π} : multiplet, but major component has L(³ He,d)=0.			
2479.9 ^e 4	17/2-		С					
2537 ^{&} 10	$(9/2,11/2)^+$		E	K	XREF: K(2522). J^{π} : L(t,p)=5.			
2567.39 [°] 18	19/2+	0.39 ps 4	CD					
2568.4 ^e 3	19/2-	Ь	С					
2569 ^{&} 10	$(9/2^+, 11/2^+)$		E		J^{π} : L(t,p)=(5).			
2614 ^{<i>x</i>} 10			Е					
2659 ^{&} 10			Е					
2660.5 ^{<i>a</i>} 4	19/2-		C					
2/40.6° 3	21/2	a ach	C					
2840.79° 16	21/21	0.82° ps 8	CD					
$2940.2^{\circ} 4$ 2988 7 [°] 3	(21/2)		C					
3000 19 ^C 19	23/2+	1.53^{b} ns 16	CD CD					
3090.19 19 3203 5d 5	$(23/2^{-})$	1.55 ps 10	CD C					
3205.5 5 3275 # 10	(23/2)		с F		$I^{\pi} \cdot I ({}^{3}He d) - 2$			
3275 10 3276 39 [°] 22	25/2 ⁺	1.87^{b} ns 21	CD I		$5 \cdot E(110, \alpha) - 2$.			
3316.7 ^e 4	25/2-	1.07 p5 21	C					
3575.19 ^c 24	27/2+	0.71 ^b ps 8	CD					
3968.7 [°] 3	29/2+	0.37^{b} ps 4	CD					
4375.8 [°] 3	31/2+	0.291^{b} ps 35	CD					
4886.4 [°] 4	33/2+	0.180^{b} ps 21	CD					
5414.5 [°] 5	$(35/2^+)$	0.222 ^b ps 28	CD					
5998.3 ^c 8	$(37/2^+)$	-	CD					

[†] From a least-squares fit to $E\gamma$, unless otherwise noted. [‡] From ¹¹⁰Cd(d,³He). [#] From ¹⁰⁸Pd(³He,d).

¹⁰⁹Ag Levels (continued)

[@] From ¹¹²Cd(p,*α*).

& From ¹⁰⁷Ag(t,p).

- ^a Values without comments are based on band consideration and/or γ multipolarities deduced from DCO ratios in 96 Zr(18 O,p4n γ) and ¹⁰⁰Mo(¹³C,p3n γ). ^b From DSAM in ¹⁰⁰Mo(¹³C,p3n γ) (2008Da12). ^c Band(A): Band 1: $\pi g_{9/2}$ band. Above $J^{\pi}=21/2^+$, it changes to $\pi g_{9/2} \otimes v(h_{11/2})^2$.

- ^d Band(B): Band 2: build upon the $J^{\pi}=15/2^{-1}$ level at 2206.5 keV.
- ^e Band(C): Band 3: build upon the $J^{\pi}=17/2^{-}$ level at 2479.9 keV.

