Adopted Levels, Gammas | History | | | | | | | | | |-----------------|--------------|----------|------------------------|--|--|--|--|--| | Type | Author | Citation | Literature Cutoff Date | | | | | | | Full Evaluation | Balraj Singh | ENSDF | 10-Jun-2015 | | | | | | $O(\beta^{-})=8190 \text{ SY}; S(n)=5160 \text{ SY}; S(p)=16280 \text{ SY}; O(\alpha)=-9670 \text{ SY}$ 2012Wa38 Estimated uncertainties (2012Wa38): 400 for $Q(\beta^-)$, 500 for S(n), 640 for S(p), 500 for $Q(\alpha)$. $Q(\beta^- n) = 4300 \ 400, \ S(2n) = 8590 \ 450, \ S(2p) = 31140 \ 720 \ (syst, 2012Wa38).$ 1997Be70, 1995CzZZ: ^{108Zr} was produced by the in-flight fission of ²³⁸U ions at 750 MeV/nucleon impinging on a 1.2 g/cm² thick Be target at GSI facility. 2008Be33: $^{108\mathrm{Zr}}$ formed in reaction Be(136 Xe,F) with E=1 GeV/nucleon at GSI facility. Effective thickness of target: 2.5 g/cm². Products identified in-flight by using the Fragment Separator (FRS). Measured cross section, σ =61 pb 22. 2011Ni01: 108 Zr nuclide produced in Be(238 U,F) reactions at E=345 MeV/nucleon produced by the cascade operation of the RBIF complex of accelerators at RIKEN. Target=550 mg/cm². Identification of 108 Zr made on the basis of magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted in a nine-layer double-sided silicon-strip detector (DSSSD). Correlations were recorded between the heavy ions and β rays. The half-life of 108 Zr isotope was measured from the correlated ion- β decay curves and maximum likelihood analysis technique. In the analysis of the decay curve, β -detection efficiency, background rate, daughter and granddaughter (including those populated in delayed neutron decays) half-lives, and β -delayed neutron emission probabilities were considered. Comparison of measured half-lives with FRDM+QRPA and KTUY+GT2 calculations. 2011Su11: excited states and γ rays from the decay of 108 Y decay studied in this work. 2015Lo04: ¹⁰⁸Zr nuclide produced at RIBF-RIKEN facility in ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon with an average intensity of 6×10¹⁰ ions/s. Identification of ¹⁰⁸Zr was made by determining atomic Z and mass-to-charge ratio A/Q, where Q=charge state of the ions. The selectivity of ions was based on magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted at a rate of 50 ions/s in a stack of eight double-sided silicon-strip detector (WAS3ABi), surrounded by EURICA array of 84 HPGe detectors. Correlations were recorded between the implanted ions and β rays. The half-life of ¹⁰⁸Zr isotope was measured from the correlated ion-β decay curves and maximum likelihood analysis technique as described in 2014Xu07. Comparison of measured half-lives with FRDM+QRPA, KTUY+GT2 and DF3+CQRPA theoretical calculations. #### **Theoretical Structure calculations:** 2012Sh05: levels, J, π , configurations, shapes, and deformation parameters. 2012Ta16: levels, J, π , energy spectra of tetrahedral deformation, moment of inertia. Additional information 1. ## $^{108}\mathrm{Zr}$ Levels #### Cross Reference (XREF) Flags A $$^{108}Y \beta^{-}$$ decay (30 ms) B $^{9}Be(^{238}U,F\gamma)$ | E(level) | $J^{\pi \dagger}$ | T _{1/2} | XREF | Comments | |---|---|------------------|-----------|--| | 0.0‡ | 0+ | 77.4 ms 22 | AB | %β⁻=100; %β⁻n=? Theoretical %β⁻n=1.96 (2003Mo09). T_{1/2}: weighted average of 78.5 ms 20 (2015Lo04, 785 ms 2 in Table I of 2015Lo04 is a misprint, as confirmed in an e-mail reply of June 11, 2015 from G. Lorusso) and 73 ms 4 (2011Ni01); from the analysis of the (ion)β-correlated decay curve. | | 174.3 [‡] 5
521.5 [‡] 6
604.1 5
947.6 6
1000.1 [‡] 7 | (2^{+}) (4^{+}) $(1,2^{+})$ $(2^{+},3,4^{+})$ (6^{+}) | | AB AB B B | J^{π} : γ to 0^+ .
J^{π} : γ s to (2^+) and (4^+) . | Continued on next page (footnotes at end of table) ## Adopted Levels, Gammas (continued) # 108Zr Levels (continued) | E(level) | $J^{\pi \dagger}$ | $T_{1/2}$ | XREF | Comments | |-----------------------|-------------------|-------------------------|------|---| | 1432.5 6 | | | В | | | 1642.3 [‡] 8 | (8^{+}) | | В | | | 1796.4 7 | | | В | J^{π} : γ to (6 ⁺) suggests (6,7,8 ⁺). | | 2074.5 8 | (6^{+}) | $0.536 \mu s + 26 - 25$ | В | %IT=100 | | | | | | J^{π} : γ to (8^+) . | | | | | | $T_{1/2}$: from $\gamma(t)$ (2012Ka36). Other: 0.62 μ s 15 (2011Su11). | $^{^{\}dagger}$ From assignment as ground-state band members. ‡ Band(A): The g.s. band. γ (108Zr) | E_i (level) | \mathbf{J}_i^{π} | E_{γ}^{\dagger} | I_{γ}^{\dagger} | \mathbb{E}_f | \mathbf{J}_f^{π} | Mult. | |---------------|----------------------|------------------------|------------------------|----------------|----------------------|-------| | 174.3 | (2 ⁺) | 174.4 5 | 100 | 0.0 | 0+ | | | 521.5 | (4^{+}) | 347.2 5 | 100 | 174.3 | (2^{+}) | | | 604.1 | $(1,2^+)$ | 603.9 5 | 100 | 0.0 | 0^{+} | | | 947.6 | $(2^+,3,4^+)$ | 426.3 5 | 100 <i>15</i> | 521.5 | (4^{+}) | | | | | 773.6 <i>5</i> | 45 15 | 174.3 | (2^{+}) | | | 1000.1 | (6^+) | 478.3 5 | 100 | 521.5 | (4^{+}) | | | 1432.5 | | 485.3 5 | 68 <i>23</i> | 947.6 | $(2^+,3,4^+)$ | | | | | 828.3 5 | 100 <i>36</i> | 604.1 | $(1,2^+)$ | | | 1642.3 | (8^{+}) | 642.3 5 | 100 | 1000.1 | (6^+) | | | 1796.4 | | 364.2 5 | 100 24 | 1432.5 | | | | | | 795.9 <i>5</i> | 56 20 | 1000.1 | (6^+) | | | 2074.5 | (6^+) | 277.9 5 | 100 <i>16</i> | 1796.4 | | | | | | 432.3 5 | 59 16 | 1642.3 | (8^{+}) | [E2] | [†] From ${}^{9}\text{Be}({}^{238}\text{U,F}\gamma)$. #### Adopted Levels, Gammas ## Level Scheme Intensities: Relative photon branching from each level ## Adopted Levels, Gammas Band(A): The g.s. band 4