108 Mo β^- decay 1995Jo02

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Jean Blachot	ENSDF	1-Jul-2008						

Parent: ¹⁰⁸Mo: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=1.09$ s 2; $Q(\beta^-)=4650$ SY; $\%\beta^-$ decay=100.0

¹⁰⁸Mo-Q(β^{-}): 1995Jo02 measured Q(g.s.)= 5120 40.

Activity: 238 U(p,f), E= 20 MeV, on-line isotope separator IGISOL.

Measured: γ , $\gamma\gamma$, $\gamma(t)$, ce, Ge(Li), Ge, Si(Li), Elli spectrometer.

Others: 1972Tr08, rapid technetium chem on fission product mixture 1969WiZX; coin measurements with ²⁵²Cf SF products 1977Ti02: (268γ)≤ 2 s rapid molybdenum chem on fission product mixture.

The level scheme is as given by 1995Jo02.

¹⁰⁸Tc Levels

E(level)	J^{π}	E(level)	J^{π}	E(level)	\mathbf{J}^{π}	E(level)	\mathbf{J}^{π}
0.0	$(2^+) (2^+,3^+) (2^+,3^+)$	86.38 7	1+	326.91 <i>12</i>	1^+	458.76 7	1^+
27.99 <i>10</i>		106.18 9	(+)	334.03 <i>11</i>	1^+	563.78 9	(1 ⁺)
67.78 8		268.26 7	(+)	340.38 7	$(^+)$	904.10 <i>16</i>	(1 ⁺)

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft		Comments
(3745 SY)	904.10	4.4 13	5.27 13	av Eβ=1837 20	
(4086 <i>SY</i>)	563.78	11 3	5.02 12	av Eβ=1999 20	
(4191 <i>SY</i>)	458.76	31.8	4.61 12	av E β =2049 20	
(4309 <i>SY</i>)	340.38	1.5 13	6.0 4	av Eβ=2106 20	
(4315 SY)	334.03	11 <i>3</i>	5.11 12	av E β =2109 20	
(4323 SY)	326.91	13 <i>3</i>	5.04 11	av E β =2113 20	
(4543 SY)	106.18	2.3 11	5.88 21	av E β =2218 20	
(4563 SY)	86.38	26 13	4.84 20	av E β =2228 20	
(4582 <i>SY</i>)	67.78	<6	>5.3	av E β =2237 20	

[†] Absolute intensity per 100 decays.

 $\gamma(^{108}\mathrm{Tc})$

I γ normalization: from Σ Ti(γ 's to g.s.)=100.

E_{γ}	$I_{\gamma}^{\dagger\ddagger}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	α #	Comments
28.0 2	8.2 25	27.99	(2+,3+)	0.0	(2 ⁺)	M1		11.2	$\alpha(K)=9.8; \alpha(L)=1.19; \alpha(M)=0.215$ $\alpha(K)=72$
58.4 1	93	86.38	1+	27.99	(2 ⁺ ,3 ⁺)	E2		8.7	$\alpha(K)=6.10; \ \alpha(L)=2.14; \ \alpha(M)=0.397; \ \alpha(N+)=0.0658$
65.7 1	13 3	334.03	1+	268.26	(*)	M1		0.93	α (K)exp=5 2; α (L)exp=2.5 8; K/L=2.6 α (K)=0.807; α (L)=0.097; α (M)=0.0176; α (N+)=0.00341
67.8 <i>1</i>	9.7 16	67.78	(2+,3+)	0.0	(2+)	M1		0.85	α (K)exp=1.0 3 α (K)=0.738; α (L)=0.089; α (M)=0.0161; α (N+)=0.00311
86.4 <i>1</i>	18 <i>3</i>	86.38	1+	0.0	(2 ⁺)	M1+E2	0.81 <i>16</i>	0.423	α (K)exp=1.3 5 α (K)exp=0.75 14; α (L)exp=0.094 4; K/L=8.3

	¹⁰⁸ Mo β^- decay 1995 Jo02 (continued)									
$\gamma(^{108}\text{Tc})$ (continued)										
Eγ	$I_{\gamma}^{\dagger\ddagger}$	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.	α #	Comments		
106.2 <i>1</i>	8.3 15	106.18	(*)	0.0	(2+)	M1	0.238	δ: weighted average of 0.63 17 from $ α(K)exp and 0.40 + 19-27 from α(L)exp. α(K)=0.207; α(L)=0.0248; α(M)=0.00449;α(N+)=0.00087α(K)=0.2066; KH=0.22$		
118.4 <i>1</i>	6.3 11	458.76	1+	340.38	(*)	M1	0.175	α (K)exp=0.26 6; K/L=8.3 α (K)=0.153; α (L)=0.0182; α (M)=0.00331; α (N+)=0.00064 α (K)exp=0.18 9		
161.8 <i>3</i>	2.0 6	268.26	$(^{+})$	106.18	$(^{+})$	[M1]	0.075			
190.5 <i>1</i>	15 3	458.76	1+	268.26	(+)	[M1]	0.0483	$\alpha(K)=0.0423; \alpha(L)=0.00497; \alpha(M)=0.00090; \alpha(N+)=0.00018$		
223.3 1	6.5.12	563.78	(1^{+})	340.38	$(^{+})$					
228.2.3	3.0 8	334.03	1+	106.18	(+)					
234.3 3	WEAK	340.38	(+)	106.18	(⁺)					
240.5 1	26 4	326.91	1+	86.38	1+					
254.2 <i>3</i>	1.9 6	340.38	$(^{+})$	86.38	1^{+}					
x268.21 6										
268.3 1	52 8	268.26	$(^{+})$	0.0	(2^{+})					
295.6 1	8.3 16	563.78	(1^{+})	268.26	$(^{+})$					
299.6 5	1.7 7	326.91	1^{+}	27.99	$(2^+, 3^+)$					
312.2 2	4.3 10	340.38	$(^{+})$	27.99	$(2^+, 3^+)$					
327		326.91	1^{+}	0.0	(2^{+})			E_{γ} : given only in authors' decay scheme.		
334.6 4	2.0 7	334.03	1^{+}	0.0	(2^{+})					
340.3 1	11.0 19	340.38	$(^{+})$	0.0	(2^{+})					
372.4 1	24 4	458.76	1+	86.38	1+					
391.0 <i>1</i>	16 3	458.76	1+	67.78	$(2^+, 3^+)$					
430.8 4	2.0 7	458.76	1+	27.99	$(2^+, 3^+)$					
458.5 2	4.6 10	458.76	1+	0.0	(2^{+})					
477.5 2	8.1 15	563.78	(1^+)	86.38	1^+					
535.8 4	2.5 8	563.78	(1^+)	27.99	$(2^{+}, 3^{+})$					
564	4 4 10	563.78	(1^{+})	0.0	(2^{+})			E_{γ} : given only in authors' decay scheme.		
570.1 2	4.4 10	904.10	(1^{+})	334.03	1					
635.8 2	5.5 11	904.10	(1^{+})	268.26	(「)					

[†] I γ are from the authors' table of I(γ +ce) values using the mults as given by the authors (and adopted here) with the α 's as ¹ For absolute intensity per 100 decays, multiply by 0.43 6.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

108 Mo β^- decay 1995Jo02

¹⁰⁸₄₃Tc₆₅

3