						Adopted	Levels, Gam	mas (contin	ued)
							<u> γ(¹⁰⁹A</u> g	g)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	$\delta^{\&b}$	α^{a}	Comments
88.0337	7/2+	88.0336 10	100	0.0	1/2-	E3		26.3	$\begin{aligned} &\alpha(\text{K})=11.41 \ 16; \ \alpha(\text{L})=12.06 \ 17; \ \alpha(\text{M})=2.47 \ 4 \\ &\alpha(\text{N})=0.386 \ 6; \ \alpha(\text{O})=0.001398 \ 20 \\ &\text{B}(\text{E3})(\text{W.u.})=0.0387 \ 6 \\ &\text{E}_{\gamma}: \ \text{From}^{-109}\text{Cd} \ \varepsilon \ \text{decay} \ (2000\text{He}14). \\ &\text{Mult.: from ce data in}^{-109}\text{Pd} \ \beta^- \ \text{decay}. \ \alpha(\text{K})\text{exp}=10.6 \ 5 \\ &(1970\text{Ba37}); \ \alpha(\text{K})\text{exp}=11.6, \ \text{K:L:M:N}=(0.98 \ 5):1:(0.20 \\ I):(0.050 \ 5), \ \text{L1:L2:L3}=(0.185 \ I5):1:(1.163 \ 27) \ (1978\text{Sh08}) \\ &\text{and ce data in}^{-109}\text{Cd} \ \varepsilon \ \text{decay}. \end{aligned}$
132.762	9/2+	44.77 13	100	88.0337	7/2+	M1+E2	0.14 6	4.6 5	I _γ : Double photon decay: $I(\gamma\gamma)/I(\gamma) < 6 \times 10^{-7}$ (1988II01). $\alpha(K)=3.85$ 19; $\alpha(L)=0.65$ 20; $\alpha(M)=0.126$ 39 $\alpha(N)=0.0212$ 60; $\alpha(O)=0.000711$ 22 Mult.: $\alpha(K)\exp=3.6$ 5, $\alpha(L)\exp=0.7$ 3 (1978Sh08).
311.378	3/2-	311.390 <i>10</i>	100	0.0	1/2-	M1+E2	-0.192 7	0.0200	δ: From 1984ShZL; Other: 0.35 15 (1996Po07). $\alpha(K)=0.01743 25; \alpha(L)=0.00212 3; \alpha(M)=0.000402 6$ $\alpha(N)=6.96\times10^{-5} 10; \alpha(O)=3.24\times10^{-6} 5$ Mult.: from $\gamma(\theta)$: A ₂ =-0.395 16 (1970Ro14), -0.39 2 (1955Mc51), -0.388 7 (1958Mc02), A ₂ =-0.710 7 (1970RoZS), -0.654 36 (1989Lo08) in Coulomb Excitation and $\alpha(K)\exp=0.019 2$ from ¹⁰⁹ Pd β ⁻ decay (1970Ba37).
415.193	5/2-	103.827 <i>23</i>	5.9 3	311.378	3/2-	M1+E2	-0.039 17	0.379	 δ: weighted average of 0.193 10 (1970RoZS), -0.196 27 (1970Ro14), and 0.19 1 (1958Mc02). Others: 0.19 (1955Mc51) in Coulomb Excitation and δ=0.35 5 from γγ(θ) in ¹⁰⁹Pd β⁻ decay (1975E110). α(K)=0.329 5; α(L)=0.0410 7; α(M)=0.00780 13 α(N)=0.001348 22; α(O)=6.18×10⁻⁵ 9 I_γ: Others: 5.1 4 in Coulomb Excitation (weighted average of 5.4 5 (1989Lo08), 4.9 5 1970Ro14 and 4.6 11, deduced from I(γ+ce) in 1973Co10). Mult.: α(K)exp=0.44 5 in ¹⁰⁹Pd β⁻ decay (1970Ba37); A₂=-0.239 17 in Coulomb Excitation (1970Ro14).
		282.431 ^c 11	≤0.05	132.762	9/2+	[M2]		0.1164	δ: From $\gamma(\theta)$ in Coulomb excitation. $\alpha(K)=0.0994 \ 14; \ \alpha(L)=0.01378 \ 20; \ \alpha(M)=0.00266 \ 4$ $\alpha(N)=0.000458 \ 7; \ \alpha(O)=2.04\times10^{-5} \ 3$ E _v : From level energy differences.
		327.159 ^c 8	0.40 10	88.0337	7/2+	[E1]		0.00582	I _y : From Coulomb Excitation. $\alpha(K)=0.00509 \ 8; \ \alpha(L)=0.000600 \ 9; \ \alpha(M)=0.0001133 \ 16$ $\alpha(N)=1.95\times10^{-5} \ 3; \ \alpha(O)=8.81\times10^{-7} \ 13$ B(E1)(W.u.)=9.2×10 ⁻⁷ \ 24
		415.222 7	100.0 11	0.0	1/2-	E2		0.01099	E _γ : From level energy differences. I _γ : From Coulomb Excitation. $\alpha(K)=0.00944 \ 14; \ \alpha(L)=0.001258 \ 18; \ \alpha(M)=0.000240 \ 4$ $\alpha(N)=4.08\times10^{-5} \ 6; \ \alpha(O)=1.637\times10^{-6} \ 23$

