Adopted Levels

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh	ENSDF	10-Jun-2015		

 $Q(\beta^{-})=14060 SY; S(n)=3000 SY; S(p)=15690 SY; Q(\alpha)=-11650 CA$ 2012Wa38,1997Mo25

 $Q(\alpha)$ from 1997Mo25; $Q(\beta^-, S(n), S(p))$ from 2012Wa38.

Estimated uncertainties (2012Wa38): 720 for $Q(\beta^-)$, 780 for S(n); 920 for S(p), 640 for $Q(\alpha)$.

 $S(2n)=7390\ 780,\ Q(\beta^{-}n)=8900\ 670\ (syst, 2012Wa38).\ S(2p)=33620\ (theory, 1997Mo25).$

- 2010Oh02: ¹⁰⁸Y nuclide identified in Be(²³⁸U,F) and Pb(²³⁸U,F) reactions with a ²³⁸U⁸⁶⁺ beam energy of 345 MeV/nucleon produced by the cascade operation of the RBIF accelerator complex of the linear accelerator RILAC and four cyclotrons RRC, fRC, IRC and SRC. Identification of ¹⁰⁹Y nuclei was made on the basis of magnetic rigidity, time-of-flight and energy loss of the fragments using BigRIPS fragment separator. Experiments performed at RIKEN facility. Based on A/Q spectrum and Z versus A/Q plot, 122 counts in one setting and 10 counts in another were assigned to ¹⁰⁸Y isotope. (Q=charge state).
- 2011Ni01: ¹⁰⁸Y nuclide produced in Be(²³⁸U,F) reactions at E=345 MeV/nucleon produced by the cascade operation of the RBIF complex of accelerators at RIKEN. Target=550 mg/cm². Identification of ¹⁰⁵Y made on the basis of magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted in a nine-layer double-sided silicon-strip detector (DSSSD). Correlations were recorded between the heavy ions and β rays. The half-life of ¹⁰⁸Y isotope was measured from the correlated ion- β decay curves and maximum likelihood analysis technique. In the analysis of the decay curve, β -detection efficiency, background rate, daughter and granddaughter (including those populated in delayed neutron decays) half-lives, and β -delayed neutron emission probabilities were considered. Comparison of measured half-lives with FRDM+QRPA and KTUY+GT2 calculations.
- 2015Lo04: ¹⁰⁸Y nuclide produced at RIBF-RIKEN facility in ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon with an average intensity of 6×10^{10} ions/s. Identification of ¹⁰⁸Y was made by determining atomic Z and mass-to-charge ratio A/Q, where Q=charge state of the ions. The selectivity of ions was based on magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted at a rate of 50 ions/s in a stack of eight double-sided silicon-strip detector (WAS3ABi), surrounded by EURICA array of 84 HPGe detectors. Correlations were recorded between the implanted ions and β rays. The half-life of ¹⁰⁸Y isotope was measured from the correlated ion- β decay curves and maximum likelihood analysis technique as described in 2014Xu07. Comparison of measured half-lives with FRDM+QRPA, KTUY+GT2 and DF3+CQRPA theoretical calculations.

Other:

1995CzZZ: preliminary report suggesting formation of ¹⁰⁸Y (figure 2 in 1995CzZZ) produced in ²⁰⁸Pb(U,F) reaction at E=750 MeV/nucleon; on-line fragment separator at GSI; time of flight and energy loss technique. However, this isotope was not listed in authors' later publications of the same or similar studies: 1997Be70 and 1997Be12. This would suggest that identification of ¹⁰⁸Y was probably uncertain in this study.

2013Fa05: calculated half-life, delayed neutron emission probability.

108Y Levels

E(level)	T _{1/2}	Comments
0	30 ms 5	$\%\beta^{-}=100; \ \%\beta^{-}n=?; \ \%\beta^{-}2n=?$
		Theoretical %β n=34.8, %β 2n=2.4 (2003M009). E(level): measured half-life is assumed to correspond to the ground state of ¹⁰⁸ Y. J^{π} : 5/2 ⁺ proton and 7/2 ⁻ neutron orbital from theoretical considerations (1997Mo25). T _{1/2} : from 2015Lo04 (ion-β correlated curve). Other: 25 ms +66–10 (2011Ni01, ion-β-correlated curve). Measured σ =97 pb (2010Oh02), systematic uncertainty≈40%.