Adopted Levels, Gammas

History								
Type	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh	ENSDF	10-Jun-2015					

 $O(\beta^{-})=8190 \text{ SY}; S(n)=5160 \text{ SY}; S(p)=16280 \text{ SY}; O(\alpha)=-9670 \text{ SY}$ 2012Wa38

Estimated uncertainties (2012Wa38): 400 for $Q(\beta^-)$, 500 for S(n), 640 for S(p), 500 for $Q(\alpha)$.

 $Q(\beta^- n) = 4300 \ 400, \ S(2n) = 8590 \ 450, \ S(2p) = 31140 \ 720 \ (syst, 2012Wa38).$

1997Be70, 1995CzZZ: ^{108Zr} was produced by the in-flight fission of ²³⁸U ions at 750 MeV/nucleon impinging on a 1.2 g/cm² thick Be target at GSI facility.

2008Be33: $^{108\mathrm{Zr}}$ formed in reaction Be(136 Xe,F) with E=1 GeV/nucleon at GSI facility. Effective thickness of target: 2.5 g/cm². Products identified in-flight by using the Fragment Separator (FRS). Measured cross section, σ =61 pb 22.

2011Ni01: 108 Zr nuclide produced in Be(238 U,F) reactions at E=345 MeV/nucleon produced by the cascade operation of the RBIF complex of accelerators at RIKEN. Target=550 mg/cm². Identification of 108 Zr made on the basis of magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted in a nine-layer double-sided silicon-strip detector (DSSSD). Correlations were recorded between the heavy ions and β rays. The half-life of 108 Zr isotope was measured from the correlated ion- β decay curves and maximum likelihood analysis technique. In the analysis of the decay curve, β -detection efficiency, background rate, daughter and granddaughter (including those populated in delayed neutron decays) half-lives, and β -delayed neutron emission probabilities were considered. Comparison of measured half-lives with FRDM+QRPA and KTUY+GT2 calculations.

2011Su11: excited states and γ rays from the decay of 108 Y decay studied in this work.

2015Lo04: ¹⁰⁸Zr nuclide produced at RIBF-RIKEN facility in ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon with an average intensity of 6×10¹⁰ ions/s. Identification of ¹⁰⁸Zr was made by determining atomic Z and mass-to-charge ratio A/Q, where Q=charge state of the ions. The selectivity of ions was based on magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted at a rate of 50 ions/s in a stack of eight double-sided silicon-strip detector (WAS3ABi), surrounded by EURICA array of 84 HPGe detectors. Correlations were recorded between the implanted ions and β rays. The half-life of ¹⁰⁸Zr isotope was measured from the correlated ion-β decay curves and maximum likelihood analysis technique as described in 2014Xu07. Comparison of measured half-lives with FRDM+QRPA, KTUY+GT2 and DF3+CQRPA theoretical calculations.

Theoretical Structure calculations:

2012Sh05: levels, J, π , configurations, shapes, and deformation parameters.

2012Ta16: levels, J, π , energy spectra of tetrahedral deformation, moment of inertia.

Additional information 1.

$^{108}\mathrm{Zr}$ Levels

Cross Reference (XREF) Flags

A
$$^{108}Y \beta^{-}$$
 decay (30 ms)
B $^{9}Be(^{238}U,F\gamma)$

E(level)	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments
0.0‡	0+	77.4 ms 22	AB	 %β⁻=100; %β⁻n=? Theoretical %β⁻n=1.96 (2003Mo09). T_{1/2}: weighted average of 78.5 ms 20 (2015Lo04, 785 ms 2 in Table I of 2015Lo04 is a misprint, as confirmed in an e-mail reply of June 11, 2015 from G. Lorusso) and 73 ms 4 (2011Ni01); from the analysis of the (ion)β-correlated decay curve.
174.3 [‡] 5 521.5 [‡] 6 604.1 5 947.6 6 1000.1 [‡] 7	(2^{+}) (4^{+}) $(1,2^{+})$ $(2^{+},3,4^{+})$ (6^{+})		AB AB B B	J^{π} : γ to 0^+ . J^{π} : γ s to (2^+) and (4^+) .

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

108Zr Levels (continued)

E(level)	$J^{\pi \dagger}$	$T_{1/2}$	XREF	Comments
1432.5 6			В	
1642.3 [‡] 8	(8^{+})		В	
1796.4 7			В	J^{π} : γ to (6 ⁺) suggests (6,7,8 ⁺).
2074.5 8	(6^{+})	$0.536 \mu s + 26 - 25$	В	%IT=100
				J^{π} : γ to (8^+) .
				$T_{1/2}$: from $\gamma(t)$ (2012Ka36). Other: 0.62 μ s 15 (2011Su11).

 $^{^{\}dagger}$ From assignment as ground-state band members. ‡ Band(A): The g.s. band.

 γ (108Zr)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.
174.3	(2 ⁺)	174.4 5	100	0.0	0+	
521.5	(4^{+})	347.2 5	100	174.3	(2^{+})	
604.1	$(1,2^+)$	603.9 5	100	0.0	0^{+}	
947.6	$(2^+,3,4^+)$	426.3 5	100 <i>15</i>	521.5	(4^{+})	
		773.6 <i>5</i>	45 15	174.3	(2^{+})	
1000.1	(6^+)	478.3 5	100	521.5	(4^{+})	
1432.5		485.3 5	68 <i>23</i>	947.6	$(2^+,3,4^+)$	
		828.3 5	100 <i>36</i>	604.1	$(1,2^+)$	
1642.3	(8^{+})	642.3 5	100	1000.1	(6^+)	
1796.4		364.2 5	100 24	1432.5		
		795.9 <i>5</i>	56 20	1000.1	(6^+)	
2074.5	(6^+)	277.9 5	100 <i>16</i>	1796.4		
		432.3 5	59 16	1642.3	(8^{+})	[E2]

[†] From ${}^{9}\text{Be}({}^{238}\text{U,F}\gamma)$.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

Adopted Levels, Gammas

Band(A): The g.s. band

4