From ENSDF

 $^{109}_{47}\mathrm{Ag}_{62}$ -6

						$\gamma(^{10}$	¹⁹ Ag) (contin	ued)	
E _i (level)	J_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	$\delta^{\&b}$	α^{a}	Comments
									B(E2)(W.u.)=40.5 <i>17</i> Mult.: α (K)exp=0.010 <i>1</i> from ¹⁰⁹ Pd β^- decay (1970Ba37); A ₂ =+0.124 <i>23</i> (1970Ro14), A ₂ =+0.248 <i>4</i> , A ₄ =-0.039 <i>9</i> (1955Mc51) in Coulomb excitation.
697.38?		564.3 ^c 3 609.37 ^c 17	100 <i>16</i> <6.8	132.762 88.0337	9/2+ 7/2+				
701.877	3/2-	286.644 24	5.2 4	415.193	5/2-	[M1]		0.0244	$\alpha(K)=0.0213 \ 3; \ \alpha(L)=0.00257 \ 4; \ \alpha(M)=0.000488 \ 7 \ \alpha(N)=8.45\times10^{-5} \ 12; \ \alpha(O)=3.97\times10^{-6} \ 6 \ B(M1)(Wn)=0.14 \ 4$
		390.515 <i>18</i>	26.4 11	311.378	3/2-	M1+E2	+0.21 4	0.01126 <i>17</i>	$\begin{aligned} \alpha(\text{K}) = 0.00981 \ 14; \ \alpha(\text{L}) = 0.001180 \ 18; \ \alpha(\text{M}) = 0.000224 \ 4 \\ \alpha(\text{N}) = 3.88 \times 10^{-5} \ 6; \ \alpha(\text{O}) = 1.82 \times 10^{-6} \ 3 \\ \text{Mult.:} \ \alpha(\text{K}) \text{exp} = 0.095 \ 2 \ (1970\text{Ba37}); \ \gamma\gamma(\theta) \ \text{in} \ ^{109}\text{Pd} \ \beta^- \\ \text{decay.} \end{aligned}$
		701.876 <i>10</i>	100.0 8	0.0	1/2-	M1+E2	0.029 7	0.00273	δ: weighted average of δ=0.19 6 (1977Bo04) and +0.23 5 (1988Br31) using γγ(θ) in ¹⁰⁹ Pd β ⁻ decay. α (K)=0.00239 4; α (L)=0.000280 4; α (M)=5.32×10 ⁻⁵ 8 α (N)=9.23×10 ⁻⁶ 13; α (O)=4.41×10 ⁻⁷ 7 Mult.: α (K)exp=0.0023 5 from ¹⁰⁹ Pd β ⁻ decay (1970Ba37); A ₂ =-0.32 6 (γ(θ)) in Coulomb excitation (1970Ro14).
706.971	(3/2,5/2 ⁻)	395.590 28	4.5 4	311.378	3/2-				δ: from γ(θ) in Coulomb excitation (1970Ro14).
724.381	3/2+	706.964 <i>10</i> 309.182 <i>10</i>	100.0 <i>10</i> 38.4 <i>5</i>	0.0 415.193	1/2 ⁻ 5/2 ⁻	E1(+M2)	+0.03 6	0.0068 6	α (K)exp=0.0020 6 (1970Ba37). α (K)=0.0060 5; α (L)=0.00071 7; α (M)=0.000133 14 α (N)=2.29×10 ⁻⁵ 23; α (O)=1.03×10 ⁻⁶ 11 Mult.: α (K)exp=0.006 1 from ¹⁰⁹ Pd β ⁻ decay (1970Ba37). St en (0) in ¹⁰⁹ Pd β ⁻ decay (1082Ba21)
		413.010 10	64.9 7	311.378	3/2-	E1+M2	0.18 5	0.0042 6	α(K) = 0.0037
		636.342 10	100.0 9	88.0337	7/2+	E2		0.00323	δ: $\gamma\gamma(\theta)$ in ¹⁶⁵ Pd β decay (197/Bo04). $\alpha(K)=0.00281 4$; $\alpha(L)=0.000350 5$; $\alpha(M)=6.65\times10^{-5} 10$ $\alpha(N)=1.142\times10^{-5} 16$; $\alpha(O)=4.98\times10^{-7} 7$ B(E2)(W.u.)=0.027 7 Mult.: $\alpha(K)$ exp=0.0026 5 from ¹⁰⁹ Pd β ⁻ decay (1970Ba37).
735.320	5/2+	724.372 <i>14</i> 423.942 <i>12</i>	0.56 7 3.83 6	0.0 311.378	$\frac{1}{2^{-}}$	E1(+M2)	+0.08 8	0.0032.6	$\alpha(K)=0.0028$ 5: $\alpha(L)=0.00033$ 7: $\alpha(M)=6.2\times10^{-5}$ 12
155.520	512	123.772 12	5.05 0	511.570	5/4	L1(1112)	10.00 0	0.0052 0	$\alpha(N) = 1.07 \times 10^{-5} 21; \ \alpha(O) = 4.9 \times 10^{-7} 10$ Mult.: $\alpha(K) \exp = 0.0030 5 (1970Ba37) \text{ and } \gamma\gamma(\theta) \text{ in } {}^{109}\text{Pd}$ $\beta^{-} \text{ decay.}$

Adopted Levels, Gammas (co									ned)
							$\gamma(^{109}\text{Ag})$ (co	ontinued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	δ ^{&b}	α^{a}	Comments
									δ : from γγ(θ) in 1988Br31; Other: δ =-0.27 3 in (1977Be04)
735.320	5/2+	602.568 10	33.6 <i>3</i>	132.762	9/2+	E2		0.00374	$\alpha(K)=0.00324 5; \alpha(L)=0.000407 6; \alpha(M)=7.75\times10^{-5}$ 11
									$\alpha(N)=1.329\times10^{-5}$ 19; $\alpha(O)=5.75\times10^{-7}$ 8 Mult : $\alpha(K)=0.0030$ 5 from 10^{9} Pd β^{-} decay
									(1970Ba37). $(1970Ba37)$
		647.272 10	100	88.0337	7/2+	M1		0.00330	$\alpha(K)=0.00288 \ 4; \ \alpha(L)=0.000339 \ 5; \ \alpha(M)=6.43\times10^{-5} \ 9 \ \alpha(N)=1.117\times10^{-5} \ 16; \ \alpha(O)=5.33\times10^{-7} \ 8$
									Mult.: α (K)exp=0.0027 4 from ¹⁰⁹ Pd β^- decay (1970Ba37).
773.42	11/2+	640.6 [‡] 2	100	132.762	9/2+	M1+E2	>+0.3 [‡]	0.00327 11	α (K)=0.00285 <i>10</i> ; α (L)=0.000345 <i>6</i> ; α (M)=6.56×10 ⁻⁵ <i>10</i>
									$\alpha(N)=1.132 \times 10^{-5} \ 20; \ \alpha(O)=5.2 \times 10^{-7} \ 3$
811.74?		114.26 ^c 19	100 32	697.38?					Mult.,o: from anisotropy $\alpha = 0.30$ 9 in $302r(100, p4n\gamma)$.
862 633	5/2-	500.6 ^c 3 447 426 14	72 <i>16</i> 100 0 <i>16</i>	311.378 415 193	$3/2^{-}$ $5/2^{-}$	M1+F2	-0.16.4	0.00801	$\alpha(K) = 0.00699.10; \alpha(I) = 0.000834.12; \alpha(M) = 0.0001582$
002.033	5/2	117.120 17	100.0 10	115.175	5/2	1011 1 112	0.10 /	0.00001	23
									$\alpha(N)=2.74\times10^{-5}$ 4; $\alpha(O)=1.295\times10^{-6}$ 19 Mult 5: $\alpha(K)=0.0070$ 8 from 109 Pd θ^{-1} decay
									$(1970Ba37); A_2=+0.124 \ 23 \ (1970Ro14), A_2=+0.32 \ 10, A_4=-0.11 \ 15 \ (1989Lo08).$
									δ: From γ(θ) in Coulomb excitation (1970Ro14);
		551.258 14	75.4 11	311.378	3/2-	M1+E2	-0.28 3	0.00482	$\alpha(\text{K})=0.00421\ 6;\ \alpha(\text{L})=0.000500\ 7;\ \alpha(\text{M})=9.49\times10^{-5}$
									α (N)=1.645×10 ⁻⁵ 23; α (O)=7.76×10 ⁻⁷ 11
									Mult.: $A_2 = -0.441\ 29$ in Coulomb excitation (1970Ro14): $zy(\theta)$ in ¹⁰⁹ Pd β^- decay (1988Br31).
									δ: weighted average of -0.28 4 from γ(θ) in Coulomb excitation (1970Ro14), -0.28 4 (1977Bo04) and -0.26
		862.637 14	18.24 <i>21</i>	0.0	1/2-	E2		1.51×10^{-3}	/ (1988Br31) from $\gamma\gamma(\theta)$ in ¹⁰⁹ Pd β^- decay. $\alpha(K)=0.001313$ 19; $\alpha(L)=0.0001584$ 23;
									$\alpha(M) = 3.00 \times 10^{-5} 5$ $\alpha(M) = 5.18 \times 10^{-6} 8$; $\alpha(O) = 2.26 \times 10^{-7} 4$
									$a(N)=3.16\times10^{-6}$ 8; $a(O)=2.50\times10^{-6}$ 4 B(E2)(W.u.)=2.6 4
									Mult.: $A_2 = +0.28$ 13 in Coulomb excitation (1970Ro14).

