108 Y β^- decay (30 ms) 2011Su11

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh	ENSDF	10-Jun-2015				

Parent: ¹⁰⁸Y: E=0; $T_{1/2}$ =30 ms 5; $Q(\beta^{-})$ =14060 SY; % β^{-} decay=100.0

¹⁰⁸Y-T_{1/2}: From ¹⁰⁸Y Adopted Levels.

¹⁰⁸Y-Q(β^{-}): 14060 720 (syst,2012Wa38).

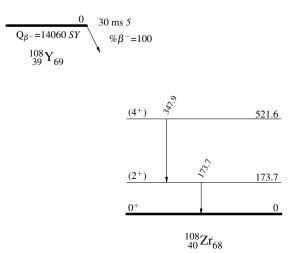
¹⁰⁸Y-% β^- decay: β^- decay mode is expected to be 100%, with the possibility of delayed neutron decay (theoretical % β^- n=1.5 (1997Mo25)).

- 2011Ni01: ¹⁰⁸Y nuclide produced in Be(²³⁸U,F) reactions at E=345 MeV/nucleon produced by the cascade operation of the RBIF complex of accelerators at RIKEN. Target=550 mg/cm². Identification of ¹⁰⁸Y made on the basis of magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted in a nine-layer double-sided silicon-strip detector (DSSSD). Correlations were recorded between the heavy ions and β rays. The half-life of ¹⁰⁸Y isotope was measured from the correlated ion- β decay curves and maximum likelihood analysis technique. In the analysis of the decay curve, β -detection efficiency, background rate, daughter and granddaughter (including those populated in delayed neutron decays) half-lives, and β -delayed neutron emission probabilities were considered. Comparison of measured half-lives with FRDM+QRPA and KTUY+GT2 calculations.
- 2011Su11: Produced at the radioactive isotope beam factory (RIBF) of the RIKEN Nishina Center via the in-flight fission of 238 U beams having an energy of 345 MeV/nucleon. Used 3 mm thick Be production target and BigRIPS I γ -beam separator to separate the fission fragments. Beam particles identified using the magnetic rigidity, B ρ , time-of-flight, and energy loss which was determined by the focal plane detectors of BigRIPS and the ZeroDegree spectrometer. Identified particles were implanted in nine stacked double-sided silicon strip detectors (DSSD) surrounded by two LaBr₃ detectors and four Compton-suppressed clover-type Ge detectors each having a plastic scintillation detector in front to eliminate background in γ -ray spectrum caused by β -ray events by taking an anticoincidence. β -decay events selected using position and time correlations between implantation and β -ray events.
- 2015Lo04: ¹⁰⁸Y nuclide produced at RIBF-RIKEN facility in ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon with an average intensity of 6×10^{10} ions/s. Measured half-life of ¹⁰⁸Y.

¹⁰⁸Zr Levels

E(level)	$J^{\pi \dagger}$
0	0^{+}
173.7	(2^{+})
521.6	(4^{+})

[†] From Adopted Levels.


$\gamma(^{108}\text{Zr})$

Eγ	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
173.7 [†]	173.7	(2^{+})	0	0+
347.9 [†]	521.6	(4+)	173.7	(2 ⁺)

[†] Assignment based on detection of 174- and 348-keV gamma ray peaks and the observed smooth transition in relevant energy levels from ¹⁰⁰Zr to ¹⁰⁶Zr (2011Su11).

¹⁰⁸Y β^- decay (30 ms) 2011Su11

Decay Scheme