 ∞

	Adopted Levels, Gammas (continued)												
						$\gamma(^{109}$	Ag) (continued)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	J_f^π	Mult. ^{&}	$\delta^{\&b}$	α^{a}	Comments				
869.426	5/2+	134.107 18	12.7 3	735.320	5/2+	M1+E2	0.44 +13-15	0.24 3	$\alpha(K)=0.201 \ 21; \ \alpha(L)=0.030 \ 6; \ \alpha(M)=0.0058 \ 11$ $\alpha(N)=0.00097 \ 17; \ \alpha(O)=3.5\times10^{-5} \ 3$ Mult., δ : $\alpha(K)$ exp=0.20 2 from ¹⁰⁹ Pd β^- decay				
		145.039 <i>14</i>	8.22 15	724.381	3/2+	M1+E2	0.13 2	0.1531 25	(1970Ba37). $ \alpha(K)=0.1326 21; \alpha(L)=0.0167 4; \alpha(M)=0.00318 7 $ $ \alpha(N)=0.000549 11; \alpha(O)=2.48\times10^{-5} 4 $ Mult.,δ: $\alpha(K)$ exp=0.15 2 (1970Ba37) and δ =0.13 2 from $\gamma\gamma(\theta)$ (1975E110) in ¹⁰⁹ Pd β ⁻ decay.				
		162.37 <i>4</i> 454.269 <i>14</i>	0.88 9 3.67 <i>13</i>	706.971 415.193	(3/2,5/2 ⁻) 5/2 ⁻	E1(+M2)	-0.14 +36-17	0.0030 17	$\alpha(K)=0.0026 \ 15; \ \alpha(L)=3.1\times10^{-4} \ 19; \ \alpha(M)=5.9\times10^{-5}$ 36 $\alpha(N)=1.02\times10^{-5} \ 62; \ \alpha(Q)=4.7\times10^{-7} \ 29$				
		558.040 10	22.32 21	311.378	3/2-	E1+M2	-0.20 4	0.00205 21	Mult., δ : from $\gamma\gamma(\theta)$ in ¹⁰⁹ Pd β^- decay (1988Br31). $\alpha(K)=0.00179 \ I8; \ \alpha(L)=0.000214 \ 23;$ $\alpha(M)=4.0\times10^{-5} \ 5$ $\alpha(N)=7.0\times10^{-6} \ 8; \ \alpha(O)=3.2\times10^{-7} \ 4$				
		736.652 10	14.53 15	132.762	9/2+	E2		0.00222	Mult., δ : α (K)exp=0.0012 <i>3</i> (1970Ba37) and δ =-0.26 <i>5</i> from $\gamma\gamma(\theta)$ (1977Bo04) in ¹⁰⁹ Pd β^- decay. α (K)=0.00193 <i>3</i> ; α (L)=0.000236 <i>4</i> ; α (M)=4.48×10 ⁻⁵ 7 α (N)=7.72×10 ⁻⁶ <i>11</i> ; α (O)=3.44×10 ⁻⁷ <i>5</i>				
		781.394 10	100.0 11	88.0337	7/2+	M1+E2		0.00213	Mult.: $\alpha(K)\exp=0.0012 \ 3 \ \text{from}^{109}\text{Pd}\ \beta^- \ \text{decay}$ (1970Ba37). $\alpha(K)=0.00187 \ 3; \ \alpha(L)=0.000219 \ 3; \ \alpha(M)=4.14\times10^{-5} \ 6 \ \alpha(N)=7.19\times10^{-6} \ 10; \ \alpha(O)=3.44\times10^{-7} \ 5 \ M_{2} \ (K)=0.0017 \ 5 \ (M)=0.0017 \ 5 \ (M)=0.0017$				
		869.415 25	0.13 6	0.0	1/2-	[M2]		0.00427	Mult.: $\alpha(K)\exp=0.00175$ from ¹⁰⁵ Pd β decay (1970Ba37). $\alpha(K)=0.00372$ 6; $\alpha(L)=0.000453$ 7; $\alpha(M)=8.62\times10^{-5}$ 12				
910.902	7/2+	778.140 <i>14</i>	100.0 12	132.762	9/2+	M1		0.00215	$\alpha(N)=1.495\times10^{-5} 21; \ \alpha(O)=7.06\times10^{-7} 10$ $\alpha(K)=0.00188 \ 3; \ \alpha(L)=0.000221 \ 3; \ \alpha(M)=4.18\times10^{-5}$ $\alpha(M)=4.18\times10^{-5} 10^$				
		822.862 14	17.69 <i>19</i>	88.0337	7/2+	[M1]		0.00190	$\alpha(x) = 7.20 \times 10^{-7} 11; \alpha(0) = 5.47 \times 10^{-5} 5$ Mult., δ : $\alpha(K) \exp = 0.0018 5$ from ¹⁰⁹ Pd β^- decay (1970Ba37). $\alpha(K) = 0.001660 24; \alpha(L) = 0.000194 3;$ $\alpha(M) = 3.67 \times 10^{-5} 6$				
912.205	7/2-	497.010 23	100 4	415.193	5/2-	(M1+E2)		0.00619	$\begin{array}{l} \alpha(\mathrm{N}) = 6.38 \times 10^{-6} \ 9; \ \alpha(\mathrm{O}) = 3.06 \times 10^{-7} \ 5 \\ \alpha(\mathrm{K}) = 0.00540 \ 8; \ \alpha(\mathrm{L}) = 0.000641 \ 9; \ \alpha(\mathrm{M}) = 0.0001215 \\ 17 \end{array}$				

 $^{109}_{47}\mathrm{Ag}_{62}\text{-}9$

					A	dopted Lev	vels, Gammas (co	ontinued)	
						$\gamma(10)$	⁰⁹ Ag) (continued))	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	$\delta^{\&b}$	α^{a}	Comments
912.205	7/2-	601.1 7	25 4	311.378	3/2-	(E2)		0.00377	$\alpha(N)=2.11\times10^{-5} 3; \alpha(O)=1.001\times10^{-6} 14$ Mult.: A ₂ =-0.51 6 (1989L008). I _y : from Coulomb excitation. $\alpha(K)=0.00327 5; \alpha(L)=0.000410 6;$ $\alpha(M)=7.80\times10^{-5} 12$ $\alpha(N)=1.338\times10^{-5} 20; \alpha(O)=5.79\times10^{-7} 9$ E _y ,I _y : from Coulomb excitation.
930.75	13/2+	157.3 [‡] 1 798.0 [‡] 1	8 [‡] 1 100 [‡] 1	773.42 132.762	11/2 ⁺ 9/2 ⁺	E2		0.00182	Mult.: A_2 =+0.8 5, A_4 =+0.6 5 (1989L008). $\alpha(K)$ =0.001582 23; $\alpha(L)$ =0.000192 3; $\alpha(M)$ =3.65×10 ⁻⁵ 6
1090.7	9/2-	675.5 5	100	415.193	5/2-	E2		0.00276	$\begin{aligned} &\alpha(N) = 6.29 \times 10^{-6} \ 9; \ \alpha(O) = 2.83 \times 10^{-7} \ 4 \\ &\text{Mult: based on measured anisotropy in} \\ &9^{6} Zr(^{18}O, p4n\gamma) \ (1996Po07). \\ &\alpha(K) = 0.00240 \ 4; \ \alpha(L) = 0.000297 \ 5; \\ &\alpha(M) = 5.64 \times 10^{-5} \ 8 \\ &\alpha(N) = 9.70 \times 10^{-6} \ 14; \ \alpha(O) = 4.28 \times 10^{-7} \ 6 \\ &\text{B(E2)(W.u.)} = 68 \ 11 \\ &\text{E}_{\gamma}: \text{ from Coulomb excitation.} \\ &\text{Mult.: A}_{2} = +0.48 \ 5, \ A_{4} = -0.26 \ 7 \ \text{from Coulomb excitation} \\ &\text{Mult.: A}_{2} = +0.48 \ 5. \end{aligned}$
1099.11	(5/2,7/2 ⁻)	402.05 ^c 9 787.6 ^c 3 966.29 4 1011.16 5	31 <i>11</i> 100 <i>63</i> 18.1 <i>9</i> 11.5 <i>6</i>	697.38? 311.378 132.762 88.0337	3/2 ⁻ 9/2 ⁺ 7/2 ⁺				
1324.2	3/2-	909 ^{#c} 1	8 [#] 4	415.193	5/2-	[M1]		1.52×10 ⁻³	α (K)=0.001326 <i>19</i> ; α (L)=0.0001546 <i>22</i> ; α (M)=2.93×10 ⁻⁵ <i>5</i> α (N)=5.09×10 ⁻⁶ <i>8</i> ; α (O)=2.44×10 ⁻⁷ <i>4</i>
		1012.9 [#] 10	100 [#] 4	311.378	3/2-	M1+E2	-0.09 [#] 3	1.19×10 ⁻³	B(M1)(W.u.)=0.006 4 $\alpha(K)=0.001042 \ 15; \ \alpha(L)=0.0001211 \ 18; \ \alpha(M)=2.29\times10^{-5} \ 4$ $\alpha(N)=3.98\times10^{-6} \ 6; \ \alpha(O)=1.91\times10^{-7} \ 3$
		1324.2 [#] 10	16 [#] 4	0.0	1/2-	[M1]		6.92×10 ⁻⁴	Mult., δ : A ₂ =+0.20 5 $\gamma(\theta)$ in Coulomb excitation (1970Ro14) consistent with J to J transition. $\alpha(K)=0.000584 \ 9; \ \alpha(L)=6.75\times10^{-5} \ 10; \ \alpha(M)=1.276\times10^{-5} \ 18 \ \alpha(N)=2.22\times10^{-6} \ 4; \ \alpha(O)=1.070\times10^{-7} \ 15; \ \alpha(IPF)=2.55\times10^{-5} \ 5$
1702.9	15/2+	772.3 [‡] 3	100 [‡] 16	930.75	13/2+	M1+E2	+1.0 [‡] +10-5	0.00208 8	B(M1)(W.u.)=0.0039 <i>16</i> α (K)=0.00182 <i>7</i> ; α (L)=0.000217 <i>6</i> ;

							Adopte	ed Levels, Gar	nmas (continued	<u>D</u>
								$\gamma(^{109}\text{Ag})$ (co	ontinued)	
	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. ^{&}	$\delta^{\&b}$	α^{a}	Comments
	1702.9	15/2+	930.6 [‡] 8	24 [‡] 9	773.42	11/2+	[E2]		1.26×10 ⁻³	$\begin{aligned} &\alpha(M) = 4.11 \times 10^{-5} \ II \\ &\alpha(N) = 7.11 \times 10^{-6} \ 20; \ \alpha(O) = 3.30 \times 10^{-7} \ I5 \\ &Mult.,\delta: \text{ from anisotropy } \alpha = 0.50 \ 2I \text{ in } {}^{96}\text{Zr}({}^{18}\text{O,p4n}\gamma). \\ &\alpha(K) = 0.001101 \ I6; \ \alpha(L) = 0.0001319 \ I9; \\ &\alpha(M) = 2.50 \times 10^{-5} \ 4 \\ &\alpha(N) = 4.32 \times 10^{-6} \ 7; \ \alpha(O) = 1.98 \times 10^{-7} \ 3 \end{aligned}$
	1894.28	17/2+	191.3 ^w 963.5 [‡] 1	100	1702.9 930.75	15/2 ⁺ 13/2 ⁺	E2		1.17×10 ⁻³	$\alpha(K)=0.001017 \ 15; \ \alpha(L)=0.0001215 \ 17; \ \alpha(M)=2.30\times10^{-5} \ 4 \ \alpha(N)=3.98\times10^{-6} \ 6; \ \alpha(O)=1.83\times10^{-7} \ 3 \ B(E2)(W.u.)=39 \ 4 \ Mult.: based on measured anisotropy in ^{96}Zr(^{18}O,p4n\gamma).$
-	2206.46	15/2-	1275.7 [‡] 2	100	930.75	13/2+	E1(+M2)	+0.02 [‡] 8	3.73×10 ⁻⁴ 13	$\alpha(K)=0.000257 \ 12; \ \alpha(L)=2.93\times10^{-5} \ 14;$ $\alpha(M)=5.5\times10^{-6} \ 3$ $\alpha(N)=9.6\times10^{-7} \ 5; \ \alpha(O)=4.59\times10^{-8} \ 22;$ $\alpha(IPF)=7.96\times10^{-5} \ 14$ Mult. δ : from anisotropy $\alpha=-0.21 \ 12$ in $^{96}Zr(^{18}O.p4n\gamma)$.
	2419.96 2479.9	17/2 ⁻	213.5 [‡] <i>I</i> 273.4 [‡] <i>3</i>	100	2206.46 2206.46	15/2 ⁻	M1+E2	-0.09 [‡] 8	0.0530 12	$\alpha(K)=0.0461 \ 10; \ \alpha(L)=0.00564 \ 17; \ \alpha(M)=0.00107 \ 4 \ \alpha(N)=0.000186 \ 6; \ \alpha(O)=8.62\times10^{-6} \ 16 \ Mult.,\delta: from anisotropy \ \alpha=-0.36 \ 12 \ in \ {}^{96}Zr({}^{18}O,p4n\gamma).$
	2567.39	19/2+	673.4 [‡] 2	92 [‡] 23	1894.28	17/2+	M1+E2	+0.31 [‡] 20	0.00299	α (K)=0.00261 5; α (L)=0.000308 5; α (M)=5.84×10 ⁻⁵ 9 α (N)=1.014×10 ⁻⁵ 15; α (O)=4.81×10 ⁻⁷ 10 Mult., δ : from anisotropy α =0.20 19 in ⁹⁶ Zr(¹⁸ O,p4n γ).
			864.9 [‡] 4	100 [‡] 31	1702.9	15/2+	E2		1.50×10 ⁻³	$\alpha(K)=0.001305 \ 19; \ \alpha(L)=0.0001574 \ 23; \ \alpha(M)=2.99\times10^{-5} \ 5 \ \alpha(N)=5.15\times10^{-6} \ 8; \ \alpha(O)=2.34\times10^{-7} \ 4 \ B(E2)(W.u.)=50 \ 20 \ Mult.: from measured anisotropy \ \alpha=0.61 \ 29 \ in \ {}^{96}Zr({}^{18}O,p4n\gamma).$
	2568.4	19/2-	88.5 [‡]	100	2479.9	17/2-		0.05 1.1	0.1.41.7	
			148.4+ 1	100	2419.96	17//2=	M1(+E2)	+0.05+ 11	0.141 6	$\alpha(K)=0.122 4; \alpha(L)=0.0151 10; \alpha(M)=0.00287 18$ $\alpha(N)=0.00050 3; \alpha(O)=2.29\times10^{-5} 6$ Mult., δ : from anisotropy $\alpha=-0.16 19$ in 96 Zr(18 O,p4n γ).
	2660.5	19/2-	240.5 [‡] 2	100	2419.96	17/2-	M1(+E2)	-0.05 [‡] 9	0.0385 7	$\alpha(K)=0.0335 \ 6; \ \alpha(L)=0.00408 \ 10; \ \alpha(M)=0.000775 \ 18 \ \alpha(N)=0.000134 \ 3; \ \alpha(O)=6.27\times10^{-6} \ 10 \ Mult.\delta; \ from anisotropy \ \alpha=-0.31 \ 16 \ in \ {}^{96}Zr({}^{18}Op 4ny)$
	2740.6	21/2-	172.2 [‡] 1	100	2568.4	19/2-	M1(+E2)	+0.01 [‡] 8	0.0935 16	$\alpha(K)=0.0813 \ 14; \ \alpha(L)=0.00997 \ 22; \ \alpha(M)=0.00190 \ 5$

						Adopte	d Levels, Ga	<mark>mmas</mark> (contir	nued)
							$\gamma(^{109}Ag)$ (c	continued)	
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult.&	δ ^{&b}	α^{a}	Comments
					<u> </u>				α (N)=0.000328 7; α (O)=1.527×10 ⁻⁵ 24 Mult.,δ: from anisotropy α =-0.23 14 in ⁹⁶ Zr(¹⁸ O,p4nγ).
2840.79	21/2+	273.5 [‡] 1	43 [‡] 6	2567.39	19/2+	M1(+E2)	+0.03 [‡] 8	0.0276 5	$\alpha(K)=0.0240 \ 4; \ \alpha(L)=0.00290 \ 5; \ \alpha(M)=0.000551 \ 10 \ \alpha(N)=9.56\times10^{-5} \ 16; \ \alpha(O)=4.48\times10^{-6} \ 7 \ Mult \ \delta; \ from anisotropy \ \alpha=-0 \ 18 \ 13 \ in \ {}^{96}Zr({}^{18}O \ p4n\chi)$
		946.4 [‡] <i>1</i>	100 [‡] 3	1894.28	17/2+	E2		1.21×10 ⁻³	$\alpha(K)=0.001059 \ 15; \ \alpha(L)=0.0001268 \ 18; \alpha(M)=2.40\times10^{-5} \ 4 \alpha(N)=4.15\times10^{-6} \ 6; \ \alpha(O)=1.90\times10^{-7} \ 3 B(E2)(W.u.)=20.4 \ 23 Mult.: from measured anisotropy \alpha = 0.34 \ 11 in{}^{96}Zr({}^{18}O,p4n\gamma).$
2940.2	(21/2 ⁻)	279.7 [‡] 2	100	2660.5	19/2-	M1+E2	+0.13 [‡] 9	0.0262 6	α (K)=0.0228 5; α (L)=0.00277 8; α (M)=0.000527 15 α (N)=9.12×10 ⁻⁵ 24; α (O)=4.25×10 ⁻⁶ 8 Mult. δ : from anisotropy α =-0.02 15 in 96 Zr(18 O,p4n γ).
2988.7	23/2-	248.1 [‡] <i>1</i>	100	2740.6	21/2-	M1(+E2)	+0.02 [‡] 8	0.0355 6	$\alpha(K)=0.0309 5; \alpha(L)=0.00375 7; \alpha(M)=0.000712 13 \alpha(N)=0.0001234 21; \alpha(O)=5.78\times10^{-6} 9 Mult\delta: from anisotropy \alpha=-0.20 12 in {}^{96}Zr({}^{18}O.p4n\gamma).$
3090.19	23/2+	249.4 [‡] 1	100	2840.79	21/2+	M1+E2	+0.05 [‡] 4	0.0350	$\alpha(K)=0.0305\ 5;\ \alpha(L)=0.00370\ 6;\ \alpha(M)=0.000704\ 11$ $\alpha(N)=0.0001219\ 19;\ \alpha(O)=5.70\times10^{-6}\ 9$ Mult., δ : from anisotropy α =-0.16 7 in ${}^{96}Zr({}^{18}O,p4n\gamma)$.
		522.7 [@]		2567.39	$19/2^{+}$				
3203.5	(23/2 ⁻)	263.3 [‡] 2	100	2940.2	(21/2 ⁻)	M1+E2	-0.14 [‡] 9	0.0307 7	α (K)=0.0267 6; α (L)=0.00326 10; α (M)=0.000619 20 α (N)=0.000107 4; α (O)=4.98×10 ⁻⁶ 9
3276.39	25/2+	186.2 [‡] <i>1</i>	100	3090.19	23/2+	M1(+E2)	-0.05 [‡] 5	0.0760 13	Mult.,δ: from anisotropy α =-0.46 <i>T</i> δ in 52 Lr(20 O,p4nγ). α (K)=0.0661 <i>11</i> ; α (L)=0.00810 <i>16</i> ; α (M)=0.00154 <i>3</i> α (N)=0.000267 <i>5</i> ; α (O)=1.239×10 ⁻⁵ <i>19</i> Mult.,δ: from anisotropy α =-0.31 <i>10</i> in 96 Zr(18 O,p4nγ).
		435.6 [@]		2840.79	$21/2^+$				
3316.7	25/2-	328.0 [‡] 1	100	2988.7	23/2-	M1+E2	+0.06 [‡] 4	0.01733	α (K)=0.01510 22; α (L)=0.00182 3; α (M)=0.000345 5 α (N)=5.98×10 ⁻⁵ 9; α (O)=2.81×10 ⁻⁶ 4 Mult. δ : from anisotropy α =-01.3 13 in ⁹⁶ Zr(¹⁸ O.p4n ν).
3575.19	27/2+	298.8 [‡] 1	100	3276.39	25/2+	M1+E2	-0.07 [‡] 5	0.0220 4	$\alpha(K)=0.0192 \ 3; \ \alpha(L)=0.00231 \ 4; \ \alpha(M)=0.000439 \ 7 \ \alpha(N)=7.61\times10^{-5} \ 12; \ \alpha(O)=3.57\times10^{-6} \ 5 \ Mult \ \delta; \ from anisotropy \ \alpha=-0.35 \ 9 \ in \ ^{96}Tr(^{18}O \ r^{4}rc))$
		$485.0^{@}$		3090-19	23/2+				when $\alpha = -0.55 \times 10^{-10}$ C ($0, p411$).
3968.7	29/2+	393.5 [‡] 1	100	3575.19	27/2+	M1+E2	+0.06 [‡] 4	0.01097	$\alpha(K)=0.00957 \ 14; \ \alpha(L)=0.001144 \ 17; \ \alpha(M)=0.000217 \ 3 \alpha(N)=3.76\times10^{-5} \ 6; \ \alpha(O)=1.779\times10^{-6} \ 25$ Mult δ : from anisotropy $\alpha=-0.13 \ 10 \ \text{in}^{-96} \text{Zr}(^{18}\text{O p4p})$
		692.3 [@]		3276.39	$25/2^+$				$\frac{1}{10000000000000000000000000000000000$
		072.5		5210.59	25/2				

	Adopted Levels, Gammas (continued)										
							$\gamma(^{109}\text{Ag})$ (co	ontinued)			
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. ^{&}	δ ^{&b}	α^{a}	Comments		
4375.8	31/2+	407.1 [‡] 1	100	3968.7	29/2+	M1(+E2)	0.00 [‡] 6	0.01008	$ α(K)=0.00879 \ 13; \ α(L)=0.001049 \ 15; \ α(M)=0.000199 \ 3 $ $ α(N)=3.45\times10^{-5} \ 5; \ α(O)=1.634\times10^{-6} \ 23 $ Mult.,δ: from anisotropy $α=-0.22 \ 11 \ in \ {}^{96}Zr({}^{18}O,p4n\gamma).$		
		800.6 [@]		3575.19	$27/2^{+}$						
4886.4	33/2+	510.6 [‡] 2	100	4375.8	31/2+	M1+E2	-0.14 [‡] 8	0.00580	α (K)=0.00506 8; α (L)=0.000601 9; α (M)=0.0001140 17 α (N)=1.98×10 ⁻⁵ 3; α (O)=9.37×10 ⁻⁷ 14 Mult δ : from anisotropy α =-0.46 15 in ⁹⁶ Zr(¹⁸ O p4pz)		
		917.7 [@]		3968.7	29/2+						
5414.5	(35/2+)	528.1 [‡] 3	100	4886.4	33/2+	M1+E2	+0.20 [‡] 14	0.00535	α (K)=0.00467 7; α (L)=0.000554 9; α (M)=0.0001052 16 α (N)=1.82×10 ⁻⁵ 3; α (O)=8.63×10 ⁻⁷ 13 Mult., δ : from anisotropy α =0.10 19 in ⁹⁶ Zr(¹⁸ O,p4n γ).		
5998.3	(37/2+)	1038.7 [@] 583.8 [#] 1111.9 [#]		4375.8 5414.5 4886.4	31/2 ⁺ (35/2 ⁺) 33/2 ⁺						

[†] From ¹⁰⁹Pd β^- decay, unless otherwise noted. [‡] From ⁹⁶Zr(¹⁸O,p4n γ).

[#] From Coulomb excitation. [@] From 100 Mo(13 C,p 3 n γ). [&] From ce data and $\gamma\gamma(\theta)$ in 109 Pd β^{-} decay, anisotropy in 96 Zr(18 O,p 4 n γ), and $\gamma(\theta)$ in Coulomb excitation, unless otherwise noted.

^{*a*} Additional information 2.

^b If No value given it was assumed δ =0.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^c Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

 $^{109}_{47}\mathrm{Ag}_{62}$ -15

 $^{109}_{47}\mathrm{Ag}_{62}$ -15

From ENSDF

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \blacktriangleright \gamma$ Decay (Uncertain)

Legend

¹⁰⁹₄₇Ag₆₂

 $^{109}_{47}\mathrm{Ag}_{62